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1. INTRODUCTION

Ancochea [1] was the first person to consider ‘‘semi-automorphisms” of an
algebraic structure: he defined a semi-automorphism of a ring R to be an additive
bijection ¢ : R — R satisfying

(1) (ab) ¢ + (ba) ¢ = adbd + bdad

for all a, b e R, and noted that such mappings arose in connection with certain
problems in projective geometry. He proved that if R is a simple algebra that is finite-
dimensional over its centre F and char (F) # 2 then every semi-automorphism of R
is either an automorphism or an anti-automorphism. In [10] Jacobson observed
that any such algebra R leads in a natural way to a simple Jordan ring R*, and that ¢
is a semi-automorphism of R if and only if ¢ is an automorphism of R*; he then
deduced Ancochea’s result from an investigation of the automorphisms of simple
Jordan rings in general.

For any ring R containing an identity 1, Kaplansky [13] defined a semi-auto-
morphism of R to be an additive bijection ¢ : R = R such that

(2) 1¢ =1 and (aba)¢ = adpbdad

for all a,beR. Since in any ring ab + ba = (a + b)*> — a> — b?, any semi-
automorphism in this latter sense satisfies (1); the two concepts are equivalent when R
has no elements of additive order 2, as can be seen using the identity:

2aba = 4(a + b)® — (a + 2b)* — 3a® + 4b> — 2(a®b + ba?).

Using his more restrictive definition, Kaplansky showed that every simple algebra
with finite dimension over its centre F (without any condition on the characteristic
of F) has the property: any semi-automorphism is either an automorphism or an
anti-automorphism.

For convenience in this paper we shall say that any algebraic structure with this
last-mentioned property ‘‘has disjunctive semi-automorphisms™, it being understood
from the context in what sense ‘‘semi-automorphism” is to be taken. The qualification
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“disjunctive” will also be used in connection with ‘‘semi-homomorphisms” and
“‘half-homomorphisms” to be defined below.

Dieudonné ([4] pp 16—17) applied Kaplansky’s result in his description of the
automorphisms of GL(2, K) for any division ring K with char (K) = 2 and finite
dimension over its centre. Hua [9] provided an elementary proof showing that
division rings always have disjunctive semi-automorphisms in the sense of (2), and
then used this result and his classification of the automorphisms of SL(2, F) for any
field F to determine the automorphisms of GL(2, K) for any division ring K ([4]
Supplement, pp 96—101).

If R, S are rings (not necessarily with identity) by a semi-homomorphism ¢ : R — S
we mean an additive mapping satisfying

©) a*¢p = (ap)*> and (aba)¢p = apbpad

for all a, beR. Jacobson and Rickart [11] generalised Hua’s Theorem to read:
every semi-homomorphism from a ring into an integral domain is a homomorphism
or an anti-homomorphism. To do this they observed that in any ring

abc + cba = (a + ¢) b(a + ¢) — aba — cbc,

and consequently for any semi-homomorphism ¢ of rings

[(ab) ¢ — adb¢].[(ab) ¢ — bpad] = 0.

If R, S are arbitrary rings by a half-homomorphism ¢ : R - S we mean an additive
mapping such that for all a, b € R,

(4) (ab) ¢ equals either a¢bdp or boad.

The above-mentioned generalisation now follows from Hua’s Lemma ([11] Lemma
1): every ring has disjunctive half-homomorphisms. For another account of these
ideas see ([12] pp 110— 111, Exercises 7— 10).

Jacobson and Rickart also showed in [1 1] Theorem 8 that if R is a “locally matrix
ring” (that is, a ring in which every finite subset can be embedded in a full matrix
ring M,,(S) for some ring S and some n = 2) then every semi-homomorphism of R
is the sum of a homomorphism and an anti-homomorphism (where “‘sum” is taken
in the sense that if ¢ : R > T then T= T; @ T, and there exist ¢; : R —» T; for
i =1,2 such that ¢ = ¢; + ¢,). It easily follows from Litoff’s Theorem: simple
rings with minimal one-sided ideals are division rings or locally matrix rings (compare
[11] page 490) and Hua’s Theorem on division rings, that simple rings with minimal
one-sided ideals have disjunctive semi-automorphisms in the sense of (3). However
Jacobson and Rickart extended this result to primitive rings with minimal one-sided
ideals (compare [11] Theorem 13) and considered conditions (on the ideal structure
of the associated Lie rings) under which every semi-homomorphism from a ring onto
a primitive ring with minimal one-sided ideals is a homomorphism or an anti-
homomorphism ([11] Theorem 21).
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In 1951 Dinkines suggested that just as ‘‘ring-theoretic semi-automofphisms” in
the sense of (2) had been useful in determining the automorphisms of certain classical
groups, a similar concept for groups may also have fruitful applications in the area
of, for example, permutation groups. In [5], she proved:

Theorem 1. If |X| = 5 then every non-trivial normal subgroup of Sym (X) has
disjunctive semi-automorphisms,
and conjectured that ‘‘every simple group has disjunctive semi-automorphisms”
(for the normal subgroups of infinite symmetric groups see [16]). Subsequently
Herstein and Ruchte [7] simplified Dinkines’ proof and showed that every non-
abelian simple group possessing an element of order 4 has disjunctive semi-auto-
morphisms. We note in passing that PSL(2, ) is simple for g > 3 ([16] Theorem
10.8.4) and contains no elements of order 4 whenever g is odd and x* = 2 has no
solution in GF(q) ([23] Exercise 1V.8). Moreover, in view of Euler’s Criterion: 2 is
a quadratic residue modulo an odd prime p if and only if 2¢~Y/2 = 1 (mod p), and
the proof of Theorem 4(5) in [2] pp 295—296, this latter condition holds for an odd
prims ¢ precisely when ¢ = 3 (mod 8) or g = 5 (mod 8).

Scott [17] generalised Theorem 1 in a different manner as follows:

Theorem 2. If X is infinite then every subgroup of Sym (X) containing Alt (X)
has disjunctive semi-automorphisms.

Since the automorphisms of any infinite permutation group G containing Alt (X)
are known to be inner (see [16] Theorem 11.4.6 and [21] Theorem 2), the above
result provides a complete description of the semi-automorphisms of G.

We now return to half-homomorphisms in the sense of (4): in [15] Scott proved
that cancellative semigroups have disjunctive half-automorphisms and deduced that
groups have disjunctive half-homomorphisms; he also provided an example of a non-
cancellative semigroup with a proper half-automorphism. Later Sevrin [18,19]
observed that the concept of “‘half-isomorphism” arose naturally in connection with
the problem of deciding when two semigroups have isomorphic subsemigroup-
lattices; in [19] he generalised Scott’s work to read: any half-isomorphism ¢ : S - T
from a cancellative semigroup S into an arbitrary semigroup T is either an iso-
morphism or an anti-isomorphism.

2. SEMI-AUTOMORPHISMS OF SEMIGROUPS

Notation will be that of [3], [16] and [20]. In particular a transformation semi-
group S is any subsemigroup of 2y and K(S) denotes all the constants of S with []
adjoined. Moreover, we say S covers X when for each x € X the semigroup S contains
a constant idempotent (denoted by A, for some 4 = X ) with range {x}. Any bijection
¢ : S — S such that (aba) ¢ = apbpa¢ for all a, be S will be called a semi-auto-
morphism of S. Symons [22] has shown that if S is a total transformation semigroup
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that covers X then every semi-automorphism of S is an automorphism (and hence
“inner” by [20] Theorem 1). We shall show that a similar conclusion holds for any
2-transitive (partial) transformation semigroup with a stronger covering property.
Our first result in this direction is comparable with [14] Lemma 2.4.

Lemma 1. If S is a transitive transformation semigroup covering X and . € S
then A is a constant if and only if A # [ and Aak equals A or [] for each o € S.

Proof. If A # [J choose xedom 4, yeran4, a€ S with yo = x and A,e S
with x € 4. Then ¢4, = f (say) maps y to x and A4 # [J. Hence A = A4 which is
a constant. The converse is obvious.

If ¢ :S — S is a semi-automorphism of an arbitrary semigroup S = S° and if
a¢ = 0 then 0¢ = (0a0) ¢ = 0¢.0.0¢ = 0 implies that a = 0; we shall use this
fact in what follows.

Lemma 2. If S is a transitive transformation semigroup covering X and ¢ is
a semi-automorphism of S then ¢ maps K(S) onto K(S).

Proof. Let x € X. Choose A, € S and put A,¢ = A (in which case A # (). If
aeSand « = f¢ then Aul = (A, . p. A,)pwhere A, . p. A equals A, or []. Hence
for all @ € S, Axd equals A or [J in which case A must be a constant by Lemma 1.
To complete the proof we simply note that if ¢ is a semi-automorphism of S then ¢ ~*
is also.

Symons’ result can easily be deduced from the above Lemma. However to consider
semi-automorphisms of partial transformation semigroups, we need the following
definition: S is 2-transitive on X if for all distinct x, y and distinct a, b in X there
exists o € S such that xa = a and ya = b.

Lemma 3. If S is 2-transitive and contains all the total constants and ). € S\ []
then 2 is a total constant if and only if A = 13 and for all a € S, alo. # [ implies
Ao = A

Proof. If aedom A then X,.2.X, # [] implies A = A.X,.4, a constant C,
(say). Let x e X \z and choose o€ S satisfying zo = x, xa = z. Then ala # [J
(since A = A% implies z € C) and so A = Aal; it follows that x e C and so C = X as
required. The converse is obvious.

We shall say that S extremally covers X if S contains all the total constants X,
a € X, and all the injective constants a,, a, b € X.

Theorem 3. If S is 2-transitive and extremally covers X then every semi-auto-
morphism of S is an inner automorphism.

Proof. By Lemmas 2 and 3, for each semi-automorphism ¢ of S we can define
g € Sym (X) such that

ag = b ifand only if X, = X,.
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We now assert that for all a, beX, a,¢ = ag,,. For, suppose A.¢ = c, and let
ze A. Then

X.p=(X,.4,.X)d=X,,.c,. X,

so that zg = ¢. Thus 4 = {z} and since ¢ ™' is also a semi-automorphism we have
ay,$ = ag, for some d € X. Hence

ayp = ayd . b,d . ayd = ag, . by, . ag,

for some e € X and we have d = bg as asserted.
From this it follows that if C, € S then C,¢ = D,, for some D < X. For, ifceC
then
a.p = (ac. C,. ac) ¢ =ag.,.D,.ag.,

for some y € X and D < X; thatis, y = ag as required.
Now let « € S and a € dom a. From the preceding remarks we have

O“b . Xag.a¢ = (‘x'Xa . “)d) = Caz¢ = Caazg

for some C = X, and so (dom «) g = dom (x¢). A converse argument using ¢~ *
establishes equality, so that a¢p = g~ log for all w € S.

To obtain a result for transformation semigroups that is closer to Dinkines’ original
work on permutation groups we now restrict our attention to £y and note that the
mapping 0 : £y - Fy, 0. — o~ 1, is an anti-automorphism of £y. Moreover, if ¢ is
a semi-automorphism of any inverse semigroup S then a™*¢ = (a¢)™* for alla e S.

Theorem 4. If S is a 2-transitive inverse subsemigroup of Sx covering X then
a semi-automorphism of S is either an automorphism (in which case it is inner)
or an anti-automorphism (in which case it is the composition of 0 and an inner
automorphism).

Proof. Let ¢ be a semi-automorphism of S. By Lemma 2 we can define g € Sym (X)
by '
xg =y ifand onlyif x.¢=y,.

Suppose x # y and x,¢ = a,. If a # xg and b # xg choose A€ S with (xg) A = a
and bA = xg. If a¢p = A then, since A is 1-1, we have
X =xg,=A.ay. A= (t.x,.0)¢,

and so yo = x, &.X,.% =y, = x,, a contradiction. Hence either ¢ = xg or b =
= xg; since x # y and y,$ = b, we therefore conclude that x,¢ equals xg,, OF g,
in the first case agp = g~ 'og for all @€ S and in the second ag = g'l(ae) g for all
aeS.

For, suppose X,¢ = xg,, for some x # y in X and let ze X\ {x, y}. If x,¢p =
= zg,, choose A € S so that (xg) 1 = xg, (y9) A = zg and let ap = A. Then

Ve = ¥y, = A 20x- A = (2. x,.0) b
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and so za = x = yu; this implies y = z, contradicting the choice of x, y, z. Hence
x,¢ = xg,, for all ze X. Now suppose distinct a, b € X \ x and a,¢ = bg,,. Choose
pe S with (xg) u = bg, (ag) p = ag and let f¢ = p. Then

xa¢=Xgag=:u'bgag'l’t=(ﬁ‘aﬂ'ﬁ)¢

and so b} = a = xf3, a contradiction. We have therefore shown that either a,¢ =
= agy, for all a,be X or a,$p = bg,, for all a, be X. In the first case let x € S,
bedoma, aeran o and xa = a. Then

ad’ . agbgar¢ = (O( < dp - OC) ¢ = xba¢ = xgbag

and the argument is completed as in the proof of Theorem 3. For the second case
put oy = g.ag.g ! for all e S: we have to show that = 6. To do this note
that with the above notation

W - bayy = (. ag. @) Y = xp0 = bo,

from which we obtain dom «™* = dom (a)) and the result follows.

Symons’ result and the foregoing Theorems 3 and 4 can be readily ap')plied to the
semigroups J x and &y (the semigroup generated by all the idempotents of F y:
see [8]), Zx and F (the semigroup generated by all the idempotents of 2y: see [6])
or to Sy.

3. HALF-FAUTOMORPHISMS OF SEMIGROUPS

If S is a semigroup, ¢ : S — S is a half-automorphism of S if it is bijective and for
all a, be S, (ab) ¢ equals either agbd or bdagp. Symons [22] has shown that if S
is a 2-transitive total transformation semigroup covering X then every half-auto-
morphism of S is an automorphism (and hence inner); he also gives an example of
a total transformation semigroup admitting a half-automorphism which is neither
an automorphism nor an anti-automorphism, but which nonetheless contains all the
total constants (and hence is transitive). We conjecture that Symons’ result can be
extended to any 2-transitive (partial) transformation semigroup extremally covering
X. Before stating a result providing some support for this claim we note that if
S = S°and ¢ is a half-automorphism of S then 0¢ = 0. For, if a¢) = 0 then (0. a) ¢
equals 0¢ . 0 or 0. 0¢, and this implies 0¢p = 0 and moreover a = 0 as required.

Lemma 4. If S covers X, ¢ : S — S is a half-automorphism and « is an idem-
potent constant in S then a¢ is also.

Proof. Let A, € S with x € 4 and A,¢ = A. Then A2 = 1 # [] and we can choose
y eran , B, e S with y € B, and put a¢ = B, (in which case a® = ). Now (4,x) ¢
equals A. B, or B, . 4, both of which are non-zero: hence x € dom a. If (4,%) ¢ =
= AB, = C, (say) then ye C, and xa € 4; thus, A = (4,,4,) ¢ equals C,A or AC,,
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both of which are constant. On the other hand, if (4,0) ¢ = B,2 = B, then « = A4, for
some z € A and the result follows as before.
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