Czechoslovak Mathematical Journal

Ján Regenda

On the oscillation of solutions of a class of linear fourth order differential equations

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 1, 141-148

Persistent URL: http://dml.cz/dmlcz/101865

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE OSCILLATION OF SOLUTIONS OF A CLASS OF LINEAR FOURTH ORDER DIFFERENTIAL EQUATIONS

JÁn Regenda, Bratislava

(Received February 18, 1982)

1. INTRODUCTION

In the present paper we shall consider the differential equation

$$
\begin{equation*}
L[y]=y^{(4)}+P(t) y^{\prime \prime}+R(t) y^{\prime}+Q(t) y=0, \tag{R}
\end{equation*}
$$

where $P(t), R(t), Q(t)$ are real-valued continuous functions on the interval $I=$ $=\langle a, \infty),-\infty<a<\infty$.
In order to prove both the preparatory and the main results of this paper, we shall use the following assumptions

$$
\begin{equation*}
P(t) \leqq 0, \quad R^{2}(t) \leqq 2 P(t) Q(t) \quad \text { for all } t \in I, \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
P(t) \leqq 0, \quad R(t) \leqq 0, \quad R^{2}(t) \leqq 2 P(t) Q(t) \quad \text { for all } \quad t \in I \tag{B}
\end{equation*}
$$

and $Q(t)$ not identically zero in any subinterval of I.
One can verify easily that the above assumptions are satisfied if $P(t) \leqq R(t) \leqq 0$, $2 Q(t) \leqq R(t)$ for all $t \in I$.

Simple examples show that under the assumptions (A), (B) the equation (R) includes oscillatory equations as well as nonoscillatory ones.

The study of the oscillatory behaviour of solutions of linear fourth order differential equations goes to Leighton and Nehari [2] and has received a great deal of attention up to present. For typical results on the subject we refer to the papers $[1,3,5,6]$.

A necessary and sufficient condition is given for the oscillation of the differential equation (R) in terms of the behaviour of nonoscillatory solutions. At the same time necessary and sufficient condition is derived for the nonoscillation of the equation (R).

The results of this paper are obtained by methods similar to those of the paper [4].
A nontrivial solution of a differential equation of the n-th order is called oscillatory if its set of zeros is not bounded from above. Otherwise, it is called nonoscillatory. A differential equation of the n-th order will be called nonoscillatory, when all its solutions are nonoscillatory; oscillatory, when at least one of its solutions is oscil-
latory. A differential equation of the n-th order is said to be disconjugate in an interval I iff every nontrivial solution has at most $n-1$ zeros in I.

Let $C^{n}(I)$ denote the set of all real-valued functions such that its n-th derivatives are continuous in I.

2. PRELIMINARIES

We begin by formulating preparatory results which are needed in proving the main theorem in Section 5.

Lemma 1 [4]. Let $A(t, s)$ be a nonnegative and continuousfunction for $t_{0} \leqq s \leqq t$ (nonpositive for $a \leqq t \leqq s \leqq t_{0}$). If $g(t), \varphi(t)(\psi(t))$ are continuous functions in the interval $\left\langle t_{0}, \infty\right)\left(\left\langle a, t_{0}\right\rangle\right)$ and

$$
\begin{gathered}
\varphi(t) \leqq g(t)+\int_{t_{0}}^{t} A(t, s) \varphi(s) \mathrm{d} s \text { for } t \in\left\langle t_{0}, \infty\right) \\
\left(\psi(t) \geqq g(t)+\int_{t_{0}}^{t} A(t, s) \psi(s) \mathrm{d} s, \text { for } \quad t \in\left\langle a, t_{0}\right\rangle\right),
\end{gathered}
$$

then every solution $y(t)$ of the integral equation

$$
\begin{equation*}
y(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y(s) \mathrm{d} s \tag{1}
\end{equation*}
$$

satisfies the inequality

$$
y(t) \geqq \varphi(t) \text { in }\left\langle t_{0}, \infty\right) \quad\left(y(t) \leqq \psi(t) \text { in }\left\langle a, t_{0}\right\rangle\right)
$$

If we suppose in addition that $g(t) \geqq 0$ for $t \in\left\langle t_{0}, \infty\right)\left(g(t) \leqq 0\right.$ for $\left.t \in\left\langle a, t_{0}\right\rangle\right)$, then the solution $y(t)$ of (1) satisfies the inequality

$$
y(t) \geqq g(t) \geqq 0 \text { for } t \in\left\langle t_{0}, \infty\right) \quad\left(y(t) \leqq g(t) \leqq 0 \text { for } t \in\left\langle a, t_{0}\right\rangle\right) .
$$

Lemma 2. Suppose that (A) holds and let $y(t)$ be a nontrivial solution of (R) satisfying the initial conditions

$$
y\left(t_{0}\right)=y_{0} \geqq 0, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}=0, \quad y^{\prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime} \geqq 0, \quad y^{\prime \prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime \prime} \geqq 0
$$

$\left(t_{0} \in I\right.$ arbitrary). Then $y^{(i)}(t)>0$ for all $t>t_{0}, i=0,1,2,3$.
Under the additional assumption $R(t) \leqq 0$, we can replace $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}=0$ by $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \geqq 0$ and the conclusion of the Lemma is valid.

Proof. The initial-value problem

$$
L[y]=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \quad y^{\prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime}, \quad y^{\prime \prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime \prime}
$$

is equivalent to the following Volterra's integral equation

$$
y^{\prime \prime \prime}(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y^{\prime \prime \prime}(s) \mathrm{d} s
$$

where

$$
\begin{aligned}
g(t)= & y_{0}^{\prime \prime \prime}-y_{0}^{\prime \prime} \int_{t_{0}}^{t}\left[P(s)+\left(s-t_{0}\right) R(s)+\frac{\left(s-t_{0}\right)^{2}}{2} Q(s)\right] \mathrm{d} s- \\
& -y_{0}^{\prime} \int_{t_{0}}^{t}\left[R(s)+\left(s-t_{0}\right) Q(s)\right] \mathrm{d} s-y_{0} \int_{t_{0}}^{t} Q(s) \mathrm{d} s
\end{aligned}
$$

and

$$
A(t, s)=-\int_{s}^{t}\left[P(\xi)+(\xi-s) R(\xi)+\frac{(\xi-s)^{2}}{2} Q(\xi)\right] \mathrm{d} \xi .
$$

The hypotheses of the Lemma imply that $g(t)>0$ and $A(t, s) \geqq 0$ for $t \in\left(t_{0}, \infty\right)$. Then by Lemma $1, y^{\prime \prime \prime}(t) \geqq g(t)>0$ for all $t \in\left(t_{0}, \infty\right)$. Hence the assertion of the Lemma follows.

Lemma 3. Suppose that (A) holds and let $y(t)$ be a nontrivial solution of (R) satisfying the initial conditions

$$
\begin{gathered}
y\left(t_{0}\right)=y_{0} \geqq 0, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}=0, \\
y^{\prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime} \geqq 0, \quad y^{\prime \prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime \prime} \leqq 0, \quad t_{0} \in I .
\end{gathered}
$$

Then

$$
(-1)^{i} y^{(i)}(t)>0 \quad \text { for all } \quad t \in\left\langle a, t_{0}\right), \quad i=0,1,2,3 .
$$

The proof is similar to that of Lemma 2 and will be omitted.
Note that if y is a solution of (R), then so is $-y$. Hence it follows from Lemma 2 that $y\left(t_{0}\right) \leqq 0, y^{\prime}\left(t_{0}\right)=0, y^{\prime \prime}\left(t_{0}\right) \leqq 0, y^{\prime \prime \prime}\left(t_{0}\right) \leqq 0$ (but not all zero) implies $y(t)<0$, $y^{\prime}(t)<0, y^{\prime \prime}(t)<0, y^{\prime \prime \prime}(t)<0$ for all $t>t_{0}$. Similarly, it follows from Lemma 3 that if y is a nontrivial solution such that $y\left(t_{0}\right) \leqq 0, y^{\prime}\left(t_{0}\right)=0, y^{\prime \prime}\left(t_{0}\right) \leqq 0$ and $y^{\prime \prime \prime}\left(t_{0}\right) \geqq 0$ (but not all zero), then $y(t)<0, y^{\prime}(t)>0, y^{\prime \prime}(t)<0$ and $y^{\prime \prime \prime}(t)>0$ for all $t \in\left\langle a, t_{0}\right)$.

Lemma 4. Suppose that (A) holds. Then for every nontrivial nonoscillatory solution $u(t)$ of the equation (R) there exists a number $\tau \geqq$ a such that either

$$
u(t) u^{\prime}(t)>0 \text { for } t>\tau
$$

or

$$
u(t) u^{\prime}(t)<0 \text { for } t>\tau
$$

Proof. Let $u(t)$ be a nontrivial nonoscillatory solution of (R). Then there exists a number $b \geqq a$ such that $u(t) \neq 0$ in $\langle b, \infty)$. Assume, without loss of generality, that $u(t)>0$ in $\langle b, \infty)$. In order to prove the Lemma we will first show that $u^{\prime}(t)$ can change from negative to positive values at most twice in the interval $\langle b, \infty)$. Let s_{1} and $s_{2}\left(b \leqq s_{1}<s_{2}\right)$ be any two consecutive points at which $u^{\prime}(t)$ changes from negative to positive values. Then the solution $u(t)$ satisfies the following conditions $u\left(s_{i}\right)>0, u^{\prime}\left(s_{i}\right)=0$ and $u^{\prime \prime}\left(s_{i}\right) \geqq 0, i=1,2$. If $u^{\prime \prime \prime}\left(s_{2}\right) \geqq 0$ then by Lemma 2
we have $u^{\prime}(t)>0$ for $t>s_{2}$. If $u^{\prime \prime \prime}\left(s_{2}\right) \leqq 0$ then by Lemma 3 we hawe $u^{\prime}(t)<0$ for $t \in\left\langle a, s_{2}\right)$, which contradicts the assumption $u^{\prime}\left(s_{1}\right)=0$. This establishes our above assertion.

Hence there exists a number $\tau_{0} \geqq s_{1} \geqq b$ such that either $u^{\prime}(t) \geqq 0$ or $u^{\prime}(t) \leqq 0$ for all $t \geqq \tau_{0}$.

We note that $u^{\prime}(t)$ is not identically zero in any subinterval of I since $u(t)=$ constant is not a solution of (R).

We will now show that there exists at most one point $\tau>\tau_{0}$ such that $u^{\prime}(\tau)=0$. In fact, if $u^{\prime}(t) \geqq 0$ for $t \geqq \tau_{0}$ and $u^{\prime}(t)$ has a zero at some point $\tau>\tau_{0}$ then $u^{\prime \prime}(\tau)=0$ and $u^{\prime \prime \prime}(\tau) \geqq 0$. Hence the solution $u(t)$ satisfies the conditions $u(\tau)>0, u^{\prime}(\tau)=0$, $u^{\prime \prime}(\tau)=0$ and $u^{\prime \prime \prime}(\tau) \geqq 0$, so that $u(t)>0$ and $u^{\prime}(t)>0$ for $t>\tau$ by Lemma 2. In order to prove this assertion in the case if $u^{\prime}(t) \leqq 0$ for $t \geqq \tau_{0}$, suppose that $u^{\prime}(t)$ has two zeros $\tau_{0}, \tau_{1}, \tau_{0}<\tau<\tau_{1}$. Then it follows that $u^{\prime \prime}\left(\tau_{1}\right)=0$ and $u^{\prime \prime \prime}\left(\tau_{1}\right) \leqq 0$. Hence $u(t)$ satisfies the conditions $u\left(\tau_{1}\right)>0, u^{\prime}\left(\tau_{1}\right)=0, u^{\prime \prime}\left(\tau_{1}\right)=0, u^{\prime \prime \prime}\left(\tau_{1}\right) \leqq 0$, so that $u(t)>0$ and $u^{\prime}(t)<0$ for $t \in\left\langle a, \tau_{1}\right)$ by Lemma 3 which contradicts $u^{\prime}(\tau)=0$. This completes the proof of the Lemma.

Lemma 5. Let there be functions $w_{i}(t) \in C^{4}\left\langle t_{0}, \infty\right), i=1,2,3, t_{0} \in I$ with the properties

$$
\begin{gathered}
w_{2}>0, \quad w_{3}>0, \\
W\left(w_{1}, w_{2} ; t\right)>0, \quad W\left(w_{1}, w_{3} ; t\right)>0, \quad W\left(w_{2}, w_{3} ; t\right)>0, \\
W\left(w_{1}, w_{2}, w_{3} ; t\right)>0 \quad \text { for } \quad t \in\left(t_{0}, \infty\right)
\end{gathered}
$$

and

$$
L\left[w_{1}\right] \leqq 0, \quad L\left[w_{2}\right] \geqq 0, \quad L\left[w_{3}\right] \leqq 0 \quad \text { for } \quad t \in\left(t_{0}, \infty\right),
$$

where $W\left(w_{1}, w_{2}, w_{3} ; t\right), W\left(w_{i}, w_{k} ; t\right)$ denote the Wronskian determinants. Then the equation (R) is disconjugate in the interval $\left\langle t_{0}, \infty\right)([3], \mathrm{pp} .77-80)$.

Lemma 6 [6]. Let $c(t), f(t)$ be functions of class $C\left\langle t_{0}, \infty\right)$, assume that the differential equation

$$
w^{\prime \prime}+c(t) w=0
$$

is nonoscillatory and $f(t)$ does not change its sign in $\left\langle t_{0}, \infty\right)$. Then also the differential equation

$$
w^{\prime \prime}+c(t) w=f(t)
$$

is nonoscillatory in $\left\langle t_{0}, \infty\right)$.

3. THE EXISTENCE OF MONOTONIC SOLUTIONS

Throughout the remainder of this paper let $z_{\mathrm{c}}, z_{1}, z_{2}$ and z_{3} denote the solutions of (R) defined on I by the initial conditions

$$
z_{i}^{(j)}(a)=\delta_{i j}=\left\{\begin{array}{l}
0, i \neq j \\
1, i=j
\end{array} \text { for } i, j=0,1,2,3\right.
$$

Theorem 1. Suppose that (A) holds. There exists a solution $y(t)$ of (R) such that $y(t)>0, y^{\prime}(t)>0, y^{\prime \prime}(t)>0, y^{\prime \prime \prime}(t)>0$ for all $t>a$.

Proof. Let $y(t)$ be a solution of (R) which satisfies the initial conditions $y(a)>0$, $y^{\prime}(a)=0, y^{\prime \prime}(a)>0$ and $y^{\prime \prime \prime}(a)>0$. Then by Lemma 2, $y(t)>0, y^{\prime}(t)>0, y^{\prime \prime}(t)>$ $>0, y^{\prime \prime \prime}(t)>0$ for all $t>a$.

Theorem 2. Suppose that (A) holds. There exists a solution $z(t)$ of (R) such that $z(t)>0, z^{\prime}(t)<0, z^{\prime \prime}(t)>0$ and $z^{\prime \prime \prime}(t) \leqq 0$ for all $t \in I$.

Proof. For each natural number $n>a$, let $c_{0 n}, c_{1 n}, c_{2 n}$ and $c_{3 n}$ be numbers satisfying

$$
\begin{equation*}
\sum_{i=0}^{3} c_{i n} z_{i}^{(j)}(n)=a_{j}, \quad j=0, \ldots, 3 ; \quad a_{1}=a_{2}=a_{3}=0, \quad a_{4}<0 . \tag{2}
\end{equation*}
$$

Let $z_{n}(t)=c_{0 n} z_{0}(t)+c_{1 n} z_{1}(t)+c_{2 n} z_{2}(t)+c_{3 n} z_{3}(t)$. The existence of numbers $c_{0 n}, c_{1 n}, c_{2 n}$ and $c_{3 n}$, satisfying the above conditions, is easy to verify.

Since z_{0}, z_{1}, z_{2} and z_{3} are linearly independent, $z_{n}(t)$ is a nontrivial solution of (R). Since for each natuial number n, the sequences $\left\{c_{i n}\right\}, i=0,1,2,3$ are bounded, there exists a sequence of integers $\left\{n_{j}\right\}$ such that the subsequences $\left\{c_{i n j}\right\}$ converge to numbers $c_{i}, i=0,1,2,3$. From (2) we see that $c_{0}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=1$. The sequences $\left\{z_{n_{j}}(t)\right\},\left\{z_{n_{j}}^{\prime}(t)\right\},\left\{z_{n_{j}}^{\prime \prime}(t)\right\}$ and $\left\{z_{n_{j}}^{\prime \prime \prime}(t)\right\}$ converge uniformly on any finite subinterval of I to the functions $z(t), z^{\prime}(t), z^{\prime \prime}(t)$ and $z^{\prime \prime \prime}(t)$, respectively, where $z(t)$ is a nontrivial solution of (R). By Lemma, $3(-1)^{i} z^{(i)}(t) \geqq 0$ for all $t \in I$ and $i=$ $=0,1,2,3$. Since $z(t)$ is a nontrivial solution of (R), it is easy to show by the Uniqueness Theorem that there is no number $\tau \in I$ such that $z(\tau)=0$. Further, we will show that there is no number $\tau \in I$ such that $z^{\prime}(\tau)=0$ or $z^{\prime \prime}(\tau)=0$. In fact, if $z^{\prime}(t)$ vanished at a point $\tau \in I$, it would then follow that $z^{\prime}(t)=z^{\prime \prime}(t)=z^{\prime \prime \prime}(t)=0$ for all $t \geqq \tau$, since $z^{\prime}(t) \leqq 0, z^{\prime \prime}(t) \geqq 0$ and $z^{\prime \prime \prime}(t) \leqq 0$ on I. Since $z(t)>0$ for all $t \in I, z^{\prime}(t)>0$ for all $t>\tau$ by Lemma 2, which would contradict the fact that $z^{\prime}(t) \leqq 0$ for all $t \in I$. If $z^{\prime \prime}(t)$ vanished at a point $\tau \in I$, then by the same argument as used above, $z^{\prime \prime}(t)=z^{\prime \prime \prime}(t)=0$ for all $t \geqq \tau$, so that $z^{\prime}(t)$ would be equal to a negative constant for all $t \geqq \tau$. It follows that $z(t)$ would eventually become negative in $\langle\tau, \infty$), which would be a contradiction. Therefore, it follows that $z(t)$ satisfies the requirements of the Theorem.

4. CONDITIONS FOR DISCONJUGATION

The following two theorems are proved from Lemma 5 in the same way as Theorems 4 and 5 were proved from Lemma 6 in [4]. Therefore the proofs will be omitted.

Theorem 3. Let there be functions $w_{i}(t) \in C^{4}\left\langle t_{0}, \infty\right), i=1,2,3, t_{0} \in I$ such that

$$
\begin{array}{llll}
w_{1}(t)>0, & w_{1}^{\prime}(t)<0, & w_{1}^{\prime \prime}(t)>0 & \text { for } \tag{4}\\
w_{2}(t)>0, & w_{2}^{\prime}(t)>0, & w_{2}^{\prime \prime}(t) \leqq 0 & \text { for } \\
t \in\left\langle t_{0}, \infty\right), \\
w_{3}(t)>0, & w_{3}^{\prime}(t)>0, & w_{3}^{\prime \prime}(t)>0 & \text { for } \\
t \in\left(t_{0}, \infty\right), & w_{3}\left(t_{0}\right)=0
\end{array}
$$

and

$$
L\left[w_{1}\right] \leqq 0, \quad L\left[w_{2}\right] \geqq 0, \quad L\left[w_{3}\right] \leqq 0 \quad \text { for } \quad t \in\left(t_{0}, \infty\right) .
$$

Then the equation (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.
Theorem 4. Let there be functions $w_{i}(t) \in C^{4}\left\langle t_{0}, \infty\right), i=1,2,3, t_{0} \in I$ such that

$$
\begin{array}{ccccc}
w_{1}(t)>0, & w_{1}^{\prime}(t)<0, & w_{1}^{\prime \prime}(t)>0, & w_{1}^{\prime \prime \prime}(t) \leqq 0 & \text { for } \quad t \in\left\langle t_{0}, \infty\right), \tag{5}\\
w_{2}(t)>0, & w_{2}^{\prime}(t)>0, & w_{2}^{\prime \prime}(t)>0, & w_{2}^{\prime \prime \prime}(t) \leqq 0 & \text { for } \quad t \in\left\langle t_{0}, \infty\right), \\
w_{3}(t)>0, & w_{3}^{\prime}(t)>0, & w_{3}^{\prime \prime}(t)>0, & w_{3}^{\prime \prime \prime}(t)>0 & \text { for } \\
w_{3}\left(t_{0}\right)=w_{3}^{\prime}\left(t_{0}\right)=0
\end{array}
$$

and

$$
L\left[w_{1}\right] \leqq 0, \quad L\left[w_{2}\right] \geqq 0, \quad L\left[w_{3}\right] \leqq 0 \quad \text { for } \quad t \in\left(t_{0}, \infty\right) .
$$

Then the equation (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.
The following consequences follow from Theorems 3 and 4.
Corollary 1. Let (R) have solutions w_{1}, w_{2}, w_{3} satisfying (4).
Then the equation (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.
Corollary 2. Let (R) have solutions w_{1}, w_{2} and w_{3} satistying (5).
Then the equation (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.
The following sufficient conditions for (R) to be disconjugate are simple consequences of Theorems 1, 2, 3 and 4.

Corollary 3. Suppose that (A) holds and let there be a function $w \in C^{4}\left\langle t_{0}, \infty\right)$, $t_{0} \in I$ such that either $w>0, w^{\prime}>0, w^{\prime \prime} \leqq 0, L[w] \geqq 0$ or $w>0, w^{\prime}>0, w^{\prime \prime}>0$, $w^{\prime \prime \prime} \leqq 0$ and $L[w] \geqq 0$ on $\left(t_{0}, \infty\right)$. Then (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.

5. NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATORY AND NONOSCILLATORY EQUATIONS

Theorem 5. Suppose that (B) holds. Then the equation (R) is oscillatory if and only if for every nonoscillatory solution $y(t)$ of (R) we hawe either

$$
\begin{equation*}
y(t) y^{\prime}(t)>0, \quad y(t) y^{\prime \prime}(t)>0, \quad y(t) y^{\prime \prime \prime}(t)>0 \tag{6}
\end{equation*}
$$

on $\left\langle t_{0}, \infty\right)$ for some $t_{0} \in I$, or

$$
y(t) y^{\prime}(t)<0
$$

on I.
Proof. Suppose that (R) is oscillatory and let $y(t)$ be a nonoscillatory solution of (R). Then by Lemma 4 there exists a number $t_{1} \in I$ such that either $y(t) y^{\prime}(t)>0$ or $y(t) y^{\prime}(t)<0$ for all $t \geqq t_{1}$. There is no loss of generality in assuming that $y(t)>0$ for all $t \geqq t_{1}$. Substitution $y^{\prime \prime}(t)=u(t)$ into (R$)$ leads to the following differential equation for u

$$
\begin{equation*}
u^{\prime \prime}+P(t) u=-R(t) y^{\prime}-Q(t) y . \tag{7}
\end{equation*}
$$

If $y^{\prime}(t)>0$ for all $t \geqq t_{1}$, then $-R(t) y^{\prime}-Q(t) y$ does not change the sign in $\left\langle t_{1}, \infty\right)$. Since the equation $u^{\prime \prime}+P(t) u=0$ is nonoscillatory in $\left\langle t_{1}, \infty\right)$, it follows that equation (7) is nonoscillatory in $\left\langle t_{1}, \infty\right)$, by Lemma 6 . Hence there exists a number $t_{2} \geqq t_{1}$ such that $u(t) \neq 0$, i.e. $y^{\prime \prime}(t) \neq 0$ in $\left\langle t_{2}, \infty\right)$. From this it follows further that either $y^{\prime \prime}(t)>0$ or $y^{\prime \prime}(t)<0$ in $\left\langle t_{2}, \infty\right)$. We note that if $y^{\prime \prime}(t)>0$, it then follows from (R) that $y^{(4)}(t) \geqq 0$ (not identically zero in any subinterval). Hence the following cases are possible

$$
\begin{equation*}
y(t)>0, \quad y^{\prime}(t)>0, \quad y^{\prime \prime}(t)>0, \quad y^{\prime \prime \prime}(t)>0, \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
y(t)>0, \quad y^{\prime}(t)>0, \quad y^{\prime \prime}(t)>0, \quad y^{\prime \prime \prime}(t)<0, \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
y(t)>0, \quad y^{\prime}(t)>0, \quad y^{\prime \prime}(t)<0, \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
y(t)>0, \quad y^{\prime}(t)<0 \tag{d}
\end{equation*}
$$

for all $t \geqq t_{0}$, where t_{0} is some number greater than or equal to t_{2}. Suppose that $y(t)$ does not satisfy the conditions (6), (6'). Then either (b) or (c) holds. If a solution satisfying condition (b) or (c) existed, then the equation (R) would be nonoscillatory by Corollary 3 , contrary to the hypothesis. This completes the proof of the first half of Theorem 5 .

The proof that (6) and (6) are sufficient for (R) to be oscillatory is the same as that of Theorem 3 ([1], p. 293) and will be omitted.

Remark 1. If (R) is oscillatory, then it has three linearly independent oscillatory solutions.

The proof of this is virtually the same as that of Theorem 4 ([1], p. 294),
Remark 2. We note that in view of Theorem 5 Remark 1, the conditions (6), (6') are equivalent to the existence of three linearly independent oscillatory solutions.

Theorem 6. Suppose that (B) holds. Then the equation (R) is nonoscillatory on I if and only if there exists a number $t_{0} \in I$ and a solution $y(t)$ of (R) such that either

$$
y(t)>0, \quad y^{\prime}(t)>0, \quad y^{\prime \prime}(t)<0
$$

$o r$

$$
y(t)>0, \quad y^{\prime}(t)>0, \quad y^{\prime \prime}(t)>0, \quad y^{\prime \prime \prime}(t)<0
$$

for all $t \geqq t_{0}$.

Proof. The sufficient condition follows from Corollary 3. It is easy to show that the existence of such a solution is also necessary. Indeed, if (R) is nonoscillatory there must exist a nonoscillatory solution $y(t)$ which does not satisfy the conditions (6), (6'). It then follows from the proof of Theorem 5 that there exists a number $t_{0} \in I$ such that either $y(t)>0, y^{\prime}(t)>0, y^{\prime \prime}(t)<0$ or $y(t)>0, y^{\prime}(t)>0, y^{\prime \prime}(t)>0$, $y^{\prime \prime \prime}(t)<0$ for all $t \geqq t_{0}$.

The following theorem is proved from Theorem 6 and Corollary 3 in the same way as Theorem 8 was proved from Theorem 7 and Corollaries 3 and 4 in [4]. The proof will be omitted.

Theorem 7. Suppose that (B) holds. Then (R) is nonoscillatory on I if and only if there exists a function $w(t) \in C^{4}\left\langle t_{0}, \infty\right), t_{0} \in I$, such that either

$$
w(t)>0, \quad w^{\prime}(t)>0, \quad w^{\prime \prime}(t)<0, \quad L[w] \geqq 0
$$

or

$$
w(t)>0, \quad w^{\prime}(t)>0, \quad w^{\prime \prime}(t)>0, \quad w^{\prime \prime \prime}(t)<0, \quad L[w] \geqq 0 .
$$

Theorem 8. Suppose that (B) holds. Then (R) is nonoscillatory on I if and only if there exists a number $t_{0} \in I$ such that (R) is disconjugate on $\left\langle t_{0}, \infty\right)$.

The proof of this theorem is similar to that of Theorem $9[4]$ and is omitted.

References

[1] Ahmad Shair: On the oscillation of solutions of a class of linear fourth order differential equations. Pac. J. Math., 34, 1970.
[2] Leighton W. and Nehari Z. : On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc., 89, 1958.
[3] Levin A. Ju.: Neoscil'acija rešenij uravnenija $x^{(n)}+p_{1}(t) x^{(n-1)}+\ldots+p_{\mathrm{n}}(t) x=0$. Uspechi matem. nauk, T. XXIV, vyp. 2 (146), 1969.
[4] Regenda J.: Oscillatory and nonoscillatory properties of solutions of the differential equation $y^{(4)}+P(t) y^{\prime \prime}+Q(t) y=0$. Math. Slov., 28, 1978, No 4.
[5] Swanson C. A.: Comparison and Oscillation Theory of Linear Differential Equations. New York and London 1968.
[6] Švec M.: On various properties of the solutions of third and fourth order linear differential equations. Proceedings of the conference held in Prague in September 1962.

Author's address: 81231 Bratislava, Gottwaldovo nám. 17, ČSSR (Katedra matematiky a deskriptívnej geometrie Strojníckej fakulty SVŠT).

