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1. INTRODUCTION 

It is well-known that a sequential convergence space with unique sequential limits 
need not be separated (cf. [ l]) . J. Novak at the Kanpur Topological Conference 
asked whether each sequential convergence group (with unique sequential limits) 
is separated (Problem 12 in [2]). In [3] the following construction of sequential 
convergence groups (not necessarily with unique sequential limits) has been developed. 
Starting with a set Ä, the free Z-module G generated by A can be equipped with the 
smallest multivalued sequential convergence of the type L*, compatible with the group 
structure of G, in which a given set of sequences of points of G converges to the 
neutral element 0 of G. The fact that G is a free Z-module guarantees that the resulting 
convergence group has some nice properties. Using the same type of construction, 
in the present paper we give a negative answer to the question asked by J. Novak. 

2. PRELIMINARIES 

In this section we recall some facts about sequential convergence groups (see e.g. 
[2]) and the free Z-module technique from [3]. 

Throughout the paper Z denotes the group of integers, N the set of natural numbers 
(i.e. positive integers), N^ the set of all mappings of N into N and ^ the set of all 
increasing mappings in N^. Let X be an infinite set. If S = (x„) is a sequence in X 
(i.e. a mapping of N into X the n-ih term of which is S{n) = x„) and s e ^, then 
S о s denotes the sequence in X the n-th term of which is [S о s) (n) = х^(^,^у For 
XEX the symbol (x) denotes the constant sequence generated by x (i.e. (x) (n) — x 
for all neN) and [x] denotes the subset of X the only element of which is x. 

Let G be a commutative group. For S,TEG^ define {S + T) (n) = S{n) + T{n) 
and (— T) (n) == — Т(п), neN. Then G^ is a commutative group. Let (5 be a subset 
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of G^ X G satisfying axioms 
(^o) If {S, x) 6 Ĉ  and (5, y) e ©, then x = y; 
(j^i) ((x), x) G (5 for each x G G; 
(if2) If (5', x) G (Б, then (S о s, x) G Ш for each se^; 
{^3) {S, x) G (5 whenever for each s e ^ there exists t e ^ such that (5 о s о f, x) e 

G©; 
(.У'*^) If (S, x) G © and (T, y) G (Б, then (S - T, x - y) G ©. 
If (iS, x) G (Ö, then we say that the sequence S ©-converges to x. For A a G 

define уЛ = {x e G; (5, x) G (5 for some S e A^]. Then G equipped with Ш and y 
is said to be a convergence commutative group (cf. [2]). 

Let G be a commutative group and let Б be a subset of G^. Let ôB be the set of all 
sequences in G of the form S о s with S e В and s e ^, let ^ÔB} be the smallest 
subgroup of G^ containing ôB, and let C<^^> be the set of all sequences 5 in G such 
that for each s G У there exists t e У such that S о s о t G < ^ Б > . Define (б c= G^ x G 
as follows: (S, x) G (5 whenever S — (X)GC<<5B>. By Corollary in [З], (5 satisfies 
axioms (if x), (if 2), (if 3) and (^*^'). Further, by Lemma 2 in [З], (5 satisfies (if 0) 
iff'(O) is the only constant sequence in G belonging to С<^В>. 

Let A be an infinite set and let G be the free Z-module generated by A. Then G is 
equipped with a commutative group structure. Recall that elements of G can be re­

ft 
presented by reduced linear combinations ^ ẑ ö̂̂ ,̂ where his SL nonnegative integer, 

k=l h 

Zf,e Z\[0], ûj^eA and aj, Ф â  whenever к ф L For x G G, x = Y^Zj^a^, define 

gen (x) = [üf^', к = 1, ..., /i}. Note that for /i = 0 we have gen (x) = 0 and x is the 
h g 

neutral element 0 of G. Also, two elements ^ ẑ ^̂ /c ^"^^ Z ^u^k of G are equal iff 

h = g and there is a permutation p of the set {1, ..., h} such that a,, = bp^i^^ and Z/, == 
== ŵ ,(̂ ,) for all /CG{1 , . . . , h}. 

3. THE EXAMPLE 

We start with the following well-known example of a Fréchet space X (i.e. X is 
a topological space such that whenever a point x belongs to a closure of a set A, 
then there is a sequence in Л converging in X to x) which has unique sequential 
limits but fails to be Hausdorff. The space X consists of a double sequence Y = 
= {a{i,j); i,j = 1,2,...} and two other distinct points a, b. Points a(i,j) are 
isolated. A neighbourhood base at a is formed by sets {a} и A(f), where / i s a map­
ping of N into N and A(f) = {a(i,j) e Y; j > /(г)}- A neighbourhood base at b is 
formed by sets {Ь}иА(к), where keN and A(k) = {a(i,j) e Y; i> k}. Note that for 
each fixed keN the sequence Uj,e Y^ defined by U,^(n) = a{k, n) converges in X 
to a, and for each mapping/G iV^the sequence Vf e Y^ defined by Vf(n) = a(n,f(n)) 
converges in X to b. 
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Now, consider the subset Ä = {a} u YofX, Let G be the free Z-module generated 
by A. We are going to equip G with a sequential convergence (^ a G^ x G satisfying 
axioms (jè^o). ( ^ i ) . (^2) . («^з) and (^*^) such that the following condition 

(*) ( t /„ a) G © for each к e N and {Vj-, 0) e © for each / G 7V ;̂ 

holds true. 
Let H ci G^ consist of all sequences Vj^ — {a), к e N, and let D cz G^ consist of 

all sequences Vf,feN^. Put GQ = C<^{H u D)} and for xeG put G^ = GQ + (x). 
Define (5, x) G © whenever S G G^. Clearly, condition (*) is satisfied. 

As indicated in Section 2, © с G^ x G satisfies axioms (i^i), {^2)^ (-^3) ^^^ 
(.9^*^). To verify the remaining axiom {<^o) ^^ sequential convergence groups it 
suffices to show that (O) is the only constant sequence in G belonging to Go = 
= Ciô(H u D)}. 

Suppose that S G G^ is a constant sequence belonging to C<^(^ ^ ^)>- Since 
g 

S о s === S for each 5 G У, we can assume that S G < ^ ( Я U D)}, i.e. S = Yj ^^к^^ь 
k=l 

where g is a. nonnegative integer, w^eZ and Tj^ G d{H u D). Further, there is a map­
ping ,s G c9̂  such that each two sequences T̂  о 5 and Ti о s are either identical or we 

h 

have {l\ о s) (n) ф (Т^ о s) (п) for all п G iV. Hence 5" = ^ z^S^ -- [za], where 
ft' / c = l 

h ^ g, z,^E Z, z = Y, ^k^ ^^' = ^̂ ' *̂ /c is either a subsequence of L/,-, / G Л̂ , or a sub-

sequence of Vj-, fEN^\ and Sk{n) Ф 5^(п) for all ?2 GiV whenever /c ф /. Thus 5 + 
ft 

+ (zfl) = ^ Zf^S,, is a constant sequence in G. It follows from the definition of 

sequences Ui and Fj that there are natural numbers n^ and П2 such that 
ft ft 

( и E^^i^ki^i))) ^ ( и g ï̂̂ l'̂ /cC'̂ i))) = 0- Since G is a free Z-module and 
к=1 k=l 
ft ft 

X; Z;, 5fc(ni) = X f̂e ^'/.(ni), we get ẑ^ = 0 for all /c = 1, ..., /i. Thus S' = (0). 
k=i fc=i 

Since the subspace A u {0} of G is homeomorphic to the nonseparated space X 
(mentioned above), the proof is finished. 
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