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SEMIGROUPS AND RINGS WHOSE PROPER ONE-SIDED 
IDEALS ARE POWER JOINED 

A. CHERUBINI and A. VARISCO, Milano 
(Received February 9, 1983) 

The main result of the present paper consists in a characterization of semigroups 
whose proper one-sided ideals are power joined (Th. 1.6). A theorem of Pondëlîcek 
on uniform semigroups, contained in [3], is found again as a corollary of this result. 
Moreover, with regard to the fact that every one-sided ideal is a biideal (biideal of 
a semigroup S is a subsemigroup В of S such that BSB ^ B), Th. 1.6 provides also 
an answer to the question put in the Mathematical Reviews (82g; 20097) by the 
reviewer of the note [3]. The second section of the work contains a characterization 
of rings whose proper one-sided ideals are multiplicatively power joined semigroups. 

1. We start by proving some lemmas which will enable us to estabhsh the main 
theorem. We remember that by a power joined semigroup we mean a semigroup S 
such that a^ = b^ for every a, b e S and h, к positive integers (see [4], II.7.7). 

Lemma 1.1. A semigroup S whose proper left (right) ideals of the form Sb (bS) 
(b G S) are power joined is a semilattice of archimedean semigroups. 

Proof. Let a,b G S with a = xby (x, y e S^). Then a^ = {xbyx) by with z = 
= xbyx e S. If Sb = S, it follows that z = wb for some w e S, and therefore a^ = 
— zby — wb^y. If on the contrary, Sb c: S, since Sb is power joined, there are two 
positive integers h, к suchthat {yzb^ = Ь^ ,̂ audit results that â '̂'"̂ ^̂  = [iby)^""^ — 
= zb{yzby у = zb^^^^y. Thus in any case b^ divides a power of a, which suffices 
to conclude that S is a semilattice of archimedean semigroups (see [5], Th. 2.1). 

Lemma 1.2. A non archimedean semigroup S whose proper one-sided ideals are 
power joined is a semilattice of two semigroups M and S\M, where M is power 
joined and coincides with the greatest ideal of S, and S\M is a group. Moreover, 
S has an identity, which is the identity of S\M. 

Proof. By Lemma 1.1, S is a semilattice of archimedean semigroups, so it is 
Putcha's g-semigroup (see [ l ] , Definitions 1.1 and 1.4). Therefore it follows from 
Corollary 1.5 of [ l ] that S is a semilattice of two semigroups: M which is power 
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joined and the greatest ideal of S, and S\M. It remains to prove that .S \ M is 
a group, whose identity is the identity of S, In fact, if Lis a proper left ideal of S\M, 
it is immediate to verify that L u M is a proper left ideal of S, and therefore a power 
joined semigroup. But this is a contradiction, since power joined semigroups cannot 
be disjoint unions of proper subsemigroups. Hence S\M is left simple. In the same 
way we find that S\M is right simple. Thus 5 \ M is a group. Now, if и is the iden
tity of S \M, Su cz S implies that Su is power joined. Then, for every x e M, there 
exists a positive integer m such that (xw)'" = u, but this implies w e M, a contradic
tion. Thus Su = 5, and analogously uS = 5, which means that и is the identity of 5. 

Lemma 1.3. A non simple archimedean semigroup whose proper one-sided 
ideals are power joined is power joined. 

Proo f is immediate. 

Lemma 1.4. A simple semigroup S whose proper one-sided ideals are power-
joined has at least an idempotent. 

Proof. The lemma is obvious if 5 is a group. Otherwise, we may suppose that S 
is not left simple. Therefore, there exists a e S such that 5a с S. Moreover, S being 
simple, we have Sa^'S = S, hence a = xa^'y for some x, y e S. Since Sa is power 
joined, there are two positive integers /i, к such that (xa)^ = a^ ,̂ whence a = 
= {xa)ay = {xafay^'= а^'^^^уК Hence a^ = a^'^'^a^y^a with / a e 5a. Then 
there exist two positive integers w, n such that (У'а)'" = a^", and consequently, 
^2 _ (а^^-^у^а\у''аУ = a^^^-i^'"-'^^^". So 5 has an idempotent. 

Lemma 1.5. A simple semigroup S whose proper one-sided ideals are power-
joined is either a group or a left (right) zero-semigroup of two periodic groups. 

Proof. Since a simple semigroup with a unique idempotent is a group, we may 
suppose that 5 contains two idempotents e, /with e ф / (Lemma L4). First we remark 
that Se cz S implies e — {fef for some positive integer /г, since Se is a power joined 
semigroup containing e and fe. Hence e = fe. Analogously / 5 с 5 implies / = fe. 
Since e ^ f,v/Q have either Se = S ovfS = S. In the same way we find that necessari
ly either eS = S or Sf = 5. 

If 5e = ^5 = 5 or 5 / = / 5 = 5, the semigroup 5 has an identity. If, on the con
trary. Se = Sf = S [eS = / 5 = ,5), 5 has two right (left) identities. It is immediate 
to verify that in the first case 5 cannot have a third idempotent different from e 
and / . In the second case, every other idempotent is a right (left) identity. In both 
cases one of the idempotents of 5 is primitive (since their number is finite when 5 
has an identity^); since they are not comparable in the other case), so 5 is completely 
simple, i.e. 5 is a rectangular band of groups. This leads to a contradiction when 5 

^) S, being simple with order greater than 1, cannot have a zero. 
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has an identity, so all idempotents of 5 are right (left) identities. Now, let G^ and Gß be 
two maximal subgroups of S with G^ Ф Gß. From the fact that the idempotents of S 
are right (left) identities it follows that 5 is a left (right) zero-semigroup of groups, 
whence (G„ и Gß)S Я G^u Gß {S(G^ u Gß) ^ G^u Gß). Then, if G^u Gß a S, 
G^ u Gß has to be power joined, a contradiction. Thus G^^ Gß = S and S is a left 
(right) zero-semigroup of two groups G ,̂ Gß. Finally, G„ and Gß are periodic since 
they are proper right (left) ideals of S and consequently, power joined groups. 

Now we are able to state the following result: 

Theorem 1.6. Let S be a semigroup whose proper one-sided ideals are power 
joined. Then S satisfies one of the following conditions: 

i) 5 is power joined, 

ii) S is a group, 

iii) S is a left (right) zero-semigroup of two periodic groups, 

iv) S is a semilattice of two semigroups M and S\M, where M is power joined 
and coincides with the greatest ideal of S, and S\M is a group. Moreover, the 
identity of S \ M is the identity for S. 

Conversely, if S is a semigroup of type i), ii), iii) or iv), every proper one-sided 
ideal of S is power joined. 

Proof. The first part of the statement follows from Lemmas 1.2, 1.3 and 1.5. The 
converse is immediate. 

We recall that a semigroup S is said to be uniform if every two left ideals of S and 
every two right ideals of S have a non-empty intersection (see [3], p. 331). According 
to this definition, we may find again Th. 1 of [3] as a corollary of the above Th. 1.6. 
In fact, when S is uniform, the case iii) of the statement of Th. 1.6 can not occur, 
since the components of a left (right) zero-semigroup of groups are disjoint right 
(left) ideals, and the converse is obvious. 

Addendum. From the above Th. 1.6 and from Th. 4 of [7] the following Theorem 
can be immediately deduced: "S is a semigroup whose proper subsemigroups are 
power joined if and only if S is either power joined or a band of order two'\ This 
result extends Th. 2 of [8], which has come to the authors' knowledge when the 
manuscript was already sent to the Editor. 

2. In this section we shall prove a theorem for rings analogous to Th. 1.6. In the 
sequel we shall denote by (R, •) the multiplicative semigroup of a ring R. 

Theorem 2.1. Let R be a ring whose proper one-sided ideals are multiplicatively 

power joined semigroups. Then R satisfies one of the following conditions: 

i) R is a nilring, 
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ii) R is a ring with identity and (R, •) is a semilattice of two semigroups M 
and R\M, where M is a nilring and coincides with the greatest ideal of R, and 
R\M is a group. 

Conversely, if R is a ring of type i) or ii), every proper one-sided ideal of R is 
a multiplicatively power joined semigroup. 

Proof. Let i^ be a ring whose proper one-sided ideals are multiplicatively power 
joined semigroups. If (R, ') is archimedean, it has to be a nilsemigroup, since it 
contains the zero, and in this case Я is a nilring. Then, let us suppose that (JR, •) 
is not archimedean. We note that every left ideal of (R, •) of the form Rb (6 e R) is 
an additive subgroup of JR, hence it is a left ideal of i^. Analogously, every right ideal 
of (R, •) of the form aR [a e i^) is a right ideal of R. Therefore, by Lemma 1.1, 
(jR, •) is a semilattice of archimedean semigroups. Since [R, •) is not archimedean, 
it contains a proper prime ideal M ^) (see [ l ] , Th. L3). For every a, b e M, we have 
aR ^ M and Rb ^ M; hence aR and Rb are proper one-sided ideals of JR, so they 
are multiplicatively power joined semigroups. Since ab e aR n Rb, there are three 
positive integers h, k, I such that a^'' = {abf = b^K Thus M is power joined and, 
containing zero, it has to be a nilsemigroup. Then, Ш a e M, с e R\ M. lï Re a R, 
since Re and aR are power joined and ac e aR n Re, we may conclude as above 
that a^^ = ĉ ^ for some positive integers h, I. This is a contradiction, since a and с are 
in disjoint semigroups. Thus, for every CER\M we have JRC = R. Analogously 
we find cR = R. This implies that for every c, d e R\M there exist x, у e R such that 
d = xc = cy. Since x e M ( j e M) implies d еМ, г. contradiction, we have x, y e 
e R\M, which enables us to conclude that R\M is a, group. If и is the identity of 
R\M, the relations Ru = uR = R imply that и is the identity of JR. Thus it remains 
to prove that M is the greatest ideal of R. In fact, since (R, •) is a semilattice of 
archimedean semigroups, such that every element has a power in a subgroup, the set 
of all nilpotents of R is an ideal of R (see [6], Th. 8j, which obviously coincides 
with M. The maximality of M is guaranteed by the fact that JR \ M is a group. 

The converse is immediate. 

Remark 2.2. The class of rings of type ii) in the statement of Th. 2.1 contains all 
division rings; nevertheless it may be interesting to note that this class is wider than 
that of division rings. This is proved by the following example. Let R be the set of 
square matrices of the form 

[-']-'[:-;] 
(a, Ь real numbers; h complex; i = лУ —1). It is a routine verification to prove that JR 
is a ring with identity with respect to the usual sum and product of matrices. More
over, it is immediate to show that the subset M of Я containing the matrices 

^') Here and in [1] "prime ideal" means, following Clifford, an ideal / of a semigroup S such 
that 5 \ / is a subsemigroup. Such ideals are called "completely prime" by Petrich. 
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[.' -О 
is а nilring of order greater than 1 and it is the greatest ideal of R, while the subset 
î  \ M is a multiplicative group. So R is a ring of type ii) and it is not a division ring. 
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