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ON CONGRUENCE RELATIONS OF MONOUNARY ALGEBRAS I

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received June 23, 1981)

The lattice Con(4, f) of all congruence relations of a monounary algebra (4, f)
was studied by J. Berman [1], L. A. Skornjakov and D. P. Jegorova [2], D. P.
Jegorova [3], [4] and G. C. Kurinnoj [7], [8]; cf. also the expository article [11].

Let A + 0 be a set. We denote by E(A) the system of all equivalence relations on A.
Let F be the system of all unary operations on A. For f € F we put

R(f) = {g e F : Con(4, f) = Con(4, g)} .
Consider the following conditions for a monounary algebra (A,f):
(a) (4, f) has at least one connected component without cycle.
(b) Each connected component of (4, f) has a cycle of the cardinality less than 3.

In this paper it is proved that the conditions (a) and (b) can be expressed in terms
of the system Con(4, f) (without using explicitly the operation f). Further it will
be shown that if (a) or (b) holds, then all operations g e R(f) can be reconstructed
by means of Con(4, f). From this reconstruction we obtain in particular:

(i) If (a) is valid, then card R(f)=1.(This result was proved already by Kurinnoj
[71)

(i) If (b) holds and if Con(4, f) = E(A), card 4 > 2, then card R(f) = 1 +
+ card A. If (b) holds and if Con(4, f) + E(A), then card R(f) < 4.

These results will be applied in Part II for obtaining the estimate for card R(f)
in the general case. Analogous questions for a type of partial monounary algebras
were investigated in [5].

1. PRELIMINARIES

We start with recalling the basic notions concerning monounary algebras (cf. B.
Jonsson [6], M. Novotny [9], [10]).

Let A be a nonempty set and let F = F(A) be the set of all unary operations defined
on A. If f € F(A), then the pair (4, f) is called a monounary algebra. (A4, f) is said
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to be connected, if for each x, y € A there are positive integers m, n with f™(x) = f"().
Let N be the set of all positive integers and let No = N U {0}. For x € A we denote

K (%) = Unen Unen f"(/"(x)) 5

the set K ((x) is said to be the connected component of (4, f) containing the element x.

Again, let x € A and suppose that f"(x) = x for some neN. The set C{[x] =
= {f*(x) : k e N} is called the cycle of (4, f) generated by x. Further we put C{[x] =
= fY(C}[x]) — C}[x], and for each m e N we set C},, ;[x] = f~(Ci[x]).

Let 0 be an equivalence relation on the set A. We shall often not distinguish be-
tween 9 and the partition of the set 4 corresponding to 6; if x € A, then the class of
this partition containing the element x will be denoted by x0. If § does not coincide
with the identity on A, then we also write 6 = [0, :iel], where {0;:iel} =
= {x0 : x€ A and card x0 > 1}. :

For a monounary algebra (4, f) we denote by Con(4, f) the system of all con-
gruence relations of (4, f). For x, y € A the symbol 67(x, y) means the least con-
gruence relation of (4, f) having the property that the elements x and y belong to
the same class of the corresponding partition of 4. We often write 0(x, y) instead
of 0/(x, y), when no ambiguity can occur.

Let the monounary algebra (4, f) be fixed. A property p(x,, ..., X,) concerning an
n-tuple (x,, ..., x,) of elements of 4 will be said to be a k-property, if it can be expres-
sed merely by congruence relations of (4, f) (without using explicitly the operation f).
Analogously, a subset X < A is called a k-set, if it can be defined by congruence
relations of (4, f).

As an example we can mention here that (as it will be proved below) the union
of all cycles C with card C > 2 is a k-set.

The following lemma can be easily verified.

1.1. Lemma. Let x, y be distinct elements of A. Then 0(x, y) = [{x, y}] if and
only if some of the following conditions is valid: (a) f(x) = x and f(y) = y; (b)
16) = 0) 5 (0 60) ) =5 0 560 =0} #1515 © ) - 5 o
S(y)=x

1.2. Lemma. Let x,y be distinct elements of A, f(x) = f(y) = y. Then the
following assertions are valid:

(a) By means of congruence relations of (A,f) we can determine all elements
z € A such that f(z) = z.

(b) Let ze A4, z * y, f(z) = z. By means of congruence relations of (A, f) we
can determine all ve A such that f(v) = z.

(c) Let ne N. By means of congruence relations of (A,f) we can determine
all z belonging to the set CI[y] and for z e CJ[y] we can determine u e A such
that f(z) = u.
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(d) By means of congruence relations of (A.f) we can determine all pairs
z, z' € A such that {z, z'} is a cycle of (4, ).

Proof. (a) Let z€ A4, z  y. Then f(z) = z if and only if 0(x, z) = [{x, y, z}]
and 6(y, z) = [{y, z}]. Namely, the necessary condition is obvious and the suf-
ficient condition can be obtained by means of Lemma 1.1. (if we consider elements
», z instead of x, y, and then use the relation for 0(x, z)).

(b) Letze A, z #+ y, f(z) = z, ve A, v + z. Then f(v) = z if and only if 0(z,v) =
= [{z.v}] and 6(v, y) = [{v, y, z}]; this follows from Lemma 1.1 for the elements
v, y and from the relation for 6(v, y).

(c) Let z€ A4, z + x. According to Lemma 1.1 (for x and z) we get that z e C{[y]
if and only if 0(x, z) = [{x, z}]. Suppose that me N, m > 1 and that for each
neN.n < m, the assertion from (c) is valid. We shall prove that for z ¢ U, <,, C;[ ]
the following holds:

z € CJ[y]if and only if there exists u € C,_,[y] such that 0(z, u) = [u 0(u, f(u)) L
U {z}] and 6(z, y) # [{z, y}]. In this case f(z) = u.

In proving that the condition is necessary it suffices to put u = f(z). Let us prove
that the condition is sufficient. We have 6(z, u) = [u 0(u, f(u)) U {z}] = [{/*(») :
:keNo} u{z}] and z¢U,<, Ci[y], which implies that f(z) = z or f(z) = u.
If f(z) = z, then 60(z, y) = [{z, y}], which is a contradiction. Hence f(z) = u and
ze Chly]

(d) Letz, z' € A, z & z'. It is obvious that f(z) = z and f(z') = z imply 0(z, z') =
= [{z,2z'}] and 6(y, z) = 6(y, z’). The converse implication can be obtained by
using 1.1 and the fact 0(y, z) = 6(y, z').

1.3. Lemma. Let x, y be distinct elements of A, f(x) =y and f(y) = z. Then
the following assertions are valid:

(a) By means of congruence relations of (A, f) we can determine all elements
z € A such that f(z) = z.

(b) Let z € A, f(z) = z. By means of congruence relations of (A, ) we can deter-
mine all ve A such that f(v) = z.

(c) By means of congruence relations of (A,f) we can determine all pairs
u, u' € A such that {u, u'} is a cycle of (4, f).

(d) Let ne N. By means of congruence relations of (A, f) we can determine all
z € CJ[x] and for z € CJ[x] we can determine u € A such that f(z) = u.

Proof. (a) For z € 4 the relation f(z) = z holds if and only if 6(x, z) = 0(y, z) =
= [{x, y, z}]; we shall prove only that the condition is sufficient (the necessity of
the condition is obvious).

Since f(x) 6(x, z) f(z), i-e. yO(x, z) f(z), we have f(z)e{x,y,z}. In the case
f(z) = x we get 0(y, z) = [{z, y}]; if f(z) = y, we obtain 0(x, z) = [{x, z}]. Thus
f(z) =z

(b) Let ze 4, f(z) =z, ved, v+ z. Then f(v) = z if and only if 0(z, v) =
= [{z,v}] and 6(v, x) = [{x, y, v, z}]; it is obvious that the condition of this as-
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sertion is necessary, and it follows from Lemma 1.1 (for the elements z, u) and from
the relation for 0(1;, x) that the condition is also sufficient.

(c) Let u, u’ be distinct elements of A such that u ¢ {x, y} and u’ € {x, y}. We shall
show that the following relation is valid: f(u) = u’ and f(u’) = u if and oaly if
0(u, x) = [{u, x}, {u', y}] and O(u, u’) = [{u, u'}]. It is obvious that the condition
is necessary. Let us prove that it is also sufficient. Since f(u) 0(u, x) f(x), i.e. f{u).
. 0(u, x) y, it follows that f(u) = y or f(u) = u’. If f(u) = y, then O(u, x) = [{u, x}],
which is a contradiction. Thus f(u) = u’. Further f*(u)0(u, x) f*(x), i.e. f(u') .
.0(u, x) x, hence f(u') = x or f(u') = u. If f(u') =x, then O(u,u’) * [{u, u'}],
therefore we obtain f(u') = u.

(d) Let z€ A4, z ¢ {x, y}. The relation f(z) = x if and only if 6(x, z) = [{x, y, z}]
and 0(y, z) = [{y, z}] can be obtained by using Lemma 1.1 (for y, z). Similarly
we can determine by means of congruence relations of (4,f) whether f(:) = y.
Hence the assertion (d) holds for n = 1. Further let n € N, n > 1 and suppose that
for each m e N, m < n the assertion (d) is valid. Let z ¢ U,.<, C4[x]. We shall prove
the following relation: z € CJ[x] if and only if there exists u € CJ_,[x] such that
0(z, u) = [u O0(u, f(u)) U {z}] and u 0(z, x) y. In this case f(z) = u.

In proving that the condition is necessary it suffices to put u = f(z). Let us prove
that condition is sufficient. Since 0(z, u) = [u 0(u, f(u)) U {z}] = [{/*(u) : ke Ny} L
v {z}] and z ¢ U,<, Ci[x]. we obtain f(z) = z or f(z) = u. If f(z) = z, then
0(z, x) = [{z. x, y}], which is a contradiction. Hence f(z) = u and z € CJ[x]. The
proof is complete.

1.4. Corollary. Let (A.f) be a monounary algebra such that each connected
component of (A,f) possesses a cycle having the cardinality less than 3. Further
let x, y be distinct elements of A, f(x) = f(y) = y. If a € A, then f(a) can be deter-
mined by means of congruence relations.

Proof. Let the assumptions of the lemma hold and let ae 4 — {x, y}. First
suppose that the element a belongs to the same component as y, i.e., a € C{[y] for
some n e N. From 1.2 (c) it follows that this possibility can be determined by means
of Con(4, f) and also that f(a) can be found by means of Con(4,f). Now let a
belongs to CJ[z] for some ne N U {0}, ze A, where f(z) =z % y. If n =0, ie.
f(a) = a, it can be described by means of Con(4, f) in view of 1.2 (a). If n = 1,
then f(a) can be determined by means of Con(4, f)in view of 1.2 (b). The situation
when n > 1 is analogous to that when a € C}[y]. Further consider the case when a
belongs to CJ[u] for some ne N U {0}, u € A, where u belongs to a cycle with the
cardinality 2. From 1.2 (d) it follows that the case when n = 0 can be described by
means of Con(4, f) and in this case f(a) can be determined by Con(4, f). If n > 1,
this case and f(a) can be determined by means of Con(4, f) in view of 1.3 (d).

Analogously as 1.4 the following assertion can be proved:

1.5. Corollary. Let (A,f) be a monounary algebra such that each connected
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component of (A, f) possesses a cycle having the cardinality less than 3. Further
let x, y be distinct elements of A, f(x) =y and f(y) = x. If ae A, then f(a) can
be determined by means of congruence relations.

2. (4,f) HAVING AT LEAST ONE CONNECTED COMPONENT
WITHOUT CYCLE

As before, let (4, f) be a monounary algebra. Consider the following condition
for the set Con(4, f):

(0) There are distinct elements x, ye A such that 0(x,y) = [x 0(x, y)],
card x 0(x, y) = Ny, and for no z € 4, z # x, both the relations 6(x, z) < 0(x, y),
0(x, z) = [x 0(x, z)] are valid.

In this paragraph it will be shown that if (0) is valid, then we can reconstruct the
operation f if the set Con(4, /) is given. From this it follows that R(f) = {f}.

At first we shall prove that the condition (0) is equivalent with the condition in the
title of this paragraph.

2.1. Lemma. Let x € A. The following conditions are equivalent:
(1) The connected component K /(x) possesses no cycle.

(2) There is y € A such that 6(x, y) = [x 6(x, y)]. card x 6(x, y) = X, and for
no z € A, z # x, both the relations 6(x, z) < 0(x, y), 0(x, z) = [x 0(x, z)] are valid.

Proof. Assume that K(x) possesses no cycle. Put y = f(x); then 0(x, y) =
= [{f(x) :ieNy}], card x 6(x, y) = N,. Let ze A be such that 6(x, z) < 0(x, y).
Then z = f*(x) for some ke N, k > 1 and the relation x 0(x, z) f(x) does not hold.
Since we have f(x) 6(x, z) f(z), i.e. f(x) 0(x, z) f**(x), it follows that the partition
of the congruence relation 6(x, z) has at least two nontrivial classes, namely x 0(x, z)
and y 0(x, z).

Let us suppose that the condition (2) is valid and that K (x) possesses a cycle.
If y is such that K (y) possesses a cycle, then x 0(x, y) = {f(x), f(y) : i e N},
card x 0(x, y) < No. Hence K (y) has no cycle. If x does not belong to a cycle, then
6(x, y) has at least two nontrivial classes (x 0(x, y), f(x) 0(x, y)). Similarly we obtain
at least two nontrivial classes in the partition corresponding to the congruence 1ela-
tion 0(x, y) in the case, when x belongs to a cycle having more than one element.
According to (2), K,(x) contains a cycle of the form {x} and 6(x, y) = [{f(y):
:ieNy} u {x}]. Put z = f(y). Then 0(x, z) < 0(x, y), 0(x, z) = [{f(z) : ie No} L
U {x}] = [x 0(x, z)], which is a contradiction.

The following assertions are consequences of Lemma 2.1.

2.1'. Lemma. Let x € A. Then the property
(1) the connected component K /(x) possesses no cycle
is a k-property.
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2.1". Let ge R(f), xe A. Then K(x) possesses no cycle if and only if K,(x)
possesses no cycle.
If analogous situations will occur in what follows, we shall mention mostly the

result analogous to Lemma 2.1, but we shall automatically aply also results analogous
to 2.1" and 2.1".

2.2. Lemma. Let x, x' € A and let K ((x) and K /(x') possess no cycles. Then K {(x) =
= K (x') if and only if the partition of 6(x, x') contains ¥, nontrivial classes.

Proof. Let K, (x) # K/{x'). Then 0(x,x) = [{x,x}, {/(x),/(x)}, {f¥(x),
F3(x")}, ...]- Now suppose that K /(x) = K (x). Then there are m, n € N, such that
f™(x) = f"(x'), where m — n is uniquely determined. Without loss of generality we
can assume that m — n > 0 and that m is the least nonnegative integer such that
f™(x) = f"(x’) for some n € N,,. Then the partition corresponding to the congruence
relation 6(x, x) has exactly m nontrivial classes, namely x 6(x, x), f(x) 0(x, x'), ...

cn STH) O(x, x).

Now we shall introduce the following denotations. Let u,ve A be such that
K (u) = K,(v) possesses no cycle. We set u <, v, if v = f"(u) for some n € N. Further
we put u ¢’ v, if there is n e N,, such that f"(u) = f"(v). If u ¢/ v and n is the least
nonnegative integer such that f"(u) = f"(v), we shall write u o] v. The following
property will be denoted as (c(u, v)):

(c(u, v)) There exists 6 e Con(4, f) such that card vf = N,, u0 = {u}, and if
w € v0, then the relation w ¢ v is not valid.

2.3. Lemma. Let x,u,ve A. Assume that (i) K(x) possesses no cycle, and (ii)

u, ve K(x). Then the condition
(n)uolv
~is a k-property for each ne N.

Proof. At first let us recall that according to 2.1 and 2.2 (i) and (ii) are k-properties.
Let the assumption of the lemma hold. From 1.1 it follows that u ¢4 v if and only if
0(u, v) = [{u, v}], hence (1) is a k-property. Suppose that n € N, n > 1 and that (m)
is a k-property for each me N, m < n. We shall prove the following assertion:
u ol v if and only if the relation u ¢/ v is not valid for any meN, m < n and if

m

there exist u;, v;€ A, u; £ v; for i =1,2,...,n — 1 such that

u;elv, for i=1,..,n—1

0(u, v) = [{uy, v1}, {u2s v2}5 s {1, Vus}s {0}

Let u o v. Since n is the least positive integer with f"(u) = f"(v), it is obvious that
the relation u ¢, v holds for no me N, m < n. Denote u, = "~ (u), v; = f""(v)
for each i € {1, ..., » — 1}; then we have u; * v;, u, 6f v; and 0(u, v) = [{v, uy}, ...
eees {y—1, V,— 1}, {4, v}]. Now let us prove that the condition of the above assertion

and that

442



is sufficient. We have f(u)0(u, v) f(v), ..., /" *(u) O(u, v) f"~'(v). Since for no
meN, m < n the relation u o}, v is valid, it follows that f(u) # f(v), e [N ) *
& "7 v)- 1ff(u) = uy, f(v) = v;forsomeie {1,...,n — 1}, then fi*1(y) = fi(u;) =
= f(v;) = f'*(v), and therefore i = n — 1. The case when f(u) = v,, f(v) =u;is
analogous. Hence u ¢ v. Thus (n) is a k-property.

2.4. Lemma. Let x € A, u,ve K (x) and let K (x) possess no cycle. Under these
assumptions u < v if and only if (c(u, v)) is valid and (c(v, u)) fails to hold.

Proof. Suppose that u <, v and let n be the positive integer such that f*(u) = v.
Put 0 = 0(v, f(v)); then card v0 = card {f (v):ieNo} = Ny, uf = {u} and for
no i e N the relation f(v) o v is valid. Hence (c(u, v)) holds. Now let 0" € Con(4, f)
be such that card uf’ = N,. Denote by {u; : i € N} the set such that u ¢ {u, : i e N},
u' = {u} U {u;:ieN}. We have ["(u)0 f"(u;), i.e. v0 f*(u;) for each ieN.
If v’ = {v}, then f"(u;) = v = f"(u), therefore u o u; for each i € N. Thus the con-
dition (c(v, u)) is not valid.

Now assume that the relation u <, v does not hold. If v <, u, then (c(v, u)) is
valid and (c(u, v)) is not valid. Let v <, u does not hold. Put 0 = 0(v, f(v)), 0’ =
= O(u, f(u)). Then from the definition of 6 or ¢, respectively, it follows that (c(u, v))
and (¢(v, u)) are valid.

2.4'. Lemma. Let x€ A, u,ve K/(x) and let K/x) possess no cycle. Then the
property
(1) u<,pv
is a k-property.

2.4". Letx € A, u € K/(x) and K ((x) possess no cycle.If g € R(f), then g(u) = f(u).

Proof. The relation f(u) = g(u) follows from the fact that u <, v if and only if
u <, v(cf. Lemma 2.4').

2.5. Lemma. Let xe A and let K(x) possess no cycle. If u,ze A, z ¢ K/x),
then the following conditions are equivalent:

(1) () = .

(2) uef(x)6(z, x) — K(x).

Proof. Let the assumption of the lemma hold. Suppose that f(z) = u. Then
u ¢ K (x) and u 0(z, x) f(x), i.e., uef(x)0(z, x) — K(x). Now let (2) be valid. If
K /(z) possesses no cycle, we obtain 60(z, x) = [{z,x}, {f(z), f(x)},...], therefore
f(x)6(z, x) — K{x) = {f(2)}. Assume that K(z) possesses a cycle C. If z¢C,
then f(x)0(z, x) = {f(z),f(x)}; if zeC, card C = n, then f(x)0(z,x) = {f(2),
Sx), " (), f2*(x), ...}, hence f(x) 0(z, x) — K(x) = {f(2)}-

2.6. Theorem. Let x< A and let K(x) possess no cycle. Then the operation f
can be determined by means of congruence relations of (4, f).
Proof. The assertion follows from Lemmas 2.2, 2.4 and 2.5.
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2.7. Corollary. (Cf. [7], Theorem 6.) Let x € A and K (x) possess no cycle. Then
R(f) =1/}

Let us remark that by proving Thm. 6 in [7] and in the corresponding lemmas
([7). pp. 13—39, 45—50) there is used the operation f itself, i.e., the author does not
work merely with the system Con(4, f).

3. THE CASE OF SMALL CYCLES; AUXILIARY RESULTS

In this section some auxiliary results will be established which will be applied in 4
and in Part II.

By a small cycle of an algebra (A4, f) we shall understand a cycle C with card C <
=< 2. A cycle C; with card C; > 2 is called large.

3.1. Lemma. Let C S A, card C > 2. Then C is a cycle of (A, f) if and only if
the following cenditions are satisfied:

(a) If 1" € C. z € A, then there is te C, t % t' such that card t' 0(z, t) > 1.

(b) If 1, € A and if for each ze A there is te C, t & t; with card t, 0(z, 1) > 1,
then t, e C.

(¢) 1f x, y, z are distinct elements of C, then card z 0(x, y) > 1.

Proof. It can be easily verified that if C is a cycle, then the conditions (a)—(c)
are satisfied. Let us suppose that (a)—(c) are valid. If there are z, y € C with K (z) +
+ K (), then there is x € C such that either x ¢ K (z) or z ¢ K/(y). Suppose that
x ¢ K,(z). Then z 0(x, y) = {z}, which is a centradiction with (c). Hence we obtain
that C < K (x) for some x € A. At first assume that there is ¢’ € C such that ' does
not belong to any cycle. Denote z = f(r'). From the condition (a) it follows that
there is 1€ C, t # t' with card ¢ 6(z, 1) > 1. therefore 1" = f"(r) for some neN.
Similarly, using the condition (a) fcr the elements t € C and f(f) € A we obtain that
there exists s € C such that s € U,y "(t). Then we have s 6(t, t') = {s}, which is
a contradiction with (c). Thus C is a subset of some cycle Cj[y], ye 4. Let t, €
€ Cf[y]andletze A. Ifz ¢ K(y), 1€ C,t % t;,thencard t, 6(z, 1) > 1.If ze Cf[y],
teC, t=1t,, t +z (such 7 exists, since card C > 2), then card t, 6(z, 1) > 1. If
zeCJ[y] for neN and if k,meN are such that k = mcard C§[y] — n =0,
then there exists 1€ C, t # t;, t + f*(z) and then card t, 6(z, {) > 1. Hence the con-
dition (b) implies that ¢, € C and the proof is complete.

From Lemma 3.1 it follows that by means of Con(4, /) we can find all large
cycles of (4, f).

In what follows (in Part I) we shall assume that each connected component of (4, f)
contains a cycle the cardinality of which is less than 3. In the following Lemmas
3.2—3.18 we suppose that distinct letters x, y, z, ... denote distinct elements. More-
over, we shall not prove the implications (1) = (2) in 3.2—3.18; it can be easily
verified.
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The figure that corresponds to the following Lemma 3.2 is denoted as Fig. 3.2,
and similarly for other lemmas in 3. If the same figure is related also to some lemma
of 4, then we denote it also by the number of the corresponding lemma from 4.
In the figures we use the following denotations:

® a clements with the property f(a) = a;
© b a pair of elements b, c € 4 with f(c) = b
S e (the possibility f(b) = b being not excluded).

3.2. Lemma. Let x, y, x', ' € 4. The following conditions are equivalent:

(1) f(x) =y f(0) = x f(x) =0, () = %"

(2) 0(x. y) = [{x, »} ] 0(x,x) = 0(y,»") = [{x, X'} {p, '} ], O(x, y7) = 6(x', ) =
= [{x 0} x5 p}) 0, ) = [{x. »} ]

Proof. Let us suppose that the condition (2) is satisfied. Since 0(x, y) = [{x, v}],
according to 1.1 we obtain (a) f(x) = x, f(y) = y, or (b) f(x) = f(y) = x, or (c)
7(x) = f(») = », or (d) f(x) = f(») ¢ {x, ¥}, or (¢) f(x) = y, f(y) = x. The situation

is analogous for the elements x',y’; denote the corresponding cases (a')—(e’).

y y' x v
X x* z y
Fig. 3.2, 4.1(al Fig.3.4,4.1(b)
v v Y
°
X
y 14
Y
X x
(a) (bl (c)
Fig.33,4.5

Suppose that f(x) = x. Then x 8(x, x') f(x’), hence according to (2) we have f(x') =
= x' or f(x') = x, thus 6(x, x') = [{x, x'}], which is a contradiction with (2). We
get f (x) + x, and analogous relations (with respect to the symmetry) are valid for
the elements y, x’, . Therefore no from the cases (a), (b), {c), (a'), (b'), (¢') can
occur. Further we have f(x) 0(x, x) f(x') and (2) implies that (i) f(x) = f(x'), or
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(i) {/(e, f(x")} = {x x'}, or (iii) {f(x),f(x')} = {y,y'}. From (i) or (ii) it follows
that 0(x, x') = [{x, x'}], a contradiction with (2). Suppose that (iii) and (d) is valid.
Then f(x) = f(y) = ¥, hence f(x') = y and (¢’) does not hold, therefore (d') holds
and f(y') = f(x') = - In this case we obtain 6(y, y') = [{y, y'}], which is a contra-
diction with (2), thus (e) must be satisfied. Analogously it can be verified that (e')
must hold.

3.3. Lemma. Let x, y, v e A. The following conditions are equivalent:

(1) (a) f(x) = x, f(v) = v, f(v) =y or (b) f(x) =y, f(y) = f(©) = v, or (c)
f(x) = v f(0) = f() = »-

(2) 0(r: v) = [{y, v}]. 0(x. y) = 0(x, v) = [{x, y, v}].

Proof. Suppose that (2) is valid. Since 0(y, v) = [{y, v}], from 1.1 it follows that
@)F0) = 1. $(0) = v. 08 (5)10) = 1(0) = 9,01 (¢)1(3) = () = v 0r (&) (0) =
= f(y) ¢ {v, y}, or (¢') f(») = v, f(v) = y. In the case (d) we have f(x) 0(x, y) f(»),
hence either f(x) = f(y) or {f(x),/(y)} = {x, »,v}. If f(x) = f(»), then O(x, y) =
= [{x, y}], which is a contradiction. By considering the second possibility we
obtain that either f(y) = x, f(x) = y, or f(x) = y, thus either 0(x, y) = [{x, y}]
or O(x,v) = [{x,v}]; a contradiction with (2). Further, since 0(x,y) + [{x, y}],
we get f(x) 0(x, y) f(¥) and f(x) =+ f(v). Analogously (with respect to the symmetry
we obtain that f(x) # f(v). Next from the relation 0(x, y) = [{x, y, v}] it follows
that f(x) e {x, y, v}. Let (a’) hold. If f(x)e {x, y}, then 0(x, y) = [{x, y}], and if
f(x) = v, then 0(x, v) = [{x, v}], which is a contradiction. If (b’) is valid and f(x) e
e {x, v}, then 0(x, v) = [{x, v}], a contradiction, thus if (b’) holds, then f(x) = y,
and we have the case (b). The case (¢’) is analogous to (b') and we obtain that the
condition (c) is satisfied. Now let (e’) be valid. We have shown that f(x) + f(v) = y,
f(x) # f(y) = v, thus f(x) = x, and this is the case (a).

3.4. Lemma. Let X, y, 0,z € A. The following conditions are equivalent:

(1) f(x) = 1(z) = %, () = v, f(v) = y.

(2) 0(y, v) = [{y, 0}], 0(x, y) = 0(x, v) = [{x, 3, v}], O(x, 2) = [{x, 2}], 0(z, y) =
= [{x, y, z, v}].

Proof. Let (2) be valid. According to 3.3 we obtain that some of the following
conditions (a)—(c) is satisfied: (a) f(x) = x, f(y) =10, f(v) = y; (b) f(x) =y,
f) = f() = v; (c) f(x) = v, f(v) = f(¥) = y. Since O(x, z) = [{x, z}], from 1.1
it follows, that if (b) is valid, then f(z) = f(x) = y, if (c) is valid, then f(z) = f(x) =
= v, and if (a) holds, then f(z) = x or f(z) = z. In the cases (b) and (c) we obtain
0(z, y) = [{z, y, v}], which is a contradiction. Consider the case (a). If f(z) = z,
then 60(z, y) = [{z, y, x}], a contradiction, hence we get that f(z) = x.

3.5. Lemma. Let x, y, v, z € A. The following conditions are equivalent:
(12 ()a) 1) =x, f(x) =y, f(p) = f(v) = v, or (b) f(z) =x, f(x) =0, f(») =
=f V) = y_
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(2) 6(v. v) = [{. v}]. O(x, y) = 0(x, v) = [{x, y, v}], O(z, x) = 0(z, v) =
~ [z % 20}

Proof. Suppose that (2) is valid. From 3.3 it follows that (a’) f(x) = x, f()’) = v,
J@) =y, or (b)) f(x) =y, f(y) =1(v) = v or (') f(x) = v, f(v) = f(y) = y.
Since f(z) 0(z, x) f(x), in view of (2) we obtain that f(z) e {z, x, y, v}. If (a’) and

1’4 y . ,
Y v
y z v z
x X
X x
z z (al (b)
(al (b)
Fig.3.5,4.2 Fig.3.6,4.3

f(z)e{z, y, v}, then {x} € 0(z, v), and if (a") and f(z) = x, then 9(z, x) = [{z, x}],
which is a contradiction. In the cases (b’) and (¢’) we get {x} € 6(z, v), if we suppose
that f(z) € {z, y, v}. Hence f(z) = x. In the case (b’) we have (a) and in the case (¢')
we have (b) from the condition (1).

3.6. Lemma. Let x, y, v, z € A. The following conditions are equivalent:

(12 §a) f&x) =y f)=1@) =fz)=v, or (b) f(x)=v, f(y)=1)=
=f(z) =y

(2) 0(y, v) = [{y, v}]. 0(x, y) = 0(x, v) = [{x, y, v}]. 0(x, z) = [{x, 2}, {3, v}]-

Proof. Let (2) be valid. From 3.3 it follows that (a’) f(x) = x, f(y) = v, f(¢v) = y,
or (b') f(x) = », f(») = f(v) = v, or (¢') f(x) = v, f(v) = f(y) = y. In the case {a’)
we have x 0(x, z) f(z), hence f(z) € {x, z}, but then 6(x, z) = [{x, z}], a contradic-
tion. In the case (b’) we get y 0(x, z) f(z) and 6(x, z) + [{x, z}], thus from (2) for
0(x, z) it follows that f(z) = v; we have obtained (a) in (1). If (¢’) is valid, then
v 0(x, z) f(z), hence we get f(z) = y, which is the case (b) in (1).

3.7. Lemma. Let y, x, v, z, u € A. The following conditions are equivalent:

(1) f(x) =y, f(y) = f(v) = f(2) = v, f(u) = =.

(2) 0(y, v) = [{».v}], 0(x.y) = 0(x.v) = [{x, y,0}], O(x.2) = [{x 2}, {y,0}],
0(u, x) = [{u, x}, {z, y}].

Proof. Let (2) be valid. From 3.6 it follows that either (a) f(x) = y, f(y) =
= f(v) = f(z) = v, or (b) f(x) = v, f(y) = f(v) = f(z) = y. In the case (b) we get
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f(u) 6(u, x) v, hence f(u) = v, but then 6(u, x) = [{u, x}], which is a contradiction.
If (a) is valid, then f(u) 0(u, x) y, and since 0(u, x) = [{u, x}, {z, y}], we get f(u) = =.

3.8. Lemma. Let x, y, v, z, u € A. The following conditions are equivalent:

() 1(x) = 3. J(0) = 1) = f(2) = v, f(u) = u.

() 0y, v) = [{y: 0}]. 00, y) = 0(x. v) = [{x, 3. 0}] O(x. 2) = [{x, 2}, {», v}],
0w ) = [l 2011, 0a ) = [ w2}

Proof. Let (2) be valid. According to 3.6 we have ecither (a) f(x) = », f(y) =
=f(v) = f(z) = v, or (b) f(x) = v, f(¥) = f(v) = f(z) = y. First consider the case
(b). We have f(u)0(u,z)y and 0(u, z) = [{u, z,v}], hence f(u) = y, and then
O(u, y) = [{u, y}], which is a contradiction. Suppose that (a) holds. Then f(u).
. 0(u, z) v, thus f(u) € {u, z, v}. If f(u) = z, then O(u, y) = [{u, y}, {z,v}]; if f(u) =

= v, then 0(u, y) = [{u, y}]. This is a contradiction, therefore f(u) = u and the
proof is complete.

3.9. Lemma. Let x, y, v, z € A, The following conditions are equivalent:

(1) @f(x) = .1 (y) =f() = v.f(2) = z, 01 (b) f(x) = %, f(y) = ./ (v) = f(2) = »-

(E? 0y, l;)]= [{r. 0}], 0(x, y) = 0(x, v) = [{x, », ¢}], 0(z, v) = [{z, v}], O(=, ) =
= |{z. ¥, v} ]

Proof. Let (2) be valid. According to 3.3 we have (a') f(x) = x, f(y) = v, f(v) =

v
v ® 14 zZ
u I
y r4 y 4 y u
X u X X

Fig.37 4.1(c)  Fig.38,41(d) Fig.3.10,4.1(e)

v °
v L) v Z
z z
y
y y
[

x X X

(a) (b) u
Fig.3.9, 4.4 Fig.3.11,4.1(f)
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— e or () S(9) = 3 10) = £(0) = o or () £(5) = e 7(0) = 7(3) = . Tn the
case (¢') we get (according to 1.1 and 0(z, v)) that f(z) = f(v) = y. But then 0(z, y) =
= [{z. »}], which is a contradiction. If (a’) or (b’) holds, then f(y) = v, hence
f(z) 0(z. y) v. If f(z) = z in the case (a') or if f(z) = v in the case (b’), then 0(z, v) =
= [{z.v. y}]. a contradiction. If f(z) = v in the case (a’) or (b’), then 0(z, y) =

= [{z. »}], a contradiction. Thus we have got that (1) is valid.

3.10. Lemma. Let x, y, v, z, u € A. The following conditions are equivalent:

(1) f(x) =y, J(0) = f(v) = v, f(u) = f(z) = =.

(2) 6(y, v) = [{y, v}], 0(x, y) = 0(x, v) = [{x, y, v}], 0(z, v) = [{z, v}]. O(z, y) =
= [{z. 5. 0}], 0(w, y) = [{u, y}, {z, v} ], 0(u, v) = [{w. v, 2}].

Proof. Let (2) be valid. According to 3.9 we have either (a) f(x) = y, f(y) =
= f(v) = v,f(z) = z,0r (b) f(x) = x, f(y) = v, f(v) = f(z) = y. Then f(u) 0(u, y) v,
hence f(u)e{v,z}. If f(u) =0, then O(u,y) = [{u,y}], a contradiction, thus
f(u) = z. In the case (b) we get 0(u, v) = [{u, v, y, z}], which is a contradiction.
Therefore the condition (1) is satisfied.

3.11. Lemma. Let x, y, v, z, u € A. The following conditions are equivalent:

(1) S0 = 5 1) = 3. 1(3) = ) = 00 S(2) = =

(2) 000, 2) = [{3, 011, 065 3) = 003 2) = [(x 3,011, 05 1) = [ 011, 06z, 2) =
=[{z. »,0}] 0(u, x) = [{u, x, y, v}], 0(u, z) = [{x, y, u, 0, z}].

Proof. Let (2) be valid. From 3.9 it follows that either (a) /(x) = y, f(¥) = f(v) =
=0, f(z) = z, or (b) f(x) = x, f(y) = v, f(v) = f(2) = y holds. Since f(u) 6(u, x) .
.f(x), we have f(u)e{u,x, y,v}. Consider the case (b). If f(u)e {u, y,v}, then
{x} € 0(u, z), and if f(u) = x, then O(u, z) = [{u, z}, {x, y, v}], which is a contra-
diction. Hence (a) is valid. If f(u)e{u, y,v}, then {x}€0(u, z), and from this
contradiction it follows that f(u) = x.

! y ° *—=—3 Yy
4 d Y’ Y y! y!
X X ; X
(a) (b) (c) (d)
Fig.3.12,49

3.12. Lemma. Let x, y, y' € A. The following conditions are equivalent:

(1) (@) /(x) =f(0) =y, f(V) =y, or (b) f(x) =f(») =y, f() =¥, or (c)
J(x) =% f(y) = (V') = y, or (d) f(x) = », S(y) = f(¥') = .

() 0(x, y) = [{x y}]. 0y, ¥) = [{. »'}]. 0(x, »') = [{x, y, »'}]-
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Proof. Suppose that (2) is valid. Since 6(x, y) = [{x, y}]. according to 1.1 we
have (2) /(x) = % J0) = 3 or () () = 7(0) = 3. o () JGx) = 1(3) = x,
or (d') f(x) = f(y) ¢ {x, y}, or (¢') f(x) = y, f(¥) = x. Similarly, since 0(y, y') =
= [{». ¥'}]. we have (") f(y) = », f(y) = ¥, or (b") F(y) = f(y') = ¥, or (")
JO) =1() =y, or (@) f(y) =S () ¢y ¥}, or (&) f() = ¥, f(v) = ». Tt is
obvious that (a’) and (d”) cannot hold in the same time (because f(y) = y in (2')
and f(y) # y in (d")). After excluding other analogical pairs which obviously cannot
occur, we shall consider only the remaining cases, i.e. the pairs (a’)—(a"), (a")—(c"),
()= (@), ()~ (), (©)—(&"), @)~(), (@)~(@), (@)=, €)—@). Tn the
cases (a')—(a"), (b")—(c"), (¢')—(d"), (d)—(b") and (d’)—(d") we have 0(x, y') =
= [{x, y'}], which is a contradiction. Hence we have (a’)—(c"),i.e. (c); or (b")—(a"),
i.e. (b); or (d')—(e"), i.e. (a); or (e')—(d"), i.e. (d).

3.13. Lemma. Let x, y, y', z € A. The following conditions are equivalent:

(1) f(x) =7() =¥, (V') =y, /(z) = x.

@) 0=, y) = [{x. 3] 00, ) = [{» ¥}]. 0(x») = [{x 0. ¥}] 0z x) =
= [{z x5, 91 0z y) = [{z ¥} {x 1]

¥ y ey y!
y
oy Y ,
1
x Y
| J ®
x x! x x!
z (a)

(b)
Fig.3.13, 4.1(g) Fig.3.15 4.7
y ° 8—2—0 y y!
y Y '
e o
x x! x x! '
X X
(a) (b) (c)
Fig.3.14,4.8

Proof. Assume that (2) is valid. From 3.12 it follows that some of the following
conditions is satisfied: (a) f(x) = f(y) =y, f() = y; (0) f(x) = F(») = ». F (V') =
— 5 (©) S(5) = % F0) = 10) = 93 (d) F(3) = 91 F3) = () = . In the case
(a) we have f(z)0(z, »') y and 6(z, ') # [{z, y'}], hence f(z) + y and f(z) = x,
because of 0(z, y') = [{z, '}, {x, »}]- We shall show that in the other cases we get
a contradiction. If (b) is valid, then f(z) 6(z, ') y', hence f(z) € {z, y'}, but then

450



0(z, y') = [{z, y'}], which is a contradiction. If (c) holds, then f(z)6(z, ")y,
0(z, y') # [{z, y'}], thus f(z) % y and from (2) it follows that f(z) = x. But in this
case 0(z, x) = [{z, x}], and we have a contradiction. In the case (d) we have
1) 0(z, y') x, 0(z, y') * [{z, y'}]. thus f(z) = y, 6(z, x) = [{z, x}], which is a con-
tradiction as well.

3.14. Lemma. Let x, X', y, y' € A. The following conditions are equivalent:

(1) (@) f(x) =f(x) =F(») =y, f()') = V', or (b) f(x) = x, f(x') = ¥, f(y) =
= /() =y, 0r (©) J(x) = /(') =1 () = ¥, J(V') = »-

@) 0(x, y) = [{x, ¥}]. 00, ¥) = [{».¥}] 0(x.¥) = [{x. », 1] 0K, y) =
= [{x,y}] 0(x,») = [{x", », ¥'}].

Proof. Let (2) be valid. According to 3.12 we obtain that (a’) f(x) = f(y) = ¥/,
f() =y, or () f(x) =f(y) = ». f() = or (¢) f(x) = x, f(y) =f()) = »,
or (d') f(x) =y, f(») = f(') = x holds. Further, from 3.12 (for the elements
x, y,y' instead of x, y,y’) we get analogous conditions denoted by (a”)—(d").
We have to investigate only cases (a’)—(a”), (b)—(b"), (¢')—(c"), because the re-
maining cases are impossible. Then (a’)—(a”) gives (c), (b')—(b") gives (a) and (¢’)—
—(c") gives (b).

3.15. Lemma. Let x,x’, y, ), y" € A. The following conditions are equivalent:

(1) (@) f(x) =1() = f(3) = 3, (V') = ¥, 1) = y"s or (0) f(x) = x, f(x) =
=x,f(y) =1(v) =10") = ».

(2) 0Cx, y) = [{x ¥}l 00, y) = [{3,¥}] 6(x,5) = [{x. 0, 0}] 6(x', y) =
=[x\ 0}] 0 y) =[x 3 y'1) 600 07) = [0, 73], 6075 07) = [0 03]

Proof. Let (2) be valid. From 3.14 it follows that either (a’) f(x) = f(x') = f(») =
=0 (3) = 3,01 (9)(5) = % 1) = ¥, S(5) = S0) = 20 (©)1(3) = 7) =
= f(y) = y', f(') = y holds. Then in view of the relations for 6(y, y") and for
6(y’, y") and according to 1.1 we get that if (a’) is satisfied, then f(y") = ", i.e. (a);
if (b') is valid, then f(y”) = f()’) = y, i.e. (b); if (¢') is valid, we get a contradiction.
Thus the condition (1) is satisfied.

3.16. Lemma. Let x, X', y, y' € A. The following conditions are equivalent:

(1() ()a) f) = 1) =» J&)=10) =¥, or (0) f(x) =7(0) =¥ S(x) =
=f(y) =

(2) 0(x, y) = [{x. »}]. 0(»,y) =[{». 3] 0(x ) =[{x»y}] 0, y)=
=[x, ¥} 00, %) = [{x, x'}, {3, ¥}

Proof. Let (2) be valid. According to 3.12 we have (a') f(x) = f(y) = ¥, f()') =
— o () () = J0) = 3 SO) = s o (&) J) = %, JG) = £(5) = ¥ or
(d) f(x) =y, f(y) = f(y') = x. Further, from 1.1 (for x’, " instead of x, y) it
follows that if (a’), then f(x) = y; if (b"), then f(x') = ¥ or f(x') = x'; if (¢'),
then f(x’) = y; if (d'), then f(x') = x. Hence if (a’) is valid, then (b) holds. In the
case (b) we get either (a) or, if f(x') = x, a contradiction, since then 6(x, x') =
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= [{x. %, y}]. If either (¢’) or (d') holds, then O(x,x") = [{x,x’, y}]. which is
a contradiction.

3.17. Let x,x, y,y', ze€ A. The following conditions are equivalent:
(1) f(x) =1(0) =y, S(x) =F (') = ', f(z) = =.
) 0(x, y) = [{x. y}1._ 00, y) = [y 006 y) = [{x 2 ¥}] 0x.y) =
=[x 1] 0 x') = [{x, x'}, {9, ¥'}], 0(z. ) = [{z, x, »}], 0(z, ¥) = [{z. »'}].
Proof. Suppose that (2) holds. From 3.16 it follows that either (a) f(x) = f(y) =
=y f(x) =f0) =y, or (b) f(x) = f(y) = ¥, f(x') = f(y') = y is valid. In the
case (b) we have f(z) 0(z, x) y', hence f(z) = )/, but then 0(z, x) = [{z, x}], which
is a contradiction. Thus (a) holds and we obtain f(z) 6(z, x) y, therefore f(z)e
e{z,x,y}. If f(z) = x, then 0(z, ') = [{z. %, ¥, y'}]5 if f(2) = y, then 6(z, y') =
= [{z, », »'}]. We have a contradiction in these both cases, hence f(z) = z and the
condition (1) is satisfied.

y y' y y!
X x’ x! X
{al (b
Fig.3.16,46
y y'sz y y' ez
X x' X' X
F/'g.3.77, 4.1(h) Fig. 3.18,4.1//7

3.18. Lemma. Let x, X', y, ', z € A. The following conditions are equivalent:

(1) f(x) = f(0) = ', f&) =S (v') = 3. f(2) = =

(2) 0(x, y) = [{x. »}]. 00y, y) = [{»,¥}] 0, y) = [{x p.3}] 60(,y) =
=[x 03], 06 ) = [{x. x'}, {3, y'}], 0z ») = 6(z, ») = [{z. 7, »'}].

Proof. Let (2) be valid. Frof 3.16 it follows that either (a) f(x) = f(y) = »,
J(x)=f(y") =y, or (b) f(x) =f(y) =), f(x') =f(y') = y holds. In the case
(a) we have f(z)6(z, y) y, hence f(z)ef{z, y,v'}. If f(z)e{z, y}, then 0(z, y) =
= [{z, »}], which is a contradiction. If f(z) = y', then 6(z, ) = [{z, y'}], a contra-
diction. Thus (b) holds and we obtain f(z) 0(z, ) ', f(z) € {z, y, y'}. If £(2) = »,

then 6(z, »') = [{z, '}] and if f(z) = ', then 6(z, y) = [{z, y}], which is a con-
tradiction. Therefore f(z) = z.
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Remark. Kurinnoj [7] investigated pairs of monounary algebras (4, f), (4, g)
with Con(4, /) = Con(4, g) and he searched to characterize those monounary
algebras (A, f) which fulfil the condition R(f) = {/}. Lemma 3.13 shows that the
assertion of Theorem 7 in [7] is not correct (namely, from Thm. 7 [7} it would follow
that for the algebra (4, f), where A = {x, y, ', z} and the condition (1) from 3.13
holds. we should have R(f) # {f}, contradicting 3.13).

4. THE CASE OF SMALL CYCLES; MAIN RESULTS

From Lemma 3.1 it follows that if C is a cycle with card C > 2, then C can be
determined by means of Con(A,f)‘ Further, according to the results from 2, the case
when each connected component of (4, f) possesses a cycle, can be described by
Con(4, f) as well. In this paragraph we shall assume that each connected com-
ponent of (4, f) possesses a cycle C with card C < 2.

At first we notice that the conditions (2) in 3.2—3.18 are expressed merely by the
properties of Con(4, /), without using explicitly the operation f itself. Again let us
remark that the figure that is related to some of the following lemmas is denoted by
the same number as the corresponding lemma.

4.1. Lemma. Let there exist distinct elements in A fulfilling the condition (2)
Jrom some of the lemmas 3.2, 3.4, 3.7, 3.8, 3.10, 3.11, 3.13, 3.17 and 3.18. Then
is uniquely determined by Con(A, f).

Proof. (Cf. Fig. 4.1 (a)—(i)) The assertion follows from the corresponding lemmas
and from 1.4 and 1.5.

We shall introduce the following notions. Let (44, f;) be a monounary algebra,
(Bj. f1) be a subalgebra of (4;, f,) and let T < B, b € B;. We shall say that (4, f,)
is a ¢j(T)-extension of a monounary algebra (By, ), if for each ae 4, — B, some
of the following two conditions is satisfied:

(i) there exists € T such that either f(a) = a, f(t) = ¢, or a * f(a) = f(1) = ¢
(we shall say also that a and ¢ behave in the same way);

(i) there exists n € N such that f"(a) = b.

If (4,, f1) is a ¢j(T)-extension of (By. f;) such that for each a € A; — B, the condi-
tion (i) is valid, then we shall say that (4,, f,) is a ¢'(T)-extension of (B, f,). Further,
if T={ty,...,1,}, we shall write also a ¢;(ty, ..., t,,)-extension instead of cj({t,, ..., 1,,})-
extension, and similarly with ¢'(T)-extension.

Let the assumption of 4.1 be not satisfied.

4.2. Lemma. Let there exist distinct elements x,y,v,z€ A fulfilling the con-
dition (2) from 3.5. Then R(f) consists of two elements and they can be described
by means of Con(A, f). The algebra (4, f) is a c}(y)-extension resp. c}(v)-extension
of the algebra given in Fig. 4.2 (a) resp. 4.2 (b).
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Proof. The elements x, y, v, z € 4 fulfil the condition (1) from 3.5. We suppose
that the assumption of 4.1 is not satisfied, thus there are no subalgebras of (4, f)
isomorphic with those pictured in Fig. 3.4, 3.7 and 3.11. Hence (4, /) is connected
and it can be only a cy(y)-extension resp. a c;(v)-extension of the algebras given in
Fig. 3.5 (a) resp. 3.5 (b). Consider the case (a); in this case f(y) = v. Let s, t € A4,
s = t. Then

(i) if 5, 1 ¢ {y, v}, then either y 0(s, 1) v or {y} € 6(s, 1) and {v} € 6(s, 1);

(ii) if s ¢ {v, y} and s behaves in the same way as y, then 6(s, y) = [{s, y}] and
0(s, v) = [{s, v}];

(iii) if s ¢ {v, y} and s does not behave in the same way as y, then y 0(s, y) v and

y 0(s v) v.
From this follows that if the roles of y and v are interchanged, then the
system of all congruence relations does not change. Hence card R(f) = 2. The
same assertion we obtain in the case (b) Since 1.4 implies that the pair v,ve A
such that f(y) = f(v) = v determines uniquely the operation f on A, we infer that
card R(f) < 2, hence card R(f) = 2. We have already verified that both the opera-
tions belonging to R(f) can be described by means of Con(4, f).

Let the assumptions of 4.1 and 4.2 be not satisfied.

4.3. Let there exist distinct elements x, y, v,z € A fulfilling the condition (2)
from 3.6. Then R(f) consists of two elements and they can be described by means
of Con(A,f). The algebra (A, f) is a ¢'(z, x)-extension of some of the algebras
given in Fig. 4.3 (a), 4.3 (b).

Proof. The elements x, y, v, z € A fulfil the condition (1) from 3.6, i.e., we have
cither (2) /(x) = 1. /(y) = /(6) = (2) = v, or () 1) = 0. /(0) = /3) = /(2) = ».
Let ae A — {x, y, v, z}. Consider the case (a). Since the assumptions of 4.1 and 4.2
do not hold, we obtain that (4, f) is connected (cf. Fig. 4.1 (d), 4.1 (b)) and that the
element a behaves in the same way as z or as x. The case (b) is analogous, a behaves
in the same way as z or as x, t0o. Let X resp. Z be the set of allae 4 — {x, y, v, z}
which behave in the same way as x resp. as z. Then

X ={aed - {x}:0(a x)=[{a,x}]},
Z={aeA—{y,vz}:0(a,z) = [{a z}]},
A=1{x,y,0,z} UXUZ and either (a) f(x) = f(x;) =y, f(») =1(v) = f(z) =
= f(z,) = v, or (b) f(x) =f(x1) = v, f(v) =f(y) =f(z) = f(z,) = y for each
x, € X and each z, € Z. It is obvious that these two cases cannot be distinguished
by means of Con(4, f).

Let the assumptions of 4.1 —4.3 be not satisfied.

4.4. Lemma. Let there exist distinct elements x, y,v,ze€ A fulfilling the con-
dition (2) from 3.9. Then R(f) consists of two elements and they can be described
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by means of Con(A,f). The algebra (A.f) is a c¢'(x, z)-extension of some of the
algebras given in Fig. 4.4 (a), 4.4 (b).

Proof. The elements x, y, v, z € A fulfil the condition (1) from 3.9, hence we have
either (a) f(x) = y, f(y) = f(v) = v, f(z) = z, or (b) f(x) =x, f(¥) = v, f(v) =
= f(z) = y. Consider the case (a). The assumptions of 4.1—4.3 are not valid, thus,
for eachae 4 — {x, ¥, 0, z}, we obtain that a behaves in the same way as x or in
the same way as z (cf. Fig. 4.1 (b), 4.1(e), 4.1 (d), 4.1 (f)). The same we obtain con-
sidering the case (b) (cf. Fig. 4.1 (g), 4.1 (a), 4.1 (b)). Let X resp. Z be the system of
allae A — {x, Y, 0, z} such that a and x resp. a and z behave in the same way. Then

X ={aed - {x}:0(a x)=[{a, x}]},
Z={aeA—-{z}:00a,z)=[{a z}]},
A ={x,y,v,z} UX UZ and either (a) f(x) = f(x;) = y, f(y) =f(v) = v, f(z) =
=z, f(z,) = z;, or (b) f(x) = x, f(x;) = xy. [(¥) = v, f(v) = f(z) = f(z,) = y is
valid for each x; € X and z; € Z. It is obvious that these cases cannot be distinguished
by means of Con(4, f).

Let the assumptions of 4.1 —4.4 be not valid.

4.5. Lemma. Let there exist distinct elements x, y, ve A fulfilling the condition
(2) from 3.3. Then R(f) consists of three elements and they can be described by
means of Con(A, f). The algebra (A, f) is a ¢'(x)-extension of some of the algebras
given in Fig. 4.5 (a)—(c).

Proof. The elements x, y, z € 4 fulfil the condition (1) from 3.3, i.e., we have (a)
S =32 f5) = 0, 50) = . ot (6) F(x) = 3. 1(3) = F0) = 01 oF () S = o
f()=f(y) = y.Letae A — {x, y, v}. The assumptions of 4.1 —4.4 are not satisfied,
hence if (a) is valid, then x and a behave in the same way (cf. Fig. 4.4 (b),4.1(a),
4.1 (b)). Analogously, if (b) or (c) is valid, then x and a behave in the same way as
well (cf. Fig. 4.4 (a), 4.3 (a), 4.2 (a)). Let X be the set of all a e 4 — {x, y, v} which
behave in the same way as x. Then

X ={aed~{x}:0(a,x) = [{a,x}]]},

A= {x,y,v} UX and we have (a) f(x) = x, f(x,) = x;, f(¥) =0, f(v) =y, or
(b) () = /() = ». S() = /(&) = v. or () 1(x) = 1(x,) = v. (o) = S(¥) = »
for each x, € X. Obviously, these cases cannot be distinguished by means of
Con(4, f).

Let the assumptions of 4.1—4.5 be not valid.

4.6. Lemma. Let there exist distinct elements x,x’, y, y' € A fulfilling the con-
dition (2) from 3.16. Then R(f) consists of two elements and they can be described
by means of Con(4, f). The algebra is a ¢'(x, x')-extension of some of the algebras
given in Fig. 4.6 (a), 4.6 (b).
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Proof. The elements x, x', y, y' € A fulfil the condition (1) ftom 3.16, thus we
have either (a) f(x) = f(y) = y, f/(x') = (') = v, or (b) f(x) = f(y) = V', f(x') =
=f(y) =y Let ae A — {x,x’, y, y'}. The assumptions of 4.1—4.5 are not satis-
fied, hence if (a) is valid, then a behaves in the same way as x or as x’ (cf. Fig. 4.1 (h),
4.1(b), 4.5(b)). The same assertion holds if (b) is valid (cf. Fig. 4.5 (a), 4.1 (a),
4.1 (g))- Let X resp. X’ be the set of alla € A — {x, x', y, y’} such that a and x resp. a
and x’ behave in the same way. Then

X =1{aeA—{x,y}:0(ax)=[{ax}]}, X' ={aecd—{y}:0(ax)=
= [{a.x'}]}, A= {x,x,»,y'} UX UX and either (a) f(x) = f(x;) = f(») = »,
f&x) =1(x1) =f(y) =y or (b)/(x) = f(x) = f(¥) = v, f(x) = f(x1) = f(¥) =
= y for each x; € X and each x; € X'. These cases cannot be distinguished by means
of congruence relations.

Let the assumptions of 4.1 —4.6 be not valid.

4.7. Lemma. Let there exist distinct elements x, x', y, y', y" € A fulfilling the
condition (2) from 3.15. Then R(f) consists of two elements and they can be des-
cribed by means of Con(A,f). The algebra (A,f) is a c’(x, y')-extension of some
of the algebras given in Fig. 4.7 (a), 4.7 (b).

Proof. The elements x, x', y, y', y” € A fulfil the condition (1) from 3.5, hence
we have (a) f(x)=f(x)=/()=» fO) =y, f()) =" or (b) f(x)=x,
&) =x,f()=f0)=/(") =y Let ae A — {x,x".y,y,y"}. The assump-
tions of 4.1 —4.6 are not satisfied, thus if (a) holds, then a behaves in the same way
as x or as y’ (cf. Fig. 4.3 (a), 4.6 (a), 4.1 (b)). If (b) is valid, then a behaves in the same
way as x or as ', too. Let X resp. Y’ be the set of all a € 4 — {x, y, y'} which behave
in the same way as x resp. as y’. Then

X ={aed —{x,y}:0(a,x)=[{a, x}]},
Vi={aed - {y,y}:00y)=[{ay}]},

A={x,y,y} UXUY and either (a) f(x) = f(x,) =/(y) =y, f(¥)) = yi, or
(b) f(x) =x, f(xy) = x;, f(») =/f(y)) =y for each x;€X and each yjeV¥,.
These two cases cannot be distinguished by means of Con(A, 5

Let the assumptions of 4.1 —4.7 be not valid.

4.8. Lemma. Let there exist distinct elements x, x', y, y' € A fulfilling the con-
dition (2) from 3.14. Then R(f) consists of three elements and they can be described
by means of Con(A, f). The algebra (A, f) is a ¢/(x)-extension of some of the alge-
bras given in Fig. 4.8 (a)—(c).

Proof. The elements x, x', y, " € A fulfil the condition (1) from 3.14, i.e., we have
either (a) f(x) = f(x') = f(») = », f(3) = ¥'> or (b) f(x) = x, f(x) = %', f(y) =
=f0) =y or () f(x)=f(x)=f() =y, f()) =y Let ae A — {x,x', y, '}

Then a behaves in the same way as x in each of the cases (a)—(c) (for the cases (a)

456



and (b) cf. Fig. 4.7 (a), 4.5(a), 4.5(b) and 4.6 (a); for the case (c) cf. Fig.4.1 (a),
4.4 (b), 4.1 (g) and 4.6 (b)). Let X be the set of all a € A — {x.y} which behave in the
same way as x. Then

X={aed - {xy}]:0a,x)=[{a x}]},
A = {x,y,¥'} U X and one of the following cases is valid: (a) f(x) = f(x,) = f(y) =
=0, f0) =0, (0) J(x) = x, f(x1) = %1, f(0) =1 () = > () S(x) = 1(x,) =
=f(y) =", f(y') = y. for each x, € X. These cases cannot be distinguished by
means of congruence relations.

Let the assumptions of 4.1 —4.8 be not valid.

4.9. Lemma. Let there exist distinct elements x,y,y € A fulfilling the con-
dition (2) from 3.12. Then R(f) consists of four elements and they can be described
by means of Con(A, f). The algebra (A,f) is some of the algebras given in Fig. 4.9
(a)—(d)-

Proof. The elements x, y, ¥’ € A fulfil the condition (1) from 3.12, i.e. some of the
following possibilities is valid: (a) f(x) = f(y) = ¥, f/(3') = », (b) f(x) = f(») = »,
0=y, (©) fx)=x f(») =,0") =y (d) f(x) =y, f(») =f()) = x. The
assumptions of 4.1—4.8 are not satisfied, hence A4 = {x, y, y'} (for the cases (a)
and (d) cf. Fig. 4.8 (c), 4.6 (b), 4.1 (g), 4.1 (a) and 4.4 (b); for the cases (b) and (c)
cf. Fig. 4.6 (a), 4.8 (a), 4.8 (b), 4.5 (a), 4.5 (b)). The cases (a)—(d) cannot be distin-
guished by means of Con(4, f).

Let the assumptions of 4.1 —4.9 be not valid. Then there are the following pos-
sibilities: (a) (4, f) consists of one two-element cycle; (b) (A4, f) consists of some
one-clement cycles; (c) (4, f) is connected, possesses a cycle {a} and f(x) = a for
each x e 4 (cf. Fig. 4.9 (a), 4.9(b), 4.5(a), 4.5(b)). Hence the following assertion
is obvious:

4.10. Lemma. (i) Con(4, f) = E(A).

(ii) If card A = 2, then R(f) consists of four elements (all unary operations
which can be defined on A). If card A > 2, then either (a) f(x) = x for each x € A,
or (b) there exists a € A such that f(x) = a for each x € A, and then card R(f) =
= 1 + card A.

From now do not assume that some of the conditions of the lemmas 4.1—4.9 fails
to be valid.

4.10.1. Lemma. Con(4, f) = E(A) if and only if (ii) from 4.10 holds.

Proof. Obviously (i) = (i). Let (i) be valid. Then 6(x, y) = [{x, y}] for each
X,y €A, x # y. Hence each connected component of (4, f ) contains a cycle with the
cardinality less than 3. If (A, f ) has more than one component, then these components
consist of one-element cycles. If (4, f) has only one component, then either (4, f)
is a two-element cycle or the condition (b) from (ii) is valid. Thus (i) = (ii).
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Now suppose that the following condition () is valid:

() each connected component of (4, f) contains a cycle with the cardinality less
than 3.

Let us introduce the following two notions (modifying the concept of cj(T)-
extension resp. of ¢’(T)-extension). Let (By, g,) and (4, f;) be monounary algebras
and let T < B,, be B,. We shall say that (4, f1) is a ¢,(T)-extension of (B,, g,),
if there is an isomorphic ¢ of (By, g,) into (4, f1) such that (4, f1) is a ¢,q,(o(T))-
extension of (¢(B,), f;|¢(B,)). The notion of ¢(T)-extension is defined analogously.

The above considerations performed in this paragraph can be summarized as
follows:

By using merely the system Con(4, f) (without using explictly the operation f)
we can decide whether or not (x) is valid. If () holds, then we can describe all unary
operations g on A such that Con(4, f) = Con(4, g).

In particular, from 4.1—4.10 we obtain the following propositions:

4.11. Proposition. Let (4, f) be a monounary algebra such that () is valid.

(i) If con(A, f) = E(A), then card R(f) = 1 + card A whenever card A > 2, and
if card A = 2, then card R(f) = 4.

(if) Let Con(A4,f) =+ E(A). Then we have:

(a) card R(f) = 2 if and only if (A,f) is a c,(y)-extension of the monounary
algebra given in Fig. 4.2 (a), a c(x, z)-extension of some of the algebras given in
Fig. 4.3 (a), 4.4 (a), 4.4(b), a c(x, x')-extension of some of the algebras given in
Fig. 4.6 (a), 4.6 (b) or a c(x, y')-extension of the algebra given in Fig. 4.7 (a).

(b) card R(f) = 3 if and only if (A, f) is a c(x)-extension of some of the algebras
given in Fig. 4.5 (a), 4.5 (b), 4.8 (a), 4.8 (b) and 4.8 (c).

(¢) card R(f) = 4 if and only if (A, f) is isomorphic with some of the algebras
given in Fig. 4.9 (a) and 4.9 (b).

4.12. Proposition. Let (4, f) be a monounary algebra such that (x) is valid and
Con(4, f) # E(A). Then card R(f) < 4.

4.13. Proposition. Let A be a set, card A = 4. Then for each i€ {1, 2,3, 4} there
exists a unary operation f; on A such that (A, f;) fulfil (x) and card R(f;) = i.
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