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THE a-COMPLETION OF A LATTICE ORDERED GROUP 

RICK BALL and GARY DAVIS, Bundoora 

(Received November 10, 1981) 

The main result is the existence and uniqueness of the a-completion G"̂  of an 
arbitraiy /-group G. G"" is obtained by applying the (iterated) Cauchy construction 
machinery of [ l ] to Papangelou's notion of a-convergence [7]. We prove a-conver-
gence to be the coarsest convex Hausdorff order closed /-convergence structure on G; 
it follows that G"̂  is complete with respect to any /-Cauchy structure inducing such 
a convergence. This sweeping Cauchy completeness implies, in turn, that G'" is both 
laterally and Dedekind MacNeille complete. 

Following Papangelou [7], we shall say that a filter ^ of subsets of G a-converges 
to X, written J^ -^ X, providing the following condition is met: A(F v g) = v ( F л 
A g) = g for 3.11 F E ̂  if and only if g = x. 

Lemma 1.1. For any F ^ G and any x, y e G, if v (F A x) = x and v{F A y) = 
= y then V [F A (x V y)) = X V y, and dually. 

Proof. Let X = F A (x V y) and consider an arbitrary t e G such that X ^ t. 
For a n y / e F , / л x ^ / л (x v j;) ^ ,̂ hence x = v{F A x) S t. Likewise y ^ t, 
which, together with the fact that X ^ x v y, proves vX = x v y. П 

Lemma 1.2. ^ -^ x if and only if J^ satisfies the following conditions and its 
lattice dual. For every x < g e G there is some x S y e G and F e ^ with F A g S 
йу <9-

Proof. Suppose #" -> X and x < ^ e G. By definition there is some F e ^ such 
that either A{F y g) ^ g or y{F A g) ^ g. But A{F w x) = x implies g = 
= g V X = g V A{F V x) = A(F v g v x) = A(F v g). Therefore F A g S 
й y < 9 ^01 some y. Furthermore, j ^ / л ^̂  ^ / л x for all / e F implies x = 
= v[F A x) ^ y. Hence the condition and, by a similar argument, its dual both 
hold. 

Now suppose i^ is a filter which satisfies the condition and its dual. For any 
KE ^ it must be the case that A[K v x) = x, for if К v x "^ g > x for some g 
then there is some x ^ j ; e G and F E ̂  with F A g S У < 9- But for any z 6 
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e F n к, z V X ^ g and z A g ^ y, hence g = (z v x) A g = (z A g) v (x A 
A Ö') = J V X = >' < ^, a contradiction. Similarly, v (K A x) = x. Now consider 
X Ф t e G. If t V X > X then by the condition there is some F E ^ such that 
v{F A [t V x)) =¥ t V X. Since v(F л x) = x, Lemma 1.1 implies v ( F л t) ф t. 
Likewise, / л x < x implies that л (F v )̂ Ф / for some F e #". This completes the 
proof that # ' -> X. П 

The preceding Lemma makes clear the following properties of a-convergence. 

Lemma 1.3. For any x, g e G, 
(a) X -> x; 
(b) J T ^ #" -> X implies Ж -^ x; 
(c) c^ ^ X implies ^^ -^ x, J^ v J^ -> x, J^ л #" -> x, ocl(#') -> x, ^""^ -• x ~ ^ 

g^ -> ö̂ x, anJ Ĵ ö̂  -> xö'. 

Lemma L4. J^ -> x and Ж -^ x imply ^ n Jf -^ x. 

Proof. Consider x < g e G and choose x й У ^ G, F e ^ such that F A g ^ 
^ y < g. Then find x й ^ ^ G, К e Ж such that К л ö̂ ĵ ^̂ x ^ z < Ö'}^"^^;. Then 
(F и к) A g S zx~^y < g. This is so because к A g ^ kx'^y A g ^ zx~^y for 
all кеК, and because/ A g ^ у ^ zx~^y for a l l / e F. A dual argument and Lemma 
1.2 complete the proof. П 

Lemma 1.5. #" -> x implies n J ^ ^ {x}. 

Proof. j e n F implies v ( F л >;) = л ( Р v j ) = у for all F e J^, so j = x. D 

Lemma 1.6. #" -^ 1 implies J^^ -> 1. 

Proof. Consider 1 < g e G. Find 1 ^ j e G and Ke^ such that iC л ^̂  ^ >̂  < 
< g, then find 1 ^ z G G and Fe^ such that F л gy~^ й z < gy~^ and F ^ K. 
We claim FF A g -^ zy < g. To establish this claim consider Л , / 2 e F and ai-
bitrary prime P, the objective being to prove P ( / i / 2 л ö') ^ P z j . If Pg = Pzj; then 
v̂ e are done, and if P/i й P then P( / i /2 л g) S Pifi A g) й Ру й Pzy since 
/2 е Х . Therefore suppose Pz < Pgy~^ and P/i > P. From this and F A gy~^ ^ z 
follows Pf,SPz<Pgy-'<PAgy-\ hence (f^'Pfi) У < (fî'Pfi) g. Since 
X л ^ ^ J < 6Г, we get ( / Г ' / У О Л ^ (/Г'^У!) Ĵ  or РЛ/2 ^ i^iJ^. Then РЛу ^ 
^ P Z J since P/^ ^ Pz, yielding P(f 1/2 A g) ^ Pfifi = ^^3^* This proves the claim, 
and by a dual argument and Lemma 1.2, the proposition. D 

Lemma 1.7. J T J T " ^ -> 1 and ^ -^ I imply Ж^Ж'^ -^ 1. 

Proof. Consider 1 < g eG. First find Le J f and a ^ 1 with 

(1) LL-' A g йа <g, 
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Then find iC G J T and Ь ^ 1 such that К ^ Land 

(2) KK-^ A a-^g й b < a'^g , 

Fix к 6 К, and choose F e ^ and y ^ 1 such that 

(3) kFk-^ A cr^gb-^ йу < a-^gb~^ . 

We claim that KFK~^ ^ g S ciyb < д. To establish this claim consider /c^, /̂ 2 e 
еК, f E F and an arbitrary prime P, the objective being to prove that P{kifk2 ^ л 
A g) ^ Payb. If Py = Payb we are done, so assume Pg > Payb. In this case it is 
necessary to marshall three facts. The first fact is that Pk^k'^ S Pa- This follows 
from (l) and the observation that Pa < Pg, since Pa = Pg implies Payb ^ Pa = 
= Pg, contrary to assumption. The second fact is that Pakfk~^ ^ Pay. This follows 
from (3) since {a~^Pa)y < (a'^Pa) a~^gb~K The third fact is that Paykk2^ й 
^ Payb. To support this conclusion observe that у ^ 1 implies Pg S Paya~^g, 
which, together with the assumption that Payb < Pg, implies by (2) that 
{y~^a~^Pay)kk2^ ^ {y~^a~^Pay) b. It remains to combine these three facts as 
follows. The first two facts yield Pkjk'^ = Pk^k'^k/k'^ й Pakfk'^ - Pay. 
Then the third fact gives P/c^/Zc^^ = Pkifk~^kk2^ ^ Paykk2^ S Payb, comple
ting the proof of the claim. A dual argument completes the proof of the Lemma. П 

The preceding lemmas, when applied to Theorem 1.14 and Corollary 2.20 of [ l ] , 
prove the first theorem. In this theorem we use the more standard term "positive 
universal formula" for what is called a "disjunctive formula" in [1]. 

Theorem 1.8« On any l-group G, a-convergence is an order closed convex Hausdorff 
strongly normal l-convergence structure. Therefore G^ is an l-group in which G 
is order dense. G and G"^ satisfy the same positive universal formulas and so generate 
the same variety of l-groups. 

The purpose of the next several propositions is to show that a convergence has 
properties C^, С2, and C3 of [1]. The following notation will be useful for that pur
pose. If G ^ Я, call an element s E H small with respect to G if there is a filter J^ 
such that J^ -^ 1 in G and yet v ( F л 5) = A[F v s) = s for all F E ^ . 

Lemma 1.9. Suppose G S И and S is the set of elements of H small with respect 
to G. Then S is a convex l-subgroup of H such that S n G = 1. 

Proof. Clearly 1 E S, and XES implies X~^ES. Suppose 1 S x ^ s E S and 
let ^ be the filter on G corresponding to s. For FE^,X = XAS = XA V ( F A 
л s) = V (F л s л x) = v ( F л x). Therefore x = v (K л x) for all К e #^ n i. 
Since x = A(K V x)is clear for all X e #" n i and since #" л i -^ 1 in G, x 6 S*. 
Now suppose 1 S SiE S with corresponding filter #'^ on G, i = 1,2. For 
Fi E #-,., s^S2 - [ v ( F i Л s J] [v (F2 л s^)] = v{F^F2 A s,F2 A F^S2 A 51S2) й 
й v (F iF2 л 51^2) й Si52. Similarly, A ( F I F 2 V S^S2) = 5^52, proving S1S2ES. 
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A standard argument now shows S to be a convex /-subgroup. That G n S = 1 is 
direct result of the definition of a-convergence. 

Proposition 1.10. / / G is large in H then -^ on H reduces to -> on G. 

Proof. Suppose J^ -> 1 in Я and that G e ^ . Because suprema and infima in G 
and H agree, J^ -> 1 in G also. Now suppose J^ is a filter such that J^ -^ 1 in G. 
Because suprema and infima in G and H agree, A ( F v l) = v ( F л 1) = 1 holds 
in H for all F E ̂ . From Lemma 1.9 and the largeness of G in H it follows that 5 = 1, 
so that for each 1 ф /i e Я there is some F e ^ such that either y{F A h) ф h or 
A{F V h) Ф h. That is, J^ -^ 1 in Я . D 

To say that -^ on G"" meshes nicely with -> on G is to assert the following: for each 
h E G"" and each filter J^ on G"" such that G e ^, ^ -^ h if and only if h = [J^] . 

Proposition 1.11. -> on G"" meshes nicely with -^ on G. 

Proof. By Proposition 2.18 on [1] it is enough to show that J^ -^ [#"] for each 
Cauchy filter #" on G. Let [#"] = he G"; we must show ^h~^ -> 1 in G''. To that 
end consider 1 < x E G"^ and find g E G with 1 < ^ ^ x. Since ^ is Cauchy there is 
some F E ̂  and 1 ^ y e G such that FF~ ^ A g ^ y < g. Fix / e F. Because / F ~ ^ л 
л gEf^~^ A g and [/^~^ л б'] =fh~^ л ^, Proposition 1.2 of [1] implies 

fh~^ A g ^ y. We claim//z~^ A x S уд~^х < ^- To estabhsh this claim consider 
an arbitrary prime P of Я . If Py = Pg then Pyg~^ = P so P(fh~^ л x) ^ Px = 
= Pyg'^x. If Pj/ < P̂ f then P{fh~^ л x) й Pfh~^ й Py й Pyg'^x. This proves 
the claim and, since / was arbitrary, estabhshes Fh~^ A x ^ yg~^x < x. Since 
yg'^x ^ 1, Lemma 1.2 together with a dual argument proves J^/i"^ -^ 1 in G"". П 

G"" enjoys the following important universal mapping property. 

Theorem 1.12. Every oc-continuous l-homomorphism ф : G -^ H has a unique 
(^-continuous l-homomorphism xjj^ \ G^ -^ W extending ф. In particular, every 
Umonomorphism ф from G onto a large Usubgroup of H has a unique l-mono-
morphism ф^ extending ф. 

Proof. The first assertion is a straightforward application of Proposition 2.6 
of [1]. Since Proposition 1.10 and 1.11 demonstrate that a-convergence has proper
ties CI, C2, and C3, the second assertion can be deduced from Proposition 2.21 or [1]. 

Corollary 1.13. / / G /5 large in H then G^ S H\ 

Theorem 1.14. G is large and a-dense in H if and only if H is l-isomorphic to an 
l-subgroup of G"^ over G. 

Proof. Suppose G is large and a-dense in Я. For each hEH there is some filter ^ 
on Я such that G E ̂  -^ h. Since ^ ' J ^ " \ #"" ^J^ -> 1, #" can be considered a Cauchy 
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filter on G. Define 9 : H -^ G"" be declaring h9 = [e!^]- 9 is well defined, since 
G 6 #" -> /7 and G G X -> h imply G G ̂ Ж~^ -> 1 in Я and, by Proposition 1.10, 
in G also, giving [ ^ ] = [ ^ ] . 0 is clearly an /-homomorphism* g9 = g for any 0̂  G G 
since G G J^ ~> é̂  in Я implies .^ -^ g in G. Because G is large in H and Ö is one-one 
on G, it follows that 9 is one-one on H. П 

The last several results of this section show a-convergence to be the coarsest 
reasonable /-convergence structure. 

Pioposition 1.15. a-convergence is the coarsest convex Hausdorff order closed 
l-convergence structure on any l-group G. 

Proof. Suppose #" => 1, where => is any convex Hasudorff order closed /-conver
gence structure, and let JT be ocl((#' n i)~). Considei 1 < g e G. Since JT => 1 
by assumption, there is some F G #" such that g ф ocl((F u {1})")- It follows that 
F A g S У < g ^or some 3̂  ^ 1. By the dual argument and Lemma 1.2, с>Г -> 1. 
Then #" ^ J T yields #" -^ 1. D 

If P is a prime subgroup then a P interval is any set of the form {g e G \ Pc < 
< Pg < Pd], denoted (Pc, Pd). If Г is a set of primes then ^(Г) denotes {7 ^ 
Ç G I У з пЛ, Л ç Г, A finite} and J*(r) denotes { У с G | 7 ^ п{{Р^аГ\ 
Pia^ j Pf G Г, aiEG^ \ Pj-, 1 ^ / ^ n]]. If Г is a normal set of primes then both 
J*(r) and ^[T) are neighbourhood filters of the identity for unique convex /-topologies 
on G [2]. 

Half of the next important result was first proven by Papangelou [7] in the abehan 
case. ElHs [5] proved the converse and extended both results to substantially wider 
classes of /-groups. In full generality, the result is due to Madell [5]. 

Theorem 1.16. a-convergence is topological if and only if G is completely distri
butive. In this case #" -> 1 if and only if ^ ^ ^{Г), when Г is the set of order 
closed primes of G. 

Proposition 1.17. a-convergence is the coarsest Hausdorff l-convergence structure 
on G if and only if G is completely distributive. 

Proof. Suppose ^ => 1, where => is a Hausdorff /-convergence structure on the 
completely distributive /-group G. By Corollary 1.7 of [1] we may assume => convex, 
which implies Ж = ((#" v l) n 1)^ => 1. Consider an order closed prime P and 
element a G G"̂  \ P. By Lemma 3.1 of [4] there is some xe G with 1 < x ^ Pa n G"*". 
Since n.yf = {1}, there must exist F^e^ such that x ф ((Pi v 1) u {1})~. It follows 
that P / < Pa for all feF^, for if not then 1 < x ^ ( / v' 1) л a G Pa n G"̂  would 
imply X G ((Pj V 1) u {1})~-

Likewise there is P2 G J^ such that Pf ^ Pa~^ for all / G p2- This shows F^ n 
n P2 ^ {Pa~^, Pa)E ^, meaning ^ 3 ^ (P) , where Г is the set of order closed 
primes of G. By the previous Theorem, #" -^ 1. 
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Now suppose that a-convergence is the coarsest Hausdorflf /-convergence structure 
on G, and let A be the set of all primes of G. ^(A) is the neighbourhood filtei of 1 of 
a Hausdorff /-topology [2] whose convergence we may denote =^. Then ^^(J) => 1 
implies ^(zl) -^ 1 and ОС\(ЦА)) -> 1. Therefore 1 = nocl(^(zl)) == пГ, the distri
butive radical of G. That is, G is completely distributive. 

We close this section with a question. Are the completely distributive /-groups the 
only ones which admit a coarsest Hausdorff /-convergence structure? 

2. THE a-COMPLETION 

G is oc-complete if G'' = G. H is an a-completion of G if G is large in Я, Я is a-
complete, and if G S К < H implies К is not a-complete. In this section we prove 
that every /-group G has an a-completion which is unique up to /-isomorphism over G. 
The a-completion of G can be obtained by iterating the construction of the previous 
section to obtain a chain of /-groups G ^ G"" ^ G"""" ^ ..., taking unions at limit 
stages. That the members of this chain eventually cease to grow larger is proven by 
showing that each is bounded in cardinality by |2^|. The a-completion of G is denoted 
G"", where the /a is meant to stand for "iterated a". This approach begs the fundamen
tal open question of whether G"" is a-complete. 

The following notion of extension provides the means to prove the cardinality 
bound on G"". Define G ^ Я to mean that for all /г̂  < /?2 in Я there exists g^ < Qi 
in G such that (/z,- v g^) A gj = gi, i = I, 2. Though not relevant here, one can 
show that G ^ Я if and only if Я is an essential extension of G in the category of 
distributive lattices (that is, every lattice homomorphism on Я which is one-one on G 
must be one-one on Я). See also [3] for a related use of this concept. 

Proposition 2.1. G й G\ 

Proof. Consider h^ < /22 in G"; let #'^ and ^2 be filters on G such that h^ = [ i^ , ] . 
Since ^2^1^ -^ hihï^ > 1, there exist sets F^ e J^^ with A ( F 2 F 7 ^ V 1) Ф 1, 
say F2FÏ W 1 ^ a for some 1 < a e G. Because # " 2 ^ ^ ^ -> 1, there is some К e #"2 
such that К ^ F2 and KK~^ A a ^ b < a for some b ^ 1. Fix x e K, Observe 
that for кеК, xk~^ A a S b implies kx~^ v a~^ ^ b~^, meaning К v a~^x ^ 
^ b~^x > a~^x. Secondly, note that f o r / e F ^ , xf~^ v 1 ^ a implies xf~^ v Ь ^ 
^ a or fx~^ A b~^ S a " \ meaning F^ л b~^x g a~^x < b~^x. If we let g^ = 
= a~^x and 0̂2 = b~^x, we have gi = (J^^ v g^) A g2 -^ {hi v g^) л 0̂ 2' ^r 
or (1ц V ö î) л 0̂2 = ö̂ i' i = 1,2. D 

Proposition 2.2. Suppose G S H ^ К. Then G S H й К if and only if G ^ K. 

Proposition 2.3. If^ is a collection of l-groups totally ordered by й then C ^ u ^ 
for any С e^. 
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Proposition 2.4. G ^ H implies \Н\ g |2^|. 

Proof. With each heu associate the set of pairs (a, b) in the Cartesian product 
G X G such that h w a ^ b. The definition of ^ assures that this association is 
one-one. П 

Theorem 2.5. Every l-group G has an a-completion G'̂  which is unique up to 
a-isomorphism over G. G and G"" satisfy the same positive universal formulas and 
hence generate the same variety of l-groups. 

P I oof. Define GQ = G, Gß+i = {GßY, and Ĝ  = ujG^ | <̂  < у} for limit ordinals y. 
By Propositions 2.1, 2.2, and 2.3, G ^ Gß for all ordinals ß. By Proposition 2.4, 
there is an ordinal ô such that Ĝ  is a-complete. The Theorem then follows from 
Proposition 2.22 of [1]. П 

Theorem 2.6. H is l-isomorphic to G^^ over G if and only if G is a large l-subgroup 
of H, H is a-complete, and every l-monomorphism ф from G onto a large l-subgroup 
of the oc-complete l-group M can be uniquely extended to an l-monomorphism 
ф"" :H -^ M, 

Proof. Proposition 2.23 of [ l ] . D 

The coarseness of the a-convergence structure (Proposition 1.13) implies that G"̂  
is the largest Cauchy completion that can be obtained from G by convex Hasudorff 
order closed /-Cauchy structures. 

Proposition 2.7. Let Q) be any l-Cauchy structure which induces a convex Hausdorff 
order closed l-convergence structure => on G. Then there is an l-isomorphism from 
G^ into G"" over G. 

Proof. By Proposition 1.15 the identity map from (G, =>) to (G, ->) is conti
nuous, hence Proposition 2.11 of [ l ] furnishes the required /-monomorphism. П 

Corollary 2.8. / / G is oc-complete then G is Cauchy complete with respect to any 
Hasudorff order closed l-Cauchy structure on G. In particular, G is order Cauchy 
and polar Cauchy complete. 

Corollary 2.9. G^" contains a copy of the Dedekind MacNeill completion G^ of G. 
G'"" also contains a copy of the polar Cauchy completion G'^ of G, and hence of the 
lateral completion G^ of G. Therefore an <x-complete l-group is both laterally and 
Dedekind MacNeill complete. 

Proof. In section 4 of [1] it is shown that G"" is the completion of G with respect 
to the order Cauchy structure, which by Proposition 2.7 is /-isomorphic to an l-
subgroup of G"̂  over G. G^ and G'̂  are the subjects of section 5 of [1]; a similar 
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argument shows Ĝ  S G"" and G'̂  S G'"". That G'^ is laterally complete is Corollary 
5.23 of [ l ] . D 

Proposition 2.7 raises an interesting unsettled question. Suppose => is a convex 
Hausdorff /-convergence which is both order closed and strongly normal on G. 
Suppose in addition that G ^ G®, where Si is the /-Cauchy structure generated 
from => by declaring ^eS whenever ^^~'^, ^~^^ => 1. Must => be finer than 
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