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ON BESOV-HARDY-SOBOLEV SPACES OF ANALYTIC
FUNCTIONS IN THE UNIT DISC

P. OswALD, Dresden

(Received September 11, 1981)

In the last years a general theory of function spaces B,, , and F;, , of Besov-Hardy-
Sobolev type on R" and on domains has been developed in the work of J. Peetre,
H. Triebel et al.. Their methods which are mainly based on multiplier criteria of
Mihlin-H6rmander type, decomposition, maximal function, and interpolation
techniques allow to consider the full range of‘parameters 0<p, g=o00, —0 <
< s < 0. Most of known function spaces such as Sobolev spaces W'y, Besov spaces
B} ., Hardy space H,, Holder-Zygmund spaces %* and others are included in these
scales. For further and deeper information we refer to [10], [21—23].

Concerning function spaces defined on the n-Torus T" there exists a lot of classical
and more recent results which were stimulated, especially, by various applications
to trigonometric and power series (we refer to the monographs of A. Zygmund [25],
E. M. Stein [14], E. M. Stein, G. Weiss [15], and the papers of M. H. Taibleson
[19], T. M. Flett [4—6] et al.). Recently, H. Triebel [24] has shown how to extend
the R'-theory of B} - and F} ,-spaces to the periodic case (for 1 < p < oo see also

[8], [14]).

In the present paper we deal with distributions on T*
f=rfE") =Y ce", te(-mn],
nz0

of power series type and give (in a special situation) an alternative approach to
periodic function spaces of Besov-Hardy-Sobolev type. The basic tool is the use of
properties of the Cesaro means of the power series of f and related maximal functions.
This makes it possible to obtain a substantial theory for parameters 0 < p, ¢ < oo,
— <5 < oo in a rather uncomplicated manner. Since the classical Hardy
spaces H, as well as the Lipschitz spaces HA(s, p, q) introduced in [6] are included
in the scales B, , . and F, , . of function spaces under consideration our approach
yields a number of well known but also new results, at least, for 0 < p < 1. It should
be mentioned that an extension of our investigatiosn to the n-dimensional case as
well as to non-analytic periodic spaces is possible. This will be carried out elsewhere.
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1. CESARO MEANS AND MAXIMAL FUNCTIONS

Let
Dy ={f = ¥ e :Je,| = 0(n), n— 0, p = f(f) < o0}
nxz0

be the subspace of D'(T") consisting of periodic distributions of power series type.
To any f € D', there corresponds an analytic function

fe)=Y ez, |z] <1 (or f(re") =Y e, r < 1).
nz0 nzo
For given fe D), and « = 0 we introduce the Cesaro (C, «)-means

an(f) = an(f) (") = (A7) ' X An_yee™, nz 0,
k=0
where

Aa_<n+o¢>=(n+oc)(n—l+oc)...(1+ot)<z n* ) nZ0, 420,

- n n! I(l + o) ’

n

In the forthcoming considerations the maximal functions
(1.1) o%(f) (e") = 51:]3 |os(f) (' te(—n,n], feD,

play an important role. For functions from H, various estimates of (]‘1) were pre-
viously given by G. H. Hardy, J. E. Littlewood, A. Zygmund, G. Sunouchi, T. M.
Flett, E. M. Stein et al. (cf. [4], [13]). Here

={feDy:|f|u, =limM,f,r) <o}, 0<p= w0,
r—1

M) = 16, |G ] a0 <<

supvrai ]f(re”)l , p= 0,

te(—m,n]

where

denotes the classical Hardy space of analytic functions in the unit disc. If fe H,
then there exist a.e. on (—m, 7] boundary values f(e') = hmf(re“)e o — 1, )
with the property ||f|u, = | /(e")]z,. 0 < p £ 0.

Furthermore, we need the following quasinorms for a sequence {f; = f(e")},
Jj = 0, of functions belonging to L,(—m, ), 0 < p < oo:

{Z 174,31, 0<g<o
IS g =

sup il a=0
0, 00 < o
R [l TR
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For any sequence of H,-functions {f;}, j = 0, we write {f;} € H,(I,) (€ I,(H,)) if
the related sequence of boundary value distributions belongs to L,(l,) (I,(L,)), this
means that the corresponding quasi norm is finite.

First we state a simple (may be, already known) estimate for (1.1) in terms of the
usual real maximal function

(1.2) M(g)(e")=sgg5];J sIg(e“:)ld«f, te(-mm), gel,.

Theorem 1.1. Suppose 0 < p < 1 and fe H,. Then we have for « > 1[p — 1
(13) A1) () S CulM(f) )17, te(-mx].

Proof. For given o = 0 and fe D/, we can use the integral representation (see
[16, p. 616])

ou(f) (") = (2na7) ™ 4[,: 1 (rei€*9) (rei) = (ﬂi)zﬂ de

1 — ref®
where 0 < r < 1,n 2 0. Putting r = r, = 1 - (n + 1)~! we obtain

1 — (r"ei:)n+ 1

1 — rei

at1

l02(/) ()] = Cy(n + 1) j " S0 | d, nz0.

Since

o) = 1) ()
belongs to H, a well known inequality of Hardy-Littlewood
(1.4) Mi(p,r) S C(1 =)' """ |o|u,, O<p=1, O<r<1,
(for a proof of (1.4) cf. [17]) immediately yields

!o“,z,(f) (e“)l < Cp’l(n + l)l/P‘l—a {Ji [f(ei(€+t))|li M)

sin (¢/2)

(a+1)p 1/p
dﬁ} -

n/(n+1) .
=Coufir e[ e pas s

—n/(n+1)

n

Fr e |

Obyviously, the first term on the right hand side can be majorized by M(|/]?) ()
while integrating the second integral by parts we obtain the upper bound

C,,,anl_p(“ﬂ) {”f”{p + f <JS lf(ei(t+é))|p dé) gl-pat1) ds} )
n/(n+1) -5

1/p
(lf(ei(§+r))|p + If(ei(t— E))|p) gmp@t) d{} .

n/(n+1)
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Again according to (1.2) this yields
|o3(f) ()] = Cpu(M(|1]7) ()17
. {1 + (n + ])1~p(1+1) <1 + J"‘ g2-platl) ds>}1/p < C,,,a(M(lf‘p) (eit))l/p ,

n/(n+1)

«>1p—1, n20, te(-mn].
This proves (1.3).

Theorem 1.2. a) Let fe H,, 0 < p < oo. Then we have

(1.5) [o%Nll, = Cpal fllu, s @ > max(0,1/p - 1).

b) If {f;}el(H,), 0 <p, g £ 0, then

(1.6) oD uwn = Coalifi}ligwn @ > max(0,1/p - 1).
¢) If {f;}eH,,), 0<p<o0, 0<gqg= oo, then

(1.7) o2 Lo = Coaal {1} Lo

for o> max (0, 1/p — 1, 1/q — 1).

The proof of the inequalities (1.5)—(1.7) is an immediate consequence of Theorem
1.1 and known estimates for the real maximal function (1.2). Part a) follows from the
inequality

(1.8) |m(7)

due to Hardy-Littlewood (see [25, v. 1, ch. 1]). For 1 < p < oo this is obvious (put
p = lin(L.3) and r = p in (1.8)). Considering the case 0 < p < 1 we choose some
p' < p satisfying o > 1/p’ — 1. According to (1.3), (1.8) we obtain

lo3(Nlle, = CoalMF]7) @37 e, = Cpal MLy, =
< Coull 11712200 = Coalllm,

Part b) easily follows by (1.5). Finally, inequality (1.7) can be deduced in analogy
from the vector valued variant of (1.8)

(1.9) MU owe = ConallifitLsan > {753 € Lylla) »
1 <p, g <oo, due to C. Fefferman, E. M. Stein [2] (since sup M(f;)(c") <
jzo

L2 C|f|, feL,, 1<r= o,

< M (sup |f}) (¢"), 1 € (=m, n], (1.9) remains valid for ¢ = oo, too).
jzo

Remark 1.1. The statements of Theorem 1.2 are not new ones, except the case
0 < p £ lin ¢). E.g., inequality (1.5) represents the above mentioned classical result
on (1.1). The proof of (1.5)—(1.7) seems to be more elegant and compact than pre-
viously given ones.
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Remark 1.2. If 1 < p < oo one can admit the case « = 0, too. Although this can
not be shown by our methods it follows from the results on a.e. convergence of Fourier
series in L, due to L. Carleson, R. Hunt (see [11]). Therefore, most of the following
statements remains valid in this case.

Now we introduce multiplier operators and some further properties of the Cesaro
means. Any sequence of complex numbers A = {4,}, n 2 0, with ) 1.e" e D)

nz0

defines in D} a multiplier operator T, given by
T,:f =Y ce™ > A =3 Aeem.
n=0 nz0

If X;, X, < D, are quasi Banach spaces and T, : X; — X, is bounded we call the
sequence A coefficient multiplier (or Fourier multiplier) for the pair X, X, in the
case X; = X, = X we simply say multiplier for X.

In order to state special multiplier criteria for the spaces we are interested in one
needs the following definitions. For given A = {4;}, j = 0, and real # = 0 the se-
quence APl = {APA} = { Y An% "Nim)s k 20, is called difference sequence of

m20

order f corresponding to ). For integer f we obtain the usual differences of higher
order (e.g. A% = A, A2y = A — Xyyys A?X = X — 20444 + J442, and so on).
We set

bugey = {Ael, Yy ARAPT)| < 0}, B20.
k=0

Supposing 4 € bvg ., there exists lim A, = A, and bv,, ¢, B = 0, becomes a Banach

space equipped with the norm [ 2]y, , = 4| + Y 4f|AP*14,].
k=0

If 0 £ B < a then we have bv,,; G bvg,q (C means that the imbedding is con-
tinuous). These and further elementary properties of bvg,; are proved in the paper
[20] of W. Trebels from which we have taken other suggestions, too. In [20], p.
20—22, it is stated that

(1.10) - M=Iuf+ Y AN oi(f), «a20,
k=0
at least for any polynomial f € D’,. Thus we obtain

(1.11) )] = [ Moo, 05 (€1, te(=m 7],

if 2 € bvgs1, & 2 0, and f is a polynomial. This simple relation (together with theorem
1.2) makes it possible to deal with multiplier operators by using Cesaro summability
properties. Thisidea will be systematically explored in the following sections (cf. [20]).

Furthermore, we need the following identities

n—1
1.12 A — A, = Y Ay, 0Sk<n, a0,
nj
Jj=k
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and
a+1

(1.13) A O =Y AT AT g Ay, k20,
1=0
where o = 0, 1, ... is an integer and (A7), = A, k = 0.

Remark 1.3. Instead of (1.]) we can use with the same success the more general
maximal function

(1.19) AN E) = sup | Y Aee™, «=0,

| 2]lbvg+1S1 nZ0

because it immediately follows by (1.11) and the elementary property A**14%_, =
= A = 6,4 0= k = m, 0 20, that 25() (") = o%(/) (¢"), te(—m, x].

Remark 1.4. There exists a simple connection with other maximal functions
corresponding to an analytic function f(z). Let (see [25, v. 1, ch. 7], [3])

Ni(f) (") = sup |f(2)| (1 + @)1 «=0,
z=reid r<1 —r

N/) () = sup  |/(5)], 0<e<oo,

[e-1]<(1-re

N.(f) (") = fg;l) |f(re')|, te(—mn],

and

be the tangential, non-tangential, and radial complex maximal function of fe I’,,
respectively. For arbitrary ¢ € (—n, Tc] we have

N(f) (@) £ Nu(f) (") £ C,, Na(f) (), 0<o<o0, a=0.
We can prove (at least for polynomials f)
(1.15) Ni(f) (") £ o%(f)(€"), «=0, te(—mm].
Indeed, according to (1.11) we obtain
029 < {5}, 0200) ().
But for arbitrary complex 7, |‘rl < 1, we have
e v = X AR T AT 724 = 1= o1 F 4G =
kZ0 120 K20
— I] _ .L,la+1(1 _ II|)~1—1 .
Thus, we can estimate

« it a it Il - ler1 (1= IZ
Nif) () = o30) (e )|i|u<p1(1 - lz ! ' (- Iz] + 1argz
which yields (1.15).

Using (1.15), (1.3) one can deduce various complex maximal inequalities directly
from their real counterparts (1.8), (1.9).

)a+ 1v

)z+1
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2. THE SPACES BS.,q,+> Fp,q,+-DEFINITION AND BASIC PROPERTIES

For the definition below we need appropriate decompositions of the power
series of fe D',. Let A = {9} be a set of finite sequences i) = {2},j =2 0. We
write A€ A,, « = 0, if

(.1 0 ebuy, [l = <

and

{7+ 1,20, j=r

W = fp=0:D .
(2.2) Suppi 1"__0 n :#0} C{{O,...,21+r}a j=0,...,r— 1

for an integer r = 1. Furthermore, if A € 4, with r = 1 and, in addition,

(2:3) > =1, n=0,1,...,

jz0

we set A € A, o. Obviously, A, 0 = 4,,« = 0,and 4, o = Ag 0, A, = 45,0 £ f < .
To see that A, o = () Ag0 ¥ @ we consider any function ¢(x)e C*(0, o) with

a>0
o(x) = 1 for xe[0,1] and supp ¢(x) = [0,2]. Then A, = {i{} defined by the
relations

. 27) —@m279*Y), jz1, nx=0
2.4 WD = o(n . =
( ) @,n {(p(n) , j=0,

belongs to A, o. Indeed, (2.2) with r = 1 and (2.3) are automatically fulfilled, and
(2.1) can be deduced from

AP+ 130, =0, kz2", '
< Clo® V1m0, 277V, k<20, jz0.

Every A € A, o generates a decomposition f = Z 2Uf of the power series of f & D',

into polynomials. Now we can introduce the qua51 norms of Littlewood-Paley type

(25) ”f BS:4p g+ = ll{zjs;t(j)f} “lq(L,,) ’ 0< p é ©

(2:6) 1/ lpetp e = 122290 Ly, O <P < o0,

where in both cases we admit 0 < g < 00, —0 < s < 0. In the following we shall
deal with these ranges of parameters for the B , .- and F} ,  -spaces, respectively,

if not stated otherwise. Furthermore, we fix

Psqs+ 2

max (1/p, 1/q, 1) — 1 for the spaces Fj 4 -

(2.7) _ {max (1/p,1) — 1 for the spaces B;
. 0 =

Lemma2.1. Let X be any one of the spaces I,(L,) or L,(1,) and suppose AcA;, A€A, ,
with a, & > o where a, is defined in (2.7) with respect to X. Then for the above
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described range of parameters p, q, and s we have

(2:8) {27297y = €

Ale [{272921 | fe Dl
whenever the right-hand side of this inequality is finite.

Proof. By the assumption on A, 4 we get (j = 0)
2] = 2IF(Y1IDf) = § 20D (2is; D)
and, according to (1.11), it follows that

2RO £ 205 TGEQEOS) () [z,
jtr+1

(here Y stands for Y where r depends on A, see (2.2)). Therefore, ine-

i=max(0,j—r—1)
quality (2.8) is a consequence of theorem 1.2. The constant C in (2.8) depends, in
general, on p, ¢, s, o, & and r. In the following we do not examine the dependence
of the constants on the parameters if this is not necessary.

Lemma 2.1 makes the next definitions clear. We set for 0 < p, ¢ £ 00, —®0 <
<s< o

(29) pq + {fe D/ l BSp,q,+ inf ”f BsAp q,+ < OO}
A€dq,0
a>ag

(210) F;.q, fe DI I FSp,a,+ = lnf ||f FSAP.q.+ < (X)}
Aedq,0
a>ag

(in (2.10) we again exclude p = o0). These are the spaces considered in the present
paper.

Theorem 2.2. Let X be any one of the spaces (2.9),(2.10). Then X is a quasi Banach

space with the quasi norm ||-|x (a Banach space iff y = min (1, p, q) = 1) and
dy(f,9) = |f — g|i f.9€X, defines a translation invariant complete metric
on X. Furthermore, H “xz’ is an equivalent quasi norm in X whenever AeAi,O,
o > Ao

Proof. The latter statement follows by lemma 2.1 and the definitions (2.9), (2.10).
We have ||f]x < |f]|xx £ C| 4] || /] x and it remains to take the infimum over all
A€ A, 0> .

The other assertions are elementary, we give an outline of the proof of the com-
pleteness, only. Let {f,} < X be a Cauchy sequence and A € A4, o, « > . Then, for
arbitrary g, s, the sequences {2f,} consisting of polynomials of degree < 2/*! are
fundamental in H, for any fixed j = 0. Therefore, there exists a fe D', for which
{29 1,(e")} converges in C(—m, m) to 2P f(e) for every j = 0. Now the proof of the
convergence of {f,} in X (to f) is obvious.
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Theorem 2.3. Let X be any one of the spaces (2.9),(2.10)and y = {y,}, n = 0, a se-
quence of complex numbers.

a) If there exists some A€ A, o, & > ay, for which yA = {yA} belongs to some
Az, & > 0, then y is a multiplier for X. More precisely,

(2.11) [/ lx = Clpala /], fex.
b) If m > w, is an integer and y satisfies the condition
2i+1

(212) [Vl + sup 3 JAm* 1y 2 < oo,
jz0i=2

then y is a multiplier for X. In particular, (2.12) is valid whenever y € bv, ;. o = m.

Proof. (2.11) is a direct consequence of lemma 2.1. The assertion from b) follows
by a) and the properties (1.12), (1.13) of differences. We fix some 4,, (for definition,
see (2.4)). Because supp 2§’ < {2771 +1,...,2/*1}, j = 1, we have according to
(1.13)

2j+1
e, = €27 T AGi)] <

m+1 27+1
=coymy > ]AMH_%;},)HII IAI?kI .
1=0k=2i"1-m
The above mentioned properties of A} yield
i+t

2
[74,]m = € sup {2470 ¥ JAWJ} + [7].)-
j=0,1,... k=2J

J

51,

I=1,...,m+1

To see that the quantity in the right-hand side is finite we use (1.12) and (2.12). For
I = m we have

2J+1

n—1
A"y — Amp | S T Ay S Y Y ATyl <
i=k

J:2dF> g =24

<c ¥ 2m<ck+1)™, n>kz0.

j2dTisk
Hence (A™y,) is fundamental. It is obvious that lim A™y, = 0 (otherwise we should
n—*oo
obtain a contradiction with y € [,). This yields

2J+1 2J*1

2D Y [Amy | < €20y (k+1) "< C<o, jZO,
k=24 k=21

analogously we estimate for [ = m — 1,..., 1. The case I = m + 1 immediately
follows from (2.12). Thus, we have ||yA¢||,,, < oo under the assumption that (2.12)
is valid. On the other hand, if y e bv,,1, ® = m, then y € bv,+1. This obviously
yields (2.12).
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Remark 2.1. Part b) represents a multiplier theorem of Marcinkiewicz type (for
the classical result, see [25, v. 2, ch. 15] or [1]). It is not clear whether there exists
a suitable extension of (2.12) to non-integer « > «,. However, in this case we can
show that y is a multiplier for X if y € by, ;. Since for our purposes it is sufficient to
have theorem 2.3 we omit the more technical proof of this assertion.

Now we introduce the special multiplier operator

(2.13) Frey=Yn+1)*tce™, —ow<p<ow, feD,
nz0
which is closely related to fractional integration (8 > 0) and differentiation (8 < 0).

Theorem 2.4. Let X* be any one of the spaces B, , ., F5 , . from(2.9),(2.10). Then
the operator J? yields an isomorphism from X° onto X**P, more precisely, the
restriction of J? 1o X* is a one-to-one mapping onto X***, and || J’f

valent quasinorm in X°, —o0 < f < o0.

xs+8 IS an equi-

Proof. This is a consequence of (2.1 l) if we can show that
[2DP0 |y, SC27, —0 < B <o, A€A,,, mj20.

Observing that IA’{(n + 1)"’}] SCn+1)**" nz=0, and using (1.13) we
obtain

2i+1
2 o £ €273, A 00+ )70 5
m+1  20+1 " NI
< Cc2im 2B EmEI= A <
- l=zl k=ZJZl—m | : l B
m+1
é C2_j/1 Z ||)"(j)”l§u;l é Czujﬂ“A”m, maj g 0
1=1

Thus, the theorem is proved.

Finally, it should be mentioned that further properties such as duality, inter-
polation, imbeddings, etc. of the spaces B}, , .+, Fj 4,4+ can be established analogously
to the case of spaces defined on R” (cf. [10], [21—23]). These topics as well as an
extension of our considerations to the n-dimensional torus will be considered else-
where.

3. EQUIVALENT QUASI NORMS (MEAN VALUE PROPERTIES)

In the remaining sections of this paper we deal with various equivalent quasi norms
and representations of the spaces defined above in (2.9), (2.10). Let us introduce the
spaces

(3.1 Byt . = {fe Dy |f

BBy q,+ =
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1 1/q
= {f (1 —r)"a+9-1 M ,(J*f, r) dr} < oo} , 0<p=o
0

Fsibpq,+ =

1 . 1/q
B “{j (1= oo™ [y et d’}
V]
where —0 < s < w0, f+ 5 <0,and 0 < g < 00. For g = o we have to modify
the definition of the quasinorms by setting |f = sup (1 — r)" ¢+,
o<r<1
.M (J*f, r), and |f s, = | sup (1 —r)7¢* IJ”f(re")l [, respectively.
o<r<1

(3.1) coincides with the definition of the Lipschitz spaces HA(s, p, q) investigated
by T. M. Flett [6] if § = —s — 1. The functions

1 : q
(33) gl = { j (1 = ) 90+9-1 | g7 dt}” B+s<o0,
0

(3.2) i = {fe D, :[f

<oo}, 0<p< oo,
Lp

Bs.B

Py®o,+

appearing in (3.2) are appropriate generalizations of the Littlewood-Paley function
(see [25, v. 2, ch. 14])

(4) o) ={[[0 - 0 reep (e,

Theorem 3.1. For the above described ranges of parameters p, q,s and p + s <0
we have

(3.5) B B3?

= s — ESB
pa,+ T Tpg,t o Fp,q,+ - Fp,q.+

with equivalent quasi norms.

Proof. We fix an integer « > o), and A€ A,, Furthermore, we choose
A€ A, satisfying I = 1 if nesupp 2D, j = 0 (e.g., one can take 1) = z0-D 4
+ A9 4 0TD),

First we show the imbeddings

S, s, A Sy
(3.6) Bp,‘;,Jr QG Bya.+ F;’fzﬁr G FPy/‘;Hr :
According to (1.11) for fe D), and j = 0 it follows that

27+1

| X 1()‘f-j)'"_"(n + 1) ((n + 1) c,r"e™)

n=2J-"1+

l/“(j) f(c")[

=

I\

[{2:7r="(n + 1} ]
2
(3. means that we have to write )’ for j = 0).
n=0

boas s O%(J7 [(re"))
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The bv,, ;-norm of {A{r"(n + 1)’} can be estimated by using (1.13), this gives
G970+ 1P, S €20 2P|,
(the details are omitted). Therefore, for re A; = (1 — 279, 1 — 277717, we obtain
(3.7) 2579 fe')] £ € 274 o%4(JP f(re), j2 0.

For the B?

p.qt+

-spaces (3.7) together with theorem 1.2 yields
Hf Bs»4p q,+ é C”{2i(ﬂ+3) a?l‘(‘]ﬁf(rjeil))}l"q(Lp) é

=C29*9 MyIf, 1), = CIL = 7)™ M, 1)),

where r;e A;, j 2 0, are arbitrary. If ¢ = oo this is already the desired result. For
0 < g < oo we choose r; € A; in such a way that

M, < 290 j M, dr, 2 0.
Aj
Thus it follows that

q/1
Boaay g s < C{Z 21’(13+s)q+1J\ Mp(Jﬂf, ,.)q dr}
Aj

jzo

IIA

cls

Ir

BSfpq,+

In the case of the F}, , , -spaces we use besides of (3.7) and theorem 1.2 an additional
consideration: We have

G, =

I

N
Fsidp 04 = “{ Z 2Jdsap —1 Z |)~(j)f(e“)
jz0 n=1
. N 4
S LT 29" N % A (1, ) s, <
jgo n=1

N
< C”{ Z 2iB+s)a N1 Z |Jllf(rjmeit)|q}1/q”Lp ,
jzo n=1

where r;, =1—277+277"'gN"!, n =0,1,...,N, forms an uniform partition
of A; into N parts, N = 1, j = 0. As one can easily see for N — oo this yields

1/q
Foty e = CN{'ZOZKMH)H)I |J"f(re“)["dr}
2 .

Aj

<

s

Lp

= C|s

Foby g s s 0<g<m.

The changes in the case ¢ = oo are obvious. Thus, (3.6) is established.
The proof of the inverse imbeddings

(3:8) Bya+ QBYa+ s Fyaw QF s
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is based on the estimate (see (1.11), (1.13))

25+1 . ‘
(39) lJ”f(reit)l — lz Z/ (Zf,j)r"(n + 1)-[}) (;».E'j)cne"” é
jz20 n=2J"14+1

S 3 A1) )]

by + 1 G;(A(j)f) (eit) é

CY ' 2 e (i0) (@), 0<rs1, —wo<f<oo.
jz0

IIA

Considering the Bj , ,-spaces it follows from (3.9) and Theorem 1.2 that
(3.10)

M (J’fry £ CY. P29 2—1:«1;'“(,;(,107)”1‘7 <
iz0

<c z p207 % 2'”””1(!.)/'”1‘, , 7y = min (1, p)
5o
and '

1/q
e I K e o el
et 0 izo

1 1/q
KJ‘ (1 — r)—q(ﬂ+s)—1(z rzj'qu—ﬂqj”l(j)sz,,) dr) , 0<qg=<y
0 Jjz0
l(Jq(I __ r)—q(l}+s)—-l ( Z r21‘2y2*v(ﬂ+sn’)qu—1 .
0

Jjz0

1/
. (Z r21—2y2(sq—(ﬂ+s)v)in A(i)f”‘ip) dr> ! , Y<qg< ™.
jz0

In the next steps we use the elementary inequalities (6,e > 0)

1
(3.11) Ja Cpiethdr < C2RL 20,

C

IIA

(=]

P2l -7, 0<r<l1.
0
Hence, for 0 < g < y we continue with (3.11)

I

N

J

BS:4p.q,+ 2
iz20

ptp e S C(T PO M2 MOF0 < Ol

and in the case y < g < o we have

I

<

1 1/q
By g <cC (J (1 _ r)-v(ﬂ+s)—1 Zorlf‘z 21'(511—(ﬂ+S)v)”,1(j)f”'ILP dr)
0 Jjz

< (3 290+ it | 00f |4 W < | f

jz0

Bs:Ap g4

If g = oo then from (3.10) we obtain
|/

I;s,ﬁ,, _, < Csup (1 _ r)-(p+s)y z P24 2—(ll+s)w'“f“BLAP,eu .
o o<r<1 jzo0
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Now it remains to make use of (3.11). Thus the first imbedding in (3.8) is established
in full detail.

For the F;, , ,.-spaces the considerations are analogous. We restrict ourselves to
the case 0 < ¢ < 1. According to (3.9), theorem 1.2, and (3.11) it follows that

1 q
s = € [{[ (0= nwreama(g e 2 mapon ey o ”

<

Lp

=C

Y
Jjz0

{Z 271i(65%(29f) (e"))qj (1 — p) a1 ,207% dr}”q

Lp
< ) {27639 (€W epap = €IS
(3.6) and (3.8) show the assertions of theorem 3.1 (see theorem 2.2).

FsiAp g+ *

Remark 3.1. Instead of J’f it is sometimes more useful to deal with the usual
derivatives of f. For example, in the same way as above we can show that for k > 0
and s < k the quantities

(3.12) ”f Boy s =k§|f(l)(0)| + {JI(J - r)‘l(k—s)—l Mp(f(k)’ ) d,.}l/q
1=0 0
and
(3.]3) ||f Fodey s = S f(t)(o)l + H<J’1(1 - r)q(k—s)—l|f(k)(,.eit)lq d;~)”"
0 Lp

(0 < g < o0, modification if g = oo) are equivalent quasi norms in B;, , ; and F;
respectively.

The most interesting case in (3.13) is ¢ = 2, s = 0, k = 1. Taking into considera-
tion (3.4) we obtain for 0 < p < o

(3.14) Clflroyz,e = lo*[en + 17O = Cf oy 0,0 > S Fp2

From (3.14) and known results concerning the Littlewood-Paley function g*(e'’)
(see [25, v. 2, ch. 14], the inequality || f|x, = C(|g*|., + |[/(0)]), 0 < p < 1, seems
to be established only in the case of analytic functions f(z) without zeros in the unit
disc (cf. [4]) but can be obtained by the methods developed in [3] for Hardy spaces
on R") it follows that

p,q,+>

p» 0<p< oo,

(3.15) F,+=H

with equivalent quasi norms. (3.15) is an extension of classical Littlewood-Paley
results on equivalent norms in L, and H,, 1 < p < oo (cf. [25, v. 2, ch. 15]) to the
case 0 < p = 1.

Analogously, we have (see also theorem 2.4)

(3.16) Fyae = Hy = {fe Dyt |flue = I ]u, < o}

for the Hardy-Sobolev spaces (0 < p < 00, —00 < 5 < ).
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4. EQUIVALENT QUASI NORMS (DIFFERENCES, APPROXIMATION,
STRONG SUMMABILITY)

Let fe H,, 0 < p < 0, and denote by f(e'*) the corresponding boundary value
distribution. The moduli of smoothness of order m = 1 of f are defined by

(4']) wm(f’ t)p = S,,ug ”Al'i”f(eix)ulp ’ O<t=m ’

where A}'f(e™) represents the usual m-th difference of f(e'*) at ¢ = x with step .
We introduce the best approximations

(4.2) aﬁ%:mHV—mhw11@=im#,ngm
Pn k=0

by polynomials of fe H,, 0 < p < c0.
The spaces By , and %, , , are defined as subspaces of H,,0 < p < oo, for which
the quasi norms

@3) Sl s s = |, + { f (M)tl d,}”", 0<s<m,
0 r

and

(4~4) ”f By g+ ”f”ﬂ,, + {kgof’s" Ezk(f)"}”", 0<s<oo,

(0 < g < oo, modification if ¢ = o0) are finite.

Theorem 4.1. Let 0 < p, g £ o0, m = 1. Then the representations

(45 B,,.=B"

S
p.q,+ p.q,+ > 0<S<m’ B

v+ = B, 0<s<oo,

p.q,t >

hold with equivalent quasi norms.

Proof. We are concentrated upon thecase 0 < p < 1 (ifl < p < oo one can work
in analogy, see also [8]). The relation By , = %5, ., 0 < s < m, with equivalent
quasi norms, follows by standard methcds from the recently obtained Jackson type
inequality for H, due to E. A. StoroZenko [16, 17] and known inverse inequalities
for trigonometrical approximation in L,, 0 < p < 1 (see [7, 9, 18]). Thus, we only
have to show the second equality in (4.5). Let P be the polynomials of best approxi-

mation in H, i.e.
”f - PIT”}’,, = Hf(e“) - P:lk(e“)“Lp = En(f)p > n ; O’

for given fe %, .(QH,), s > 0. According to (1.11) and theorem 1.2 we obtain
for A€ A, o, & > 0y, that

7 lpnae S 125290 = P}l < Clle (27030 = PE-D} i <
< Al 250 = Ph-Ylun < CIf

where P;;-: = 0 for j = 0.

Bp,q,+
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On the other hand, for 0 < ¢ < oo we have

Wl 157900, + 1 5,201 £ 20012, 5
o jz0 kz0 JZk

< C{k;)zk‘ﬂ( ‘;, 20|z yeyiie <

(Z2 % 1201L)" a=sv
2 iz

( Z quS( Z 2—i7')q/p— 1 ( Z 2dva/p- 1)”;}1‘)]’”‘,1‘”))1/4 , g>7p,
k=0 Jjzk Jjzk

lIA

C

where y > 0 is an appropriate real satisfying gs — y(g/p — 1) > 0. After changing
the order of summation we obtain the required estimate <C|f||gs.4,, ,. The proof
is analogous if ¢ = oo. Thus, theorem 4.1 is completely proved.

In the last part of this paper we deal with some properties of strong summability
of power series. Recently, the following result, among others, has been established
by H.-J. Schmeisser, W. Sickel [12]: Let S, f(e'*) = ay(f) (¢"), n = 0, be the partial
sums of the power series related to f e D’,, then the quantity
(4.6) G+ 17 (") = S/
yields an equivalent quasi norm in F, ., if 1 <p <00, 0<¢g < o0, and s > 0.
An analogous statement holds for B}, , ., as well.

Loty + 1/,

Naturally, there arises the question whether this result can be extended to the case
0 < p < 1. Using summation methods of Vallee Poussin type we give an affirmative
answer to this problem.

First we consider a special case. Let

2n—-1 2n—1
(4.7) Vof(e) =n"1 3 S f(e") = ) mmene™, n=1,
k=n m=0
where
1, m=0,...,n—1
Mw=1<2—m/n, m=n,..2n
0, m=2n+1,...

is the classical Vallee Poussin means of a function fe D’, for the sequences 1" =

= {nh}, m = 0, we have

(4.8) ”’7"“1702 = n|A2’7:—1| + 2'1|A2’7;n—1| = 3 s n g 1.

Thus, defining 4 = {19} by ¥ = 4' and 29 = »*’ — p*’™" for j = 1 we obtain
A€ Ay . Theorem 2.2 shows that

(49) ”{zjs(szf - sz-lf)} ”Lpuq) , feD}
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(for j = 0 we should set ¥V, f in this expression) is an equivalent quasinorm in Fpo+
if12<p<o0,1/2<g=o0,and —0 <5 < 0.

In the following we restrict ourselves to s > 0 and f € H,, (it should be noted that
F, .+ CQH,fors > 0). Then a standard consideration yields that

(4.10) 127(f(") = Vas-s f(@ W |y » SEH,»

is an equivalent quasinorm to that in (4.9) (and, therefore, to the F; , , quasinorm)
for the above described ranges of parameters (for j = 0 we set f(e'’) in the expression

(4.10)).

In order to obtain from (4.10) the desired quasinorms we can use the estimate

) = Vuf (@) = [(1 = 1) (/ = Varif) &) < 3030 = Varr ) (€9)

where n = 2/, ..., 2/*" — 1, j 2 0 (modification if j = 0). This follows from (1.11)
and (4.8). Now Theorem 1.2 gives

WG+ 07 (fE) = Vs an =
< C|{2%0ulf = Vas- i a9 = CI25 = Vas- N L
for the parameters as above. The inverse inequality can similarly be shown by using
) = Vas (@) = (1 = 1) (F = Vi) (&%) < 36LS = Vaf) (&),
n=2"241,.,2"1 j=2.

An analogous consideration holds for the spaces B3 Thus, we have established

the following

pig,+"

Theorem 4.2. a) If 1/2 < p £ 0,0 < g £ o0, and s > 0, then
(4.11) ey + {2 1S = Vsl 3

is an equivalent quasinorm in By, , ..

b) If 12 <p < 0,12 < g =< 0, s >0, then
(4.12) Ul + BE ) = Vas@le} ),

is an equivalent quasinorm in F, , ..
In the above proof of theorem 4.2 we only used the special properties (4.8) and
nm = 1,15 = 0for m < n, m = 2n, respectively, of the Vallee Poussin means. Thus,

the following statement is obvious.

Theorem 4.3. For a function ¢(x)e C*(0, o) with the properties ¢(x) =
x €[0, 1], and supp ¢(x) <= [0, 2] we introduce the means

(4.13) V2 f(e'") =Y o(m[n)c,e™, nz1, feD,,
nz0
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of Vallee Poussin type. If s > 0 then the quantities
(@14 Ul + (5701 = verlg e

(4.15) 702, + N{gln“"’!f () = V2L

yield equivalent quasi norms in B}, (0 <p, q < o) and Fy, (0 < p < oo,
0 < g < ), respectively.

Remark 4.1. It should be mentioned that the means (4.13) have excellent ap-
proximation properties. E.g., if fe H, = Fg,2,+, 0 < p < oo, then

(4.16) Evvs(D £ 1 = Vlln, < CE(p),. nz1.

This immediately follows from the above considerations and (3.15). It would be of
some interest to investigate in more detail approximation and summability properties

in the spaces B, , ., F} , 4+, especially, for 0 < p < 1. In this connection we refer

to [4], [16]. [20].
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