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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS 
OF PARABOLIC EQUATIONS 

CHARLES S. KAHANE, Nashville 

(Received January 5, 1982) 

INTRODUCTION 

We consider solutions w(x, t) of second order parabolic equations 

(1.1) -Щ + L^u = -f(x,t) 

in a cylindrical space time region Ü x (0, oo), where Q is a. bounded domain in E'\ 
with the operator L^ given in divergence form 

(1-2) L,.= t ^ ( M ^ ' O I ^ 
j,k=i ox J \ dx^ 

the coefficients Дд being bounded measurable functions satisfying the ellipticity 
condition 

(1.3) t ^д(х, 0 ^Л ^ Я|̂ |' (Я>0) 
j,k=l 

uniformly in Q x (0, oo) and the symmetry condition ОД = a^j. We assume that 
w(x, t) is given initially: 

(1.4) u{x,0) = ф{х) on Q; 

and that on dQ x (0, oo) и is to satisfy either a homogeneous Dirichlet, Robin or 
Neumann boundary condition, i.e. either 

(1.5) и = 0 on dQ X (0, oo), 
or 

(1.6) — + ßu = 0 on dQ X (0, oo) {ß^O, ß фО), 
dv 

or 
du 

(1.7) — = О on dQ X (0, oo), 
dv 

respectively, where in the last two conditions dujdv denotes the outward conormal 
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derivative on dQ x [t]: 

(1.8) ^ = f aj,(x,t)^(x,,)mXx) (xeoü) 

with mj{x) representing the 7th component of the exterior unit normal to dQ. For 
brevity, in the sequel we shall refer to the problems of solving(l.l), (1.4) under the 
boundary conditions (1.5), (1.6) and (1.7) as problems I, II and III, respectively. The 
notion of solution is to be taken in the classical sense, and for the purposes of such 
an interpretation it will be convenient to regard the coefficients a^ as well as the 
boundary, oQ, to be sufficiently smooth. These smoothness assumptions will not, 
however, play an essential role in the derivation of our results, and with the excpetion 
of the assumption that dQ be smooth for problems II and III, they can be ultimately 
dispensed with. 

We piopose to analyze the asymptotic behavior of solutions to these problems 
assuming that the right side of ( l . l ) , / -^ 0 as ^ -> 00 in an appropriate sense. Suppose, 
to begin with, that / -> 0 uniformly in ß as f -> 00, then it is well known that for 
problem I the solutions и will tend to zero uniformly in ß as ^ -> 00. The same 
result also holds for problem II if, for example, we assume ß to be uniformly and 
positively bounded away from zero. There is a corresponding result for problem III 
in which, under the additional assumption that lim JQ J^ / ( (^ , T) d^ dr exists, we may 

f->oo 

conclude that the solutions u{x, t) tend uniformly to suitable constants. 

Our goal will be to obtain the same asymptotic results assuming, instead of / -> 0 
uniformly in Q, tha t / tends to zero in the Lp{Q) sense: 

(1.9) j | /(x, ^)|Mx-> 0 as t 
J Q 

00 

for p sufficiently large in relation to n, the dimension of x space. Specifically, as
suming that 

(1.10) p > njl when 71 ̂  2 and p '^ 1 when n = 1 

we will establish the following theorems. 

Theorem 1.1. Under the stated assumptions (1.9), (l.lO) regarding f, the solutions 
u(x, t) of problem I tend to zero uniformly in Q as t -^ со. 

Theorem 1.2. Under exactly the same assumptions (1.9), (l.lO), the solutions 
u(x, t) of problem II also tend to zero uniformly in Q as t -^ со provided that the 
coefficient function ß[x, t) in (1.6), which is assumed to be a non-negative bounded 
measurable function on dQ for each t > 0, satisfies the following condition: For 
some positive e, the measures of the sets 

(1.11) E,{t) = [xedQ: ß{x, t) ^ s] 
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should be uniformly bounded away from zero, i.e. 

(1.12) meas [£,(01 è ^ > 0 for all t > 0, 

for a suitable positive Ô. 

Remarks. A sufficient condition guaranteeing that ß satisfy (1.12) is that /i(x, t) 
be positively bounded away from zero uniformly in x and t: 

(1.13) ß{x, t)^ e> 0 for (x, t)edQ X (0, oo). 

(This is the assumption that is usually made to assure that и -^ 0 in problem II; see, 
for example, [3, p. 166].) 

A less stringent condition comparable to (1.13) which still implies that ß satisfies 
(1.12) is to assume that ß[x, t) is bounded from below by a non-negative function y(x): 

ß{x, t) ^ y{x) ^ 0 for (x, t)edQ x (0, oo) , 

whose integial over dQ is positive: 

y[x) dcr(x) > 0 , I 
do" denoting the element of area on dQ. Clearly this condition allows ß to vanish at 
some points of dQ, although there must still be a fixed "substantial" subset of dQ 
over which ß{x, t) will be positively bounded away from zero for t > 0. The reason 
for the formulation in terms of the condition (1.12) is to allow the "substantial" 
subset Ej^t) over which ß{x, t) is required to be positively bounded away from zero 
to vary with t. 

Finally for problem III we have 

Theorem 1.3. Assume, as before, that f tends to zero in the L^ sense (1.9) with p 
satisfying the condition (l.lO). Assume in addition that the limit 

(1.14) lim I I f{x, T)dxdT = A 

exists. Then the solutions u(x, t) of problem III tend to constants: 

u(x, t) -> -—- Г/ + Л1 as t -> oo 
^ \Q\^ 

uniformly in Q, where I denotes the integral of the initial data and [ß| the measure 
ofQ: 

I = ф(х) dx , \Q\ = meas [Q] . 

Theorems of this type are useful in studying the asymptotic behavior of solutions 
of semilinear parabolic systems, in particular, foi systems of reaction diffusion equa-
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tions. For such systems one can sometimes obtain the L^ asymptotic behavior 
relatively easily; one then invokes theorems of the above type to obtain the cor
responding uniform asymptotic behavior. In fact Theorem 1.1 for the case of the 
heat equation, — t/̂  + с Aw = —/, was developed by the writer in [14] to study the 
asymptotic behavior of the reaction diffusion system 

(1.15) ~Uf + a Au = juv , —Vf-\-bAv = kuv 

in precisely the manner indicated. Subsequently, Gardner in [7] used exactly the same 
argument to analyze a generalization of (1.15). The same technique has also been 
used by Webb [20] to obtain the asymptotic behavior of solutions to a functional 
equation which models epidemic phenomena. Recently, a further application of this 
method was given by Gardner [8] to analyze systems occurring in mathematical 
ecology. 

The proofs of Theorems 1.1, 1.2 and 1.3 will be based on representation formulas 
which express the solutions и of problems I, II and III in terms of the initial data ф 
and right side / by means of integral operators whose kernels are the appropriate 
fundamental solutions F of the corresponding problem: 

u{x, t)= П F{x, t; ^, T ) / ( ^ , T) d^ dT + Г F{x, t; ^, 0) ф{^) d^ . 
J 0Jß Jß 

These fundamental solutions are usually referred to, more specifically, as the Green's, 
Robin's and Neumann's functions, G, R and N, for problems I, II and III, respecti
vely. Their definitions and basic properties will be described in Section 2 which is 
devoted to a discussion of all the needed preliminaiies. Then in Section 3, using 
a technique due to Nash [17], we will derive estimates for the fundamental solutions 
G, R and N, from which, as a consequence of the representation formulas (1.16), 
Theorems 1.1, 1.2 and 1.3 wiU follow easily. The proofs of these theorems together 
with some further results of a related nature will then be presented in Section 4, the 
final section of the paper. 

2. PRELIMINARIES 

This section contains a discussion of various preliminaries which will be needed 
for our later developments. In the first part of this section we will list for ease of 
reference, the basic properties of the fundamental solutions for problems I, II and III 
that will be used in the sequel; while in the second part of this section we will present 
some inequalities which will play a crucial role in deriving the desired estimates for 
these fundamental solutions. 

(a) Fundamental Solutions. We first turn to a description of the fundamental solu
tions G, R and N; and in doing so it will be convenient to refer to them generically 
by F = F(x, t; (̂ , T), whenever we wish to describe a property which is identical for 
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all of them. To begin with they are defined as follows: Foi fixed {^, T)E Q x (O, со), 
as functions of x and t they are to satisfy the equation 

(2.1) \-±.L, F(x , Г; ^, T) = 0 for XE Q , t > i 

together with the appropriate homogeneous boundary condition 

(2.2) G(x, ?; (J, T) = 0 fos x e dQ , t > т , 

(2.3) Г— + ß{x, m R{x, t; ĉ , T) = 0 for x e ÔQ , t > T, 

(2.4) — [N(x, t;^,T)] = 0 for x e dû , t > т , 
dv 

for problems I, II and III, respectively. 
As {t — T) l 0, they are to behave like ô functions in the sense that for ф a uni

formly continuous function in Q 

(2.5) lim Г F(x, t; è, т) ф{^ d^ = ф{х) 

is to hold uniformly in any compact subset of Q; while in addition, if 0 G CQ(Q) (the 
set of continuous functions with compact support contained in Q) (2.5) should hold 
uniformly in Q. 

The equation and boundary conditions (2.1) —(2.4) are to be fulfilled in the classical 
Gnse. As far as legularity properties are concerned this will be taken to mean that 
se, jR and N are to be twice continuously differentiable with respect to x and once 
continuously differentiable with respect to t, forxeQ and t > т; while as functions 
of x, for fixed t, we will demand that they be C^[Q) functions. To assure this will 
require that the coefficients ОД and boundary dQ be sufficiently smooth, and we will 
assume this to be the case; although it should be pointed out that with the exception 
of the smoothness assumption on dQ in problems II and III, these kind of regularity 
assumptions will have no "quantitative" effect on the estimates for the fundamental 
solutions to be derived in the section that follows. For the construction of funda
mental solutions with the stated properties as well as those to be mentioned further 
on see [2], [3], [11], [12], [13], [15] and [19]. 

In addition to the aforementioned properties of the fundamental solutions F(x, t; 
^, T) we also need to take note of the properties which they possess as functions of ä, 
and T for fixed (x, t)e Q x (0, oo). It turns out that with respect to ä, and т they 
satisfy an adjoint equation together with adjoint boundary conditions. In view of 
the symmetry of the a^'s the adjoint equation here takes the form 

(2.6) f™ + L J F ( X , г;(^,т) = 0 for ^eQ, T < t. 
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where by L^ we mean the operator 

j,k=i d^j\ d^j, J 

while the adjoint boundary conditions are given by 

(2.7) G{x, t; ^, T) = 0 for ^EdQ, T < t, 

(2.8) Г-^ + ß{t т) 1 R(x, t;^,T) = О for ^ e dQ , т < t, 

(2.9) — [N{x, t; ^, T)] - 0 for ^ e dQ , т < t 
dv 

for problems I, II and III, respectively, where djdv here denotes the same outward 
conormal derivative defined in (1-8), but this time taken with respect to ^ rather 
than X, i.e. 

Also, corresponding to the property (2.5), we have here the property, that for ф(х) 
uniformly continuous in Q 

(2.10) lim f F{x, t; ^, т) il/(x) dx = ф{^) 

holds uniformly on any compact subset of Q; whüe if ф e CQ[Q), (2.10) holds uni-
foimly in Q, 

Again the equation and boundary conditions (2.6) —(2.9) are to be satisfied in 
the classical sense, so that as functions of ^ and т for ^E Q and т < t, the funda
mental solutions F should be twice continuously differentiable with respect to ä, and 
once continuously difi'erentiable with respect to т; furthermore, as functions of (̂ , for 
T fixed, they should belong to C^[Q). To assure this will require no further smoothness 
assumptions on the coefficients a^j^ and boundary dQ than have already been made to 
guarantee the corresponding regularity conditions for the F's as functions of x and t. 

The importance of these fundamental solutions for our purposes is that, as already 
noted in the introduction, they allow us to represent any sufficiently regular solution 
of problem I, II or III in the form 

(2.11) u{x, 0 == Г f F{x, t; ^, T)/((^, T) d^ dT + f F{x, t; ^, O) ф{^) d^ ; 
J 0 J ß J Q 

and it is these representation formulas applied to classical solutions и of problems I, 
II Oi III which will be our point of departure in proving the asymptotic results stated 
in the introduction. 
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Finally, we need to record one further property of the fundamental solutions F 
that will play an essential role in deriving the estimates for them; namely, the "semi
group" identity: 

(2.12) F{x, t; ^, T) - I F(x, t; y, s) F{y, s; ^, т)ау {т < s < t) 
J û 

which follows from considerations based on the uniqueness of solutions to problems 
I, II and III. 

(b) Inequalities. In deriving estimates for the fundamental solutions F we will 
avail ourselves of some inequalities for functions in the Sobolev spaces W^'^(Q) 
and WQ '^(ß), which we take to be the closures of C°°(ß) and C^(0), respectively, under 
the noim (J^ [|i;|^ + |^^^|^] d^Y^^', where Dv denotes the gradient of v. In particular, 
we will be using the well-known Poincaré inequality 

(2.13) *4 Q J Q 

valid for arbitrary ve WQ'^'[Q) with the constant с depending on Q; it is also valid 
[16, Th. 3.6.5, p. 83] for all v e W^'^(Q) which have mean value zero: 

(2.14) I i;d<J = 0 

provided that dQ is sufficiently smooth. 
Next, for the estimation of the Robin function JR under the assumption that ß 

satisfies condition (1.12), we will need to apply the following variant of Poincaré's 

inequality. 

Proposition 2.1. Let 5(e, ô), (s > 0, ô > 0), denote the set of non-negative L^{dQ) 
functions ß(i) with the property that 

(2.15) meas [^ : ^ G dQ, ß{^) ^ s] ^ Ô . 

Then for any given fi > 0, there exists a positive constant a = «(e, ô, ja, Q) so that 

(2.16) a Г v\^)d^ ^ fi Г \Dv{^fd^ + f ß{^)v\e)da{e) 
J Q J Q J dQ 

holds for all v e TF^'^(ß) and all ß e 5(г, ô), provided, again, that dQ is sufficiently 
smooth. 

Remark. The expression v[^) entering into the boundary integral on the right of 
(2.16) is to be understood as the "trace" of the function v e W^'^^(Q) on the boundary 
dQ (cf. [16], pp. 72 — 78); as such it is a welldefined L2{dQ) function which coincides 
with the restriction of v to dQ when г; is a C^(Q) function. Moreover the mapping 
from a function in W^'^{Q) into its trace in L2{dQ) is continuous in the sense that if 
v„ -^ V weakly in W^'^'(Q), the traces of v„ -^ to the trace of v in L2{dQ). 
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Proof of Proposition 2.1. It will be sufficient to show that there exists a positive 
constant a = а(г, (5, /x, Q) so that 

(2.17) a f v'{i) d^u^l \D v(^f de + г f x{^) 4 0 H^) 

holds for VE P'F '̂̂ (O) and x the characteristic function of any set whose measure 
^0; (2.16) will then follow from (2.17) by taking x to be the characteristic function 
of the set [^ : ^ e dQ, ß{^) ^ e] for any ß E 5(г, ô). 

To establish (2.17), suppose, on the contrary, that it did not hold. Then there would 
exist a sequence of functions {vj{^)} in W^'^[Q) together with a sequence of charac
teristic functions {Xj{^)} defined on dQ so that 

• J dQ 

and 

(2.18) fiho v^i^f d^ + 8 f xAO vjii) da{è) й Г' 
J Q J dÜ 

for J = 1, 2, ... . Now as this implies that the Sobolev norms of the vfs are uniformly 
bounded: 

(2.19) f vj{^)d^ + Г \D v^f d^ ^ 1 + {fij)~' ^l+jii-' 
J Q J Q 

j = 1, 2 , . . . , by a known compactness result [16, Th. 3.4.4, p. 75] we will be able 
to extract a subsequence {Vj^} so that Vj^^ -> v weakly in W^'^{Q) and at the same time 
Vj^ -> V strongly in L2{Q). Since, by (2.18), J^ \DVJ^\^ d^ й {ßjk)~\ /с = 1, 2 , . . . , it 
follows that Dv = 0 which in turn implies that v = constant = c; furthermore, 
since Vj^-> V = с strongly in L2{0), and, therefore, 1 = Jß vjj^ä,) d^ -^ J^ c^ d^ = 
= c^|ß|, we see that 

(2.20) с = |JQ|-^^^ > 0 . 

To obtain a contradiction to this, we note that by the continuity properties of the 
mapping sending a function in Pf '̂̂ (iQ) into its trace in L2{dQ), the fact that Vj^ ~> с 
weakly in W^ '^(ß) implies that the traces of Vj^ on dQ converge strongly to с in L2{dQ): 

\^jk ~" ^P d(T((̂ ) - ^ 0 as fe -> 00 . 
JdQ 

If we now make use of the estimate 

Oucôuï Xj,c da = XJX^ - vjj da + Xj.Vj, da й 
J dQ J ÔQ J ÔQ 

й ( j ^ ^ \c - vj^ day |5ß|^/^ + ( j ^ ^ XJA aery M ' ' , 
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1Л^^' ^'-'''"' 

then, sending /с -^ оо, the preceding in conjunction with 
,1/2 

й {eh}-

which follows from (2.18), allow us to conclude that со = 0, in contradiction to 
(2.20). 

In addition to various versions of Poincaré's inequality, we will need to make use 
of a special case of the Gagliardo-Nirenberg inequality ([5], [6], [18]): 

(2.21) 
\ l / 2 

Q J \J Q 
Dv( d^ 

n/2(n + 2) 

(/J*»i di 
2/П + 2 

vahd for all v e Wo'^(Q) with the constant с being independent of Q. As in the case of 
the Poincaré inequality (2.13), (2.21) is also valid for v e W^'^(Q) which have mean 
value zero: ^QVÛ^ = 0, provided that dQ is sufficiently smooth; in this case the con
stant с will depend on Q. 

To establish (2.21) in the latter case, we assume that dQ is so smooth that every 
function V G W^'~(Q) has an extension Ve WQ'^[G), where G is a fixed but arbitrary 
domain containing Q, with the extension having the properties 

(2.22) 

and 
I" F p + | i>Fp]dç йК [\v\' + \Dv\']d^ 

f i F J d ^ g X f 
J G J Q J G J ß 

for a suitable constant K, For the construction of such extensions cf. [16, Thm. 3.4.3, 
p. 74] or [1, pp. 8 3 - 9 4 ] . 

Applying (2.21) to the extension VE ^ J ' ^ ( G ) and then using (2.22) we find that 
,1/2 / / • \n/2(n + 2) / С \2/n + 2 

< c( I \DV\'di 

и/2(л+2) 
\M < 

к \v d^ 
JQ 

2//J + 2 

Finally, since v has means value zero, we may apply Poincaré's inequality (2.13) to 
estimate the expression Jß \v\^ 
last member in terms of J^ 

d^ appearing in the first integral on the right of the 
Dv\^ d(J, and doing so we obtain (2.21) under the as

sumption that V has mean value zero. 

3. ESTIMATES FOR FUNDAMENTAL SOLUTIONS 

In this section we will derive the needed estimates for the fundamental solutions 
G, jR and N. We begin with the consideration of Green's function. Basing ourselves 
on a technique due to Nash [17] we will establish 
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Theorem 3.1. For Green's function we have the estimate 

(3.1) ( f G%x, t; ^, T) d A ' uc{t- x)-'l^^ (t> T, xeQ), 

for any q e [1, oo), as well as q = со, with q denoting the Holder conjugate of q 
and с a positive constant. 

In the statement of Theorem 3.1 we are using the following notational conventions 
which will hold throughout this section: The letters b and с with or without sub
scripts will be reserved for positive constants which generally depend on A, n and Q\ 
moreover, they will not necessarily represent the same constant on each appearance. 
When ^ == 00, the expression (J^ |ö (̂c )̂|̂ d )̂̂ '̂̂  is to be interpreted as the essential 
supremum of \g{0\ over Q. By the Holder conjugate q of q we mean the extended 
real valued function defined by 

{q\{q — 1) if 1 < ^ < 00 
00 if ^ = 1 
1 if ^ = 00 . 

The exponent njlq occuiring on the right of (3.1) is then well-defined except when 
^ = 1 in which case it is to be interpreted as zero. 

For the proof of Theorem 3.1 we will need 

Lemma 3.2. The Green's function G has the following properties 

(3.2) G(%, ?; (̂ , T) ^ 0 {XEQ, ^eQ, t> T), 

(3.3) j G(x, r; ^, T) d^ g 1 ( х е Д Г > т ) , 

and 

(3.4) lim I G\x, t; ^, т)а^ = сю {x e Q), 

Proof. We use the fact that foi ф e Со{0) 

(3.5) u(x,t)= f G{x,t;^,т)ф{^)d^ 

provides us with a classical solution of the problem 

— Uf + L^u = 0 in iQ X (T, СО) , 

w = 0 on dOt X (T, tx)) 5 

u(x, T) = ф(х) ïox XEQ 

which is continuous in ß x [т, oo). Consequently if ф ^ О, it follows by the maximum 
principle that u{x, t) ^ Q ïox x E Q, t > т. This shows that the integral operator on 
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the right of (3.5) takes nonnegative functions ф G CQ{Q) into nonnegative functions; 
clearly this is only possible if the kernel G of this integral operator is itself non-
negative, which proves (3.2). 

Next by another application of the maximum principle, if ф ^ 0, w(x, t) assumes 
it maximum on the initial line; consequently 

I G(x, t; ^, T) Ф{^) d^ S sup ф{^) (XEQ, t>T). 

Replacing ф(£,) in the preceding by ф„(с), where {ф„{^)} is a sequence of non-negative 
Co{Q) functions with the property that Фп{^) й 1 and ф„{С) -^ 1 as /i -> oo pointwise 
in Q, we obtain 

I G(x, t; I T) ФХ^) d^ й sup фХе) ul {xEQ/t>T); 

and passing to the limit as n -^ со, using the Lebesgue dominated convergence 
theorem, this yields 

L G{x, t; ^, T) de' ^ 1 {xeQ, t > т) 

which proves (3.3). 
Finally, to prove (3.4), we apply Schwarz's inequality: 

(3.6) I Г G(x, t; ,̂ T) Ф{^ Ц^(\ ^'(^' ̂ ' '̂ )̂ ^ )̂ ^ ( [ '̂(^) ̂ ^y 
for ? > T, with Ф an arbitrary Co(0) function. Suppose now that (3.4) were not true 
for some x e Q; then for this x we would be able to find an increasing sequence {TJ} 
converging to f : i^ f ,̂ so that (J^ G^(x, t; ^, T J d^Y^^- was bounded, say, by M. 
Inserting Tj in for т in (3.6) we would then have 

[ G{x, t; ^, X,) ф(^) dàuMfï ф\^) ddj" 

for J = 1, 2, ... . Passing to the limit as j -> oo, making use of (2.5), this would imply 
that 

\ф{х)\ = I Hm f G(x, t; ^, т,) ф(^) dà й M ( \ ф\^) d A ' " ' 

for all Ф E CQ{Ü); but such a point estimate at x for any ф E CO(Q) in terms of its 
L2{0) norm is clearly impossible. It follows that (3.4) must hold. 

Proof of Theorem 3.1. We begin by showing that 

(3.7) I G\x, t; è, T) d^ ^ c{t - х^'^ {t> т, XEQ). 
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To prove it we shall study the expression on the left as a function of т and derive 
a differential inequality for it. Accordingly, regarding x and t as fixed, we set 

(3.8) B{T)= f G ^ ( x , r ; ^ , т ) d ^ 

Differentiating В with respect to r, and making use of the fact that as a function of ^ 
and T, G satisfies the adjoint equation (2.6), we find that 

B\T) = 2Ï ^ Gd^ = - l ï (Lfi) G d^ . 

Since by (2.7) G vanishes for ^ e dQ, an integration by parts in the integral on the 
light then leads to 

B'i^)-2\ i « , . (^ . r ) ( f ) (^ )d^ ; 

from which, in view of the ellipticity condition (1.3), we obtain 

(3.9) F ( T ) ^ 2Я I \DfiY d^ {t> T). 

We now apply the Gagliardo-Nirenberg inequality (2.21) to G. (It is apphcable 
because as a function of ĉ , G e C^[Q) and vanishes for ^ e ôQ which implies that 
G 6 W^'\Q) [9, p. 147]). This gives 

/* / л \n/n + 2 / r» \ 4 / л + 2 
(3.10) B{T) = \ G^ dĉ  ^ с M \Dfi\' d d ( |G| d d й 

< ( /• \n/n + 2 

Jjö,Gpd^j {t>T), since Jß | G | d(̂  ^ 1 because of (3.2) and (3.3). 
Combining (3.9) and (3.10) we arrive at 

B\T) ^ с[Л(т)]^" + ^̂ /'̂  for T <t. 

Solving this differential inequality, bearing in mind that by (3.4) В(т) -> oo as т f Г, 
we obtain 

(3.11) B{T) ^ c{t - T)-" /^ (T < t) 

which is the estimate (3.7). 
Precisely the same argument, based on the fact that as a function of x and t, G 

satisfies the equation (2.1) together with the boundary condition (2.2) enables us to 
establish the estimate 

(3.12) Г G\x, t; ^, T) dx й c{t - т)""/^ {t> т, ^eü). 
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Next, to obtain a pointwise bound for G out of the L2 bounds derived above, we 
apply the semi-group identity (2.12) for G in conjunction with Schwarz's inequality: 

(3.13) G(x, t; ,̂ T) = Г G(x, t; rj, s) G{rj, s; ̂ , r) ârj ^ 

ul[ G\x, t; ri, s) drj\ f Г G\rj, 5; ,̂ т) drj) {т < s < t) ; 

and then insert in the estimates (3.7) and (3.12), taking s = (t + т)/2, which yields 

(3.14) G(x, t; (̂ , T) ^ c'^'(t - 5)-^/^ c'^'(s - z)-"^^ \ = b(t - т)-"/^ 
|s = (f + T)/2 

for X, ^ E Ü, and t > T. 
Finally, to estimate the L^ norm of G we use the interpolation inequality for Lp 

norms [10, p. 146], with the interpolation being between the L^ and L^ norms of G: 

In view of (3.2), (3.3) and (3.14) this gives 

(( G%x,t'^,T)dA'' ^f^ G(x,t;^,T)dA '(supG(x,r;C,T))^^-^>/^^ 

^ l{b(t - T ) -" /7^-^> /^ S c{t - T)-"/^^~ 
for t > T, X E Q, with с independent of q, the desired estimate (3.1). 

The estimate of Theorem 3.1 is precise for t ~ т near zero, however for "large" 
values of ^ — T it can be improved, and this is the content of the result which follows. 

Theorem 3.3. For (t — z) ^ I the Green's function G satisfies the estimate 

(3.15) G(x, t\ ,̂ T) й c^Q~''^'-'^ (XEQ, ^EQ) 

Proof. Using the notation and results of Theorem 3.1, we combine the inequality 
(3.9): 

B'(T)^2À Г \В^\Ы^ (T < t) 
J Q 

with Poincaré's inequality (2.13) 

B{z) = Г Ĝ  df ^ с Г \Dfi\^ d^ 
J Q J Q 

(which is apphcable since G e WQ'^) to conclude that 

В'(т) è с B{z) (z < t) , 

Solving this differential inequality we obtain 

e-<'-'>ß(5)|.=, й е-^'^-'>£(4=,_1/, {Tut- 1/2) ; 
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which on making use of (3.11) to estimate B[t — 1/2) yields Б(т) ^ c^e ^̂ ' ^̂  for 
(̂  - T) ^ 1/2, i.e. 

I G\x, t; ^, T) d^ ^ c.Q-'^'-'"^ for (t - T ) ^ 1/2 . 

A similar argument gives us the estimate 

G\x, t; (J, T) dx ^ c^Q-'^'-'^ for (̂  - т) ^ 1/2. L 
Hence using the semi-group identity for G, in conjunction with Schwarz's inequality 
as in (3.13) we find that 

G(x, tU,T)uH G^x, t; Щ s) аЛ ( Г G\n, s; ^, т) d ^ й 

S cf'е-^(^-^>^^с{/'е-^<^-^>/^|,=(,+,)/2 = Cie-̂ ^^ -̂̂ > for (г - т) ^ 1 . 

Next we turn to the estimation of the Neumann's function N. 

Theorem 3.4. For the Neumann's function N we have the estimate 

(3.16) ( f \N{x, t; (̂ , T) - //|^ d A ^ uc{t - T)-"/^^ {t> T, XEQ) 

for q G [1, oo), as well as q = со, where ft = |^|~^-

For the proof we will again need some preliminary results which we state in 

Lemma 3.5. The Neumann's function N has the following properties 

(3.17) N{x,t; ^,T)^0 (xeQ, ^EQ, t> T), 

(3.18) f N{x, t; (̂ , T) d(̂  = 1 {XEQ, t> T), 

(3.19) j N{x; t; ^, т) dx = 1 {^ E Q, t > т) 

and 

(3.20) Hm I N\x, t; ^, т) d^ = oo {x E Q). 

Proof. The proof of the positivity for N is similar to the proof of the positivily 
for G given in Lemma 3.2. We use the fact that for ф E CQ{Q) 

u{x, t) = iV(x, t; i, T) Ф{^) d^ 
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provides us with a classical solution to the equation — ŵ  + L^u = 0 in ß x (т, oo) 
which is continuous in О x [т, oo), takes on the initial values ф on Q at t = т and 
satisfies the boundary condition duldv = 0 on dQ x (т, oo). If now ф ^ 0, then 
(assuming that dQ has the interior sphere property) by the theory of parabolic 
inequalities [3, pp. 52 — 53] we will have u(x, t)'^ 0 for (x, f) e ß x (т, oo); from 
which the positivity of N follows immediately. 

Next, to establish (3.18), fix x e ß and t > 0, and set 

/ (T) = Г N{x, t; (̂ , T) df . 

Difîeientiating with respect to т, we then find, since N satisfies the adjoint equation 
(2.6) and homogeneous boundary condition (2.9), that 

Consequently for т < t, /(т) = constant. To evaluate this constant we apply (2.5) 
(with Ф = 1) which gives us 

lim / (T) = lim Г iV(x, t; ^, т) d^ = 

pointwise in ß . Hence /(т) = 1 for т < / which proves (3.18). The proof of (3.19) is 
similar. Finally, the proof of (3.20) is exactly the same as the proof of (3.4). 

Proof of Theorem 3.4, The steps in the proof parallel those in the proof of Theorem 
3.1. We will first estabhsh the estimate 

(3.21) I |iV(x, t; г, T) - /ip d(̂  й c{t ~ т)""/^ {t > т, x e Q) 

by deriving a differential inequality for the quantity 

(3.22) B{T) = f \N{x, t; ^ т) - ^ p d^ . 
JQ 

Basing ourselves on the observation that by (2.6) and (2.9), N and hence N — fi 
satisfy the adjoint equation 

(3.23) f ( i V - / i ) + L^( iV- / . ) = 0 
от 

and homogeneous boundary condition [djdv) (N — ja) = 0, it follows, on diff'erenti-
ating В with respect to т, utilizing the equation (3.23), and then integrating by parts, 
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that 

Jo ^^ Jn 

= 2 t M ,̂т)~^-(iv-^)-^-(iv-/l)dc^ 

Therefore, on account of the ellipticity condition (1.3) 

(3.24) Б'(т) ^2À\ \D^{N - fi)\^ d^ (т < ^). 
J Q 

Next we note that in view of (3.18) N — /л has mean value zero: J^ (iV — jijd^ = 0; 
and so we may apply the Gagliardo-Nirenberg inequality (2.21) to it: 

B[T) = ^ [N- fifd^ucf( \D^{N - jiif d^Y^ f[ \N - fi\ dA 

\^'2^) / /* \n/n + 2 
^2^/" + ̂ cj ЩМ - fifdn ( T < r), 

since 

(3.26) 

4/и + 2 
< 

\N - iii\d^^ f Nd^ + fiï d^ = 2 
J Q JQ 

because of (3.17) and (3.18). Combining (3.24) and (3.25) we find that 

Б'(т) ^ C[5(T)]("-^^>/" for T < t ; 

and solving this differential inequahty as in the proof of Theorem 3.1 we obtain the 
estimate (3.21). 

A similar argument based on the fact that as a function of x and t, N satisfies 
equation (2.1) together with the boundary condition (2.4) results in the estimate 

(3.27) f \N(X, t; (̂ , T) - ß\^ dx й c{t - T)-"«/^ {t> T, ^eQ), 

For the next step in the proof we observe that because of (3.18) and (3.19), the 
semi-group identity (2.12) for Л̂  implies the same kind of identity for N — /л: 

(3.28) N{x, t;^,T) - fi = 

[N{x, t; rj, s) - fi] [N{r], s; ^, т) - fi] di] {т < s < t) , 

With this identity in hand, the estimates (3.21) and (3.27) then lead to 

(3.29) \N(x, t; i, T) - /(| й c[t - i ) " " / ' (/ > т, x, ^ G Q) 

in exactly the same way as we obtained (3.14) in the proof of Theorem 3.1. 
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Finally, to estimate the L^ norm of iV — /г we again use the interpolation ine
quality 

(3.30) \\N - fil й \\N - 41'' \\N - 4'r'"' • 

The inequality (3.29) gives us an estimate for \\N — /ij |^, the L^ norm of N — /г, 
while from (3.26) we have the estimate \\N — pi\\i ^ 2 for the L^ norm of N — fi. 
Inserting these estimates into (3.30) we obtain 

( f \N{x, t; ^, T) - ii\^ ddj^' ^ 2'^%c{t - T) -"/^^-^ )/q 

for t > T, X E Q, from which the desired inequality (3.16) follows. 
For large / — т it is again possible to improve the estimate (3.16) of the preceding 

theorem, and this improvement is described in 

Theorem 3.6. For (r -- т) ^ 1 the Neumann's function N satisfies the estimate 

(3.31) \N(x, t; ^, T ) - ju\u c,Q-''^'-'^ (XEQ, ^ e Q) . 

Proof. The proof is virtually identical with the proof of Theorem 3.3 so we will 
only sketch it. For the expression В(т) defined by (3.22) we derive the differential 
inequahty 

(3.32) B\T)^CB{T) (T < 0 

by combining (3.24) with Poincaré's inequality (2.13) for N — ji: 

B(T) = ! \N ~ ßl'd^Sc ^ \D,XN -jif d^ 
J Q JQ 

(which is applicable since N — ju has mean value zero). Solving (3.32) as in Theorem 
3.3 we arrive at the estimate В(т) g с^е""" '̂"^^ for (̂  — т) ^ 1/2, i.e. 

(3.33) \N{x,t;^,T)-{A\^d^ èc,Q-'^'-'^ for ( r - T ) è l / 2 . 

A similar argument yields the estimate 

(3.34) Ï \N{x,t;^,T) - ^il^dx^c^Q-'^'-'^ for (f - т) ^ 1/2 . 

The desired result (3.31) then follows from (3.33) and (3.34) by using the semi-group 
identity (3.28) exactly as in the proof of Theorem 3.3. 

Remark. We wish to point out that, unlike the estimates of Theorems 3.1 and 3.3, 
the constants in the estimates of Theorems 3.4 and 3.6 depend quantitatively on some 
measure of smoothness for dQ; this is due to the fact that, ultimately, they are 
expressible in terms of the constants that figure in the Gaghardo-Nirenberg and 
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Poincaré inequalities, (2.21) and (2.13), for functions with mean value zero, both of 
which require a smooth boundary for their validity. 

We now turn to the estimation of Robin's function R. For t — т near zero this will 
be acomplished on the basis of 

Lemma 3.7. Assume that the coefficient function ß is non-negative, then 

(3.35) 0 S R ^N , 

Proof. Let Ф E CQ{Q) and set 

(3.36) i/(x, t) = f [iV(x, t; ^, T) - R{x, t; ^, т)] ф{^) df . 
Jn 

Then from the properties of iV and R, и will be a classical solution of —u^ + L^u = 0 
in Q X (T, OO) which is continuous in the closure Q x [т, oo), assumes the values 
zero on Q ät t = T and satisfies the boundary condition 

du 
— + ßu = 
dv 

ßN ф{^) d^ ^ О on dQ X (T, OO) 

provided that ф ^ 0. By the theory of parabolic inequalities (again assuming dQ 
to have the interior sphere property) it follows that w ^ 0 in ß x (т, oo), and hence 
that the kernel of the operator (3.36), N - R ^ 0. This proves that R ^ N. The 
proof that R ^ Ois conducted along similar lines, and is in fact practically the same 
as the proof that TV ̂  0 given in Lemma 3.5. 

Corollary 3.8. For 0 < t — т ^ 1 the Robin's function satisfies the estimate 

(3.37) ( f i^^(x, t; ^T) d A ' Sb{t~ т)""/^^ {% e Q), 

with q any number in [1, oo), as well as q = oo. 

Proof. Using the notation |j Ц̂  for the L^ norm, it follows from (3.35) of the pre
ceding lemma, that 

Inserting in the estimate (3.16) for \\N — fi\\q = (Jß | ^ — fif dä,y^^ and recalling 
that /Л = 1^1"^, this results in 

[^ R\x, t; (̂ , T)dA ' ^ Ф - T)-"/^^ + Щ-'"-'^^ й b{t - тУ^^~^ 

fox О < t •- T S 1, X e ß ; the required inequality (3.37). 
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Just as G and N ~ ja decayed exponentially for r — т large, the same is true for R. 
More precisely we have 

Theorem 3.9. Assume that the coefficient function ß is non-negative and satisfies 
condition (1.12), then for (̂  — т) ^ 1 the Robin's function R satisfies the estimate 

(3.38) R{x, t; ^, T) ^ c,Q-''^'-'^ (x, ^ E Q). 

Remark. Here the constant C2 will depend not only on À, n and Q but also on the s 
and Ô appearing in condition (1.12). 

Proof. The proof proceeds very much like the proofs of Theorems 3.3 and 3.6. 
We first establish an estimate for the quantity 

B{T)= f R\x,t; è,T)dè 

by deriving a differential inequality for it in a by now familiar way: We differentiate В 
with respect to т, make use of the equation (2.6) satisfied by R and then integrate by 
parts. In this case this leads to 

B\T) = 2{ R — d^= -2Ï RL^R d^ = 
JQ ^^ Jß 

Applying the ellipticity condition (1.3) and the boundary condition (2.8), it follows 
that 

Г(т) ^2ÀÏ \D^R 

J ß 
Б'(т) ^ 2À \D,R\^di + 2 ßR' d(j(^) . 

But from the variant on Poincaré's inequality (2.16), there exists a positive constant 
a = a(8, Ô, Я, Q) so that 

a Б(т) = a R^i^ÀÏ \D^R\^ d(̂  + I ßR^ dcj(^). 
f J ß J aß J ß 

Combining the two preceding inequalities we obtain 

B'{T) ^ с B(T) (T < t); 

and solving this differential inequality exactly as in the proof of Theorem 3.3 we 
arrive at В(т) ^ C^Q~'^'~'^ for r - T ^ 1/2, i.e. 

(3.39) I R^{x, t; t T) d^ g C^Q''^'''^ for t - т ^ 1/2 . 
Jß 
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A similar argument yields 

(3.40) I R\x, t; ^, T) dx й C,Q-'^'-'^ for t - x ^ 1/2 . 

The desired result (3.38) then follows from (3.39) and (3.40) by applying the semi
group identity (2.12) for R: 

R{x, t; ^,T) = R{x, t; rj, s) R{rj, s; ^, т) drj (т < s < t), 
Jß 

togethei with Schwarz's inequality in exactly the same way as was done in the proof 
of Theorem 3.3. 

4. PROOFS OF THE MAIN RESULTS 

In this section we give the proofs of the asymptotic results stated in Section 1, 
after which we briefly consider some further results of a similar character. We begin 
with the 

Proof of Theorem 1.1. The proof is based on the representation formula (2.11) for 
solutions и of problem I which we here write in the form 

(4.1) u(x, t) = v{x, t) + w[x, t) , 

wheie 

(4.2) v[x, 0 = Г f ^ ( ^ ' n ^' ^ ) / (^ ' ^) d^ ax 
J 0 J D 

and 

(4.3) w{x,t)= f G ( x , r ; ^ , O ) 0 ( ^ ) d ^ 
JQ 

From the estimate (3.15) for G, the integral represented by w clearly tends to zero 
uniformly in 0 as ^ -> oo; thus we need only show that f -» 0 uniformly in ß as ^ -> oo. 

For this purpose we first make use of our hypothesis (1.9): Jß \f(^, x)\^ d^ -^ 0 
as T -^ 00 (with p satisfying condition (l.lO)) to assure the existence of a positive 
number T so that, for given e > 0 

(4.4) ( f |/(c^,T)|^dA % e holds for т ^ Г . 

Using this Г, we decompose the т integration in the integral defining v, and then apply 
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Holder's inequahty together with (4.4) to obtain 

(4.5) \v{x, t)\ = n 
J 0 J n 

Gfd^dz + i Of d^ di 

^ f Г G(x, t; ^, T) \f(t T)| d^ dT + e f V f G^(x, t; ^, т) d A ' ' d t (̂  > T) 

where ^ denotes the Holder conjugate of ;? : ^ = p. In a moment we are going to 
show that 

(4.6) J = sup ( G%x, t; (̂ , T) d(̂  1 dr < 00 . 
t>T+l 

Temporarily granting this, we find from the preceding inequality (4.5), on making 
use of the estimate (3.15), that for ^ > T + 1 

sup jt;(x, 01 й Cie-^^(^-^> f Г | / ( c , т)| d^ dr + eJ ; 
^eß JO JQ 

from which the desired uniform convergence of v(x, t) to zero in Q follows im
mediately. 

It remains to establish the finiteness of the expression J defined in (4.6). To achieve 
this we write 

( G ^ d n d T = I G ^ d n d T + ( G ^ d n dr ( ^ > Г + 1 ) , 

and note that the estimate (3.15) is applicable to the G appearing in the first integral 
on the right. Applying it, and making use of (3.1) to estimate the second integral on 
the right we find that 

Г [^ G%x,t;^,T)ddj 'dT^ Г CiC-^^^'-^Mßp^^dT + I /̂'"'̂"" '̂ ^̂  dT < 

/•00 r*l 

^ Ci|ßp/^ Q~''' ds + С s~"/^^ ds {XEQ, t > T+ 1) 

since, by definition, q = p so that q = p. The desired finiteness of J now follows 
from the observation that both of the last two integrals are finite, the second one 
because of the condition (1.10) : p > nil when n ^ 2 and p ^ 1 when n = 1. This 
completes the proof of Theorem 1.1. 

The proof of Theorem 1.2 is identical with the proof of Theorem 1.1. We 
merely let R play the role of G in the argument just given, replacing the estimates 
(3.1) and (3.15) for G by the corresponding estimates (3.37) and (3.38) for R. 

The argument proving Theorem 1.1 is also the main ingredient in the proof of 
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Theorem 1.3. To prove the latter we start from the representation formula (2.11): 

u{x,t) = f Мф{^)а^ + Г f JV/(^,T)d^dT 
J Q Jo Jß 

for solutions of problem III, and setting 

m{t) = 
Q 

Г ф{^)а^+ г f /(<^,T)d(^dT], 

recalhng that pi = |ß |~ \ re-write it in the form 

i/(x, t) - m{t) = ( (N-fi) ф{^) d^ + Г Г (N - / . ) /(^, T) d^ dT . 
Jß Jo J Q 

Now exactly as in the proof of Theorem 1.1 we can show that the right side -^ 0 uni
formly in Q as t -^ 00. (We let Â  — ji play the role of G in that proof, and replace the 
estimates (3.1) and (3.15) by (3.16) and (3.31), respectively.) Therefore, since, in view 
of hypothesis (1.14), m(^) converges to the quantity 

- ^ ГГ ф{^) d^ + hm Г Г f{L T) dC dr] = ^ - [I+A], 
\Щ U ß '-'^ Jo JQ J \Щ 

it follows that u(x, t) converges to the same quantity uniformly in ß as / -> oo, 
which proves Theorem 1.3. 

Finally we want to point out that the conclusions of Theorems 1.1, 1.2 and 1.3 
remain valid if in place of the assumption (1.9) with p satisfying (l.lO) we assume 
tha t /6L^ , [0 X (O, 00)] for some p > njl + 1, i.e. 

(4.7) j I |/(4', x)Y d(̂  dT < (Ю for p > njl + 1 . 
Jo Jß 

The proofs of these assertions are very similar to the proofs of the corresponding 
assertions in Theorems 1.1, 1.2 and 1.3. As a sample we give the proof of the analogue 
of Theorem 1.1 under the assumption (4.7). 

Our point of departure is again the representation formula (4.1) and as in the proof 
of Theorem 1.1 we need only show that the term v{x, t) ofthat formula tends to zero 
uniformly in ß as ^ -> oo. To this end we again use the decomposition for the integral 
defining V indicated in (4.5) with Tthis time chosen, in accordance with hypothesis 
(4.7), so that 

f |/(^,T)|^d^dTY^'<e. 

Applying Holder's inequality we thus obtain 

\v{x, t)\u\ \ G{x, t; ^, T) | / ( ^ , T)| d^T + eff f G^(x, t; ^, т) d^ d i V '̂ {t > T) 
Jo J Si \j T J n J 
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where q = p. Therefore if we can show that the quantity 

. i / e 
/ == sup f I I GHx, t: L T) d^ dr I < oc 

t>T+l 

it will follow that 

sup f f f G^(x,r;^,T)d(^d^ 

sup \v{x, t)\ S t-'^'-^^([ [ \f{L T)| d^ d r ) + e/ {t>T+ i) 

and hence that v converges uniformly to zero in ß as ^ -> oo; thereby proving the 

result. 

To prove I finite we proceed similarly to the analysis of J by using the decomposi

tion 

f I Ĝ  d(̂  dT = f Г Ĝ  d^ dT + Г I Ĝ  d^ dr (̂  > Г + 1) , 
J T i n J T Jn J t-1 J Q 

and then inserting in the estimates (3.15) and (3.1) into the integrals on the right. 
Here this yields 

f f G%x, t; ê, T) d^ dT й Г c\ e-̂ ^̂ < -̂̂ > \Q\ dr + Г c%t - т)""^/"^" d i S 
J T J Q J T J t-1 

/•oo Л1 

^ c l | ß | e-^'''ds + сП s-"^^^P-^^s {xeQ,t>T+l), 

since qjq = pjp = ijp — 1. The condition p > njl + 1 in the assumption (4.7) 
then implies the finiteness of the very last integral on the right, and hence the finiteness 
of/; which completes the proof. 
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