Czechoslovak Mathematical Journal

Zofia Majcher; Jerzy Płonka
On a generalization of the matroid

Czechoslovak Mathematical Journal, Vol. 34 (1984), No. 2, 172-177

Persistent URL: http://dml.cz/dmlcz/101940

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A GENERALIZATION OF THE MATROID

Zofia Majcher, Opole, Jerzy Plonka, Wrocław

(Received March 31, 1980)

0

The notation of the semimatroid is known from literature (see [2]). A semimatroid is a pair $H=\langle X, \mathscr{B}\rangle$, where X is a non empty finite set and \mathscr{B} is a non empty antihereditary family of subsets of X, which means that \mathscr{B} satisfies the condition

$$
\begin{equation*}
B \in \mathscr{B} \wedge A \subseteq B \Rightarrow A \nsubseteq \mathscr{B} . \tag{i}
\end{equation*}
$$

The sets from \mathscr{B} will be called bases of the semimatroid H. A semimatroid $H=$ $=\langle X, \mathscr{B}\rangle$ satisfying the condition
(e)

$$
B_{1}, B_{2} \in \mathscr{B} \Rightarrow \bigwedge_{x \in B_{1} \backslash \boldsymbol{B}_{2}} \bigvee_{y \in B_{2} \backslash \boldsymbol{B}_{1}}\left[\left(B_{1} \backslash\{x\}\right) \cup\{y\} \in \mathscr{B}\right]
$$

is called a matroid (see [3]).
In this paper we consider a generalization of the condition (e), namely: a semimatroid $H=\langle X, \mathscr{B}\rangle$ will be called an e^{*}-semimatroid if H satisfies the condition

$$
\begin{gather*}
B_{1}, B_{2} \in \mathscr{B} \Rightarrow \bigwedge_{x_{1} \in B_{1} \backslash B_{2}} \vee_{y_{1} \in B_{1}} \bigvee_{x_{2}, y_{2} \in B_{2}}\left[\left(B_{1} \backslash\left\{x_{1}, y_{1}\right\}\right) \cup\right. \tag{*}\\
\left.\cup\left\{x_{2}, y_{2}\right\} \in \mathscr{B} \wedge\left(x_{1}=y_{1} \Rightarrow x_{2}=y_{2}\right)\right] .
\end{gather*}
$$

It is easy to verify that any matroid is an e^{*}-semimatroid. On the other hand, there are e^{*}-semimatroids that are not matroids, which is shown by the following example.

Figure 1.

Example 1. Let us take the simple graph G (see [1]) in Fig. 1.
Let us consider a semimatroid $H=\langle X, \mathscr{B}\rangle$, where $X=\{1,2,3,4,5,6\}$ and \mathscr{B} is
the set of all cliques of G, i.e. the sets of vertices of maximal complete subgraphs of G. Therefore $\mathscr{B}=\{\{1,3,5\},\{1,3,6\},\{2,4,5\},\{2,4,6\}\}$. Observe that H satisfies (e*) but not (e). We see that some semimatroids generated by graphs can be e*semimatroids which was the reason for the authors to consider e^{*}-semimatroids.

In this paper we prove in Section 1 that any two bases of an e^{*}-semimatroid have the same number of elements (Theorem 1).

In Section 2 (Theorem 2) we show the following result: Let $G=(U, X)$ be a simple connected graph. Let T be the set of edges of a spanning tree of G, let T^{*} be obtained from T by removing one pendant edge. Denote by \mathscr{T}^{*} the family of all sets of the form T^{*}. Then the pair $H=\left\langle X, \mathscr{T}^{*}\right\rangle$ is an e^{*}-semimatroid but not neccessarily a matroid.

In Section 3 we give a representation of graphs in which cliques form a matroid and produce examples of graphs in which cliques form an e^{*}-semimatroid.

1

Let $H=\langle X, \mathscr{B}\rangle$ be an e^{*}-semimatroid. We shall consider the following condition:

$$
\begin{equation*}
B_{1}, B_{2} \in \mathscr{B}, \quad B_{3}=\left(B_{1} \backslash\left\{x_{1}, y_{1}\right\}\right) \cup\left\{x_{2}, y_{2}\right\} \in \mathscr{B}, \tag{}
\end{equation*}
$$

where $\quad x_{1} \in B_{1} \backslash B_{2}, \quad y_{1} \in B_{1}, \quad x_{2}, y_{2} \in B_{2} \quad$ and $\quad\left(x_{1}=y_{1} \Rightarrow x_{2}=y_{2}\right)$.
Lemma 1. If $(*)$ holds then $\left\{x_{2}, y_{2}\right\} \nsubseteq B_{1} \cap B_{2}$.
Proof. Let $x_{2}, y_{2} \in B_{1} \cap B_{2}$, then $B_{1} \backslash\left\{x_{1}, y_{1}\right\}=B_{3} \nsubseteq B_{1}$. Hence and by (i) $B_{3} \notin \mathscr{B}$ - a contradiction.

Lemma 2. Let $(*)$ hold, let $B_{3} \backslash B_{1}=\left\{y_{2}\right\}$ and $x_{1} \neq y_{1}$, then $x_{2}=y_{1}$.
Proof. Suppose $x_{2} \neq y_{1}$. Then $y_{1} \notin B_{3}$. We apply (e^{*}) to the bases B_{3} and B_{1} and to the element y_{2}. So there exist $z_{2} \in B_{3}$ and $u_{1}, v_{1} \in B_{1}$ such that $\left(B_{3} \backslash\left\{y_{2}, z_{2}\right\}\right) \cup$ $\cup\left\{u_{1}, v_{1}\right\}=B_{4} \in \mathscr{B}$ and $\left(y_{2}=z_{2} \Rightarrow u_{1}=v_{1}\right)$. We shall show that $B_{4} £ B_{1}$ thus obtaining a contradiction $B_{4} \in \mathscr{B}$. Let $z_{2} \in B_{1}$. Since $x_{1}, y_{1} \notin B_{3}$ and $B_{3} \backslash B_{1}=\left\{y_{2}\right\}$ so $B_{4}=\left(B_{1} \backslash\left\{x_{1}, y_{1}, z_{2}\right\}\right) \cup\left\{u_{1}, v_{1}\right\}$. Observe that $z_{2} \neq x_{1}$ and $z_{2} \neq y_{1}$, since $x_{1}, y_{1} \notin B_{3}$ and $z_{2} \in B_{3}$. Moreover, $x_{1} \neq y_{1}$, hence $B_{4} \subseteq B_{1}$. Let now $z_{2} \notin B_{1}$. Then $z_{2} \in B_{3} \backslash B_{1}$, so $z_{2}=y_{2}$. Thus we have $u_{1}=v_{1}$, hence $B_{4}=\left(B_{1} \backslash\left\{x_{1}, y_{1}\right\}\right) \cup$ $\cup\left\{u_{1}\right\}$ 生 B_{1}.

Lemma 3. If $(*)$ holds then we have exactly one of the following three possibilities:
(1) $x_{1} \in B_{1} \backslash B_{2}, y_{1}, x_{2} \in B_{1} \cap B_{2}, y_{2} \in B_{2} \backslash B_{1}$ and $x_{2}=y_{1}$;
(2) $x_{1} \in B_{1} \backslash B_{2}, y_{1} \in B_{1} \cap B_{2}, x_{2}, y_{2} \in B_{2} \backslash B_{1}$ and $x_{2} \neq y_{2}$;
(3) $x_{1}, y_{1} \in B_{1} \backslash B_{2}, x_{2}, y_{2} \in B_{2} \backslash B_{1}$ and $\left(x_{1}=y_{1}\right.$ and $x_{2}=y_{2}$ or $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$).

Proof. Consider all the possibilities for the condition (e*):
(4) $y_{1} \in B_{1} \cap B_{2}, x_{2}, y_{2} \in B_{1} \cap B_{2}$;
(5) $y_{1} \in B_{1} \cap B_{2}, x_{2} \in B_{1} \cap B_{2}, y_{2} \notin B_{1} \cap B_{2}$;
(6) $y_{1} \in B_{1} \cap B_{2}, x_{2}, y_{2} \notin B_{1} \cap B_{2}$;
(7) $y_{1} \notin B_{1} \cap B_{2}, x_{2}, y_{2} \in B_{1} \cap B_{2}$;
(8) $y_{1} \notin B_{1} \cap B_{2}, x_{2} \in B_{1} \cap B_{2}, y_{2} \notin B_{1} \cap B_{2}$;
(9) $y_{1} \notin B_{1} \cap B_{2}, x_{2}, y_{2} \notin B_{1} \cap B_{2}$.

By Lemma 1 the cases (4), (7) cannot hold. The case (5) gives (1) by Lemma 2. The case (8) cannot hold. In fact, if $x_{2} \in B_{1} \cap B_{2}$ and $y_{2} \notin B_{1} \cap B_{2}$ then $x_{2} \neq y_{2}$. Hence by $(*)$ we have $B_{3} \backslash B_{1}=\left\{y_{2}\right\}$ and $x_{1} \neq y_{1}$. In view of Lemma 2 we get $x_{2}=y_{1}$ which is impossible. Consider the case (6). Let $y_{1} \in B_{1} \cap B_{2}, x_{2}, y_{2} \notin B_{1} \cap B_{2}$ ard (*) hold. Then $x_{2} \neq y_{2}$. In fact, if $x_{2}=y_{2}$ then $B_{3} \backslash B_{1}=\left\{y_{2}\right\}$. Since $x_{1} \neq y_{1}$ so by Lemma 2 we have $x_{2}=y_{1}$ which is impossible. So we have the possibility (2).

Consider the case (9). Let $y_{1}, x_{2}, y_{2} \notin B_{1} \cap B_{2}$ and (*) hold. If $x_{1}=y_{1}$ then $x_{2}=$ $=y_{2}$ by $(*)$. Suppose that $x_{1} \neq y_{1}$ and $x_{2}=y_{2}$. Then $B_{3} \backslash B_{1}=\left\{y_{1}\right\}$ and by Lemma 2 $x_{2}=y_{1}$ which cannot hold. So we have $x_{1} \neq y_{1} \Rightarrow x_{2} \neq y_{2}$. In the case (9) we have the possibility (3).

Corollary 1. If (*) holds then $\left|B_{3}\right|=\left|B_{1}\right|$.
Proof. It follows from Lemma 3 that the number of elements rejected from B_{1} is equal to the number of elements added to B_{1}.

Theorem 1. Any two bases of an e^{*}-semimatroid have the same number of elements.
Proof. Let $H=\langle X, \mathscr{B}\rangle$ be an e^{*}-semimatroid and $B_{1}, B_{2} \in \mathscr{B}$. If $B_{1} \backslash B_{2} \neq \emptyset$ and $x_{1} \in B_{1} \backslash B_{2}$ then we can form the basis B_{3} as in (*) and by Corollary 1 we have $\left|B_{3}\right|=\left|B_{1}\right|$. By Lemma 3 we obtain that the basis B_{3} arises by deleting at least one element from the set $B_{1} \backslash B_{2}$ and adding at least one element from the set $B_{2} \backslash B_{1}$. If $B_{3} \backslash B_{2} \neq \emptyset$ then we can form the basis B_{4} for the bases B_{3} and B_{2} analogously as we formed the basis B_{3} for the bases B_{1} and B_{2} in (*).

Then by Corollary 1 we get $\left|B_{4}\right|=\left|B_{3}\right|=\left|B_{1}\right|$. Observe that $B_{3} \backslash B_{2} \subset B_{1} \backslash B_{2}$ and B_{4} arises by deleting at least one new element from the set $B_{1} \backslash B_{2}$ and adding at least one new element from the set $B_{2} \backslash B_{1}$. After a finite number of steps we get a basis B_{k} such that $B_{k} \subset B_{2}$ and $\left|B_{k}\right|=\left|B_{k-1}\right|=\left|B_{k-2}\right|=\ldots=\left|B_{3}\right|=\left|B_{1}\right|$. By (i) we have $B_{k}=B_{2}$ which completes the proof.

2

Let $G=(U, X)$ be a simple connected graph. It is known that a pair $\langle X, \mathscr{T}\rangle$, where \mathscr{T} is the set of all spanning trees of G, is matroid (see [1]). L. Szamkołowicz asked which subsets of X form an e^{*}-semimatroid. We answer this question in the following theorem.

Theorem 2. Let $G=(U, X)$ be a simple connected graph. Let T be the set of edges of a spanning tree of G, and let T^{*} be obtained from T by removing one pendant edge. Let \mathscr{T}^{*} denote the family of all sets of the form T^{*}. Then the pair $H=$ $=\left\langle X, \mathscr{T}^{*}\right\rangle$ is an e^{*} semimatroid but not necessarily a matroid.

Proof. If $|U| \leqq 3$ then any spanning tree has at most two edges and any T^{*} has at most one edge and (e*) is satisfied. Suppose $|U| \geqq 4$. Let T^{*} be obtained from T by removing a pendant edge. Denote the removed edge by $p(T)$. Denote by $i\left(T^{*}\right)$ the vertex of $p(T)$ which becomes an isolated vertex after removing $p(T)$ from the tree T. Observe that \mathscr{T}^{*} satisfies the condition (i) of the semimatroid. We shall show that $\left(\mathrm{e}^{*}\right)$ holds. Let $T_{1}^{*}, T_{2}^{*} \in \mathscr{T}^{*}$ and $x_{1} \in T_{1}^{*}$. The graph $\left(U, T_{1}^{*} \backslash\left\{x_{1}\right\}\right)$ has three components $i\left(T_{1}^{*}\right), K_{1}, K_{2}$.

If there exists $x_{2} \in T_{2}^{*}$ such that $x_{2}=\left\{v_{1}, v_{2}\right\}$ and $v_{1} \in K_{1}, v_{2} \in K_{2}$ then $\left(T_{1}^{*} \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{2}\right\}=T_{3}^{*} \in \mathscr{T}^{*}$ since $T_{3}^{*} \cup\left\{p\left(T_{1}\right)\right\} \in \mathscr{T}$. If such an edge x_{2} does not exist then necessarily $i\left(T_{1}^{*}\right) \neq i\left(T_{2}^{*}\right)$ since otherwise we have three components in the graph $\left(U, T_{2}^{*}\right)$. If $\left|K_{1}\right|=1$ and $K_{1}=\left\{i\left(T_{2}^{*}\right)\right\}$ then there exists in T_{2}^{*} an edge $x_{2}=\left\{u, i\left(T_{1}^{*}\right)\right\}$ with $u \in K_{2}$. Hence $\left(T_{1}^{*} \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{2}\right\} \in \mathscr{T}^{*}$. We have the analogous situation if $K_{2}=\left\{i\left(T_{2}^{*}\right)\right\}$. In the remaining case there exist in T_{2}^{*} edges $\left\{u, i\left(T_{1}^{*}\right)\right\}$ and $\left\{i\left(T_{1}^{*}\right), v\right\}$ with $u \in K_{1}, v \in K_{2}$. Putting $x_{2}=\left\{u, i\left(T_{1}^{*}\right)\right\}, y_{2}=\left\{i\left(T_{1}^{*}\right), v\right\}$ and taking for y_{1} an arbitrary pendant edge of T_{1}^{*} different from x_{1} we obtain $T_{3}^{*}=$ $=\left(T_{1}^{*} \backslash\left\{x_{1}, y_{1}\right\}\right) \cup\left\{x_{2}, y_{2}\right\}$. Such an edge y_{1} exists since one of the components K_{1}, K_{2} has more than one vertex. Obviously $T_{3}^{*} \in \mathscr{T}^{*}$ as $\left(T_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{1}, y_{2}\right\}$ is a spanning tree.

Consider now the graph in Fig. 2.

Figure 2.

Denote $T_{1}^{*}=\{1,2,3\}, T_{2}^{*}=\{3,4,5\}$. For $x_{1}=2$ there does not exist $x_{2} \in T_{2}^{*} \backslash T_{1}^{*}$ such that $\left(T_{1}^{*} \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{2}\right\} \in \mathscr{T}^{*}$. This proves the second part of Theorem 2.

3

Now we shall consider the problem when the cliques of a graph form a matriod or an e^{*}-semimatroid.

It is known that
(α) if $\langle X, \mathscr{B}\rangle$ is a matroid then the following condition is satisfied:

$$
\bigwedge_{B_{1}, B_{2} \in \mathscr{B}} \wedge_{y \in B_{2} \backslash B_{1}} \bigvee_{x \in B_{1} \backslash B_{2}}\left[\left(B_{1} \backslash\{x\}\right) \cup\{y\} \in \mathscr{B}\right] .
$$

Let $G=(U, X)$ be a simple graph. We denote the set of the cliques of G by \mathscr{K}_{G}.

Theorem 3. The pair $H=\left\langle U, \mathscr{K}_{G}\right\rangle$ is a matroid iff there exists a partition $\left\{U_{i}\right\}_{i \in I}$ of the set U such that

$$
\begin{equation*}
\bigwedge_{u \in U_{s}} \bigwedge_{v \in U_{t}}[\{u, v\} \in X \Leftrightarrow s \neq t] \text { where } s, t \in I \tag{**}
\end{equation*}
$$

in other words G is a complete I-partite graph.
Proof. Sufficiency is obvious since the only cliques of G are the sets of the form B^{*} where $\bigwedge_{i \in I}\left|B^{*} \cap U_{i}\right|=1$.

Proof of necessity. Let $H=\left\langle U, \mathscr{K}_{G}\right\rangle$ be a matroid and K_{0} a fixed basis of H, i.e. a fixed clique of G. For every $a \in K_{0}$ we define the set $U_{a}=\left\{u \in U ;\left(K_{0} \backslash\{i\}\right) \cup\right.$ $\left.\cup\{u\} \in \mathscr{K}_{G}\right\}$. We shall show that the family $\left\{U_{0}\right\}_{a \in U}$ is a partition of U. Obviously for any $a \in K_{0}$ we have $U_{a} \neq \emptyset$ since $a \in U_{a}$. If $a \neq b, a, b \in K_{0}$ then $U_{a} \cap U_{b}=\emptyset$.

Suppose on the contrary that a vertex u in the graph G is connected with all vertices of the clique K_{0}. This, however, contradicts the maximality of K_{0}.

$$
\bigwedge_{u \in U} \bigvee_{a \in K_{0}} u \in U_{a} .
$$

In fact, if $u \in K_{0}$, then $u \in U_{u}$. Let $u \in U \backslash K_{0}$. Obviously $\{u\}$ can be extended to the maximal complete subgraph M of the graph G. So M is a clique and $M \in \mathscr{K}_{G}$. Applying Lemma 4 with $y=u$ and the cliques K_{0} and M we find $a \in K_{0}$ such that $\left(K_{0} \backslash\{a\}\right) \cup\{u\}$ is a clique, hence $u \in U_{a}$.

Now we shall show the validity of the condition (**). We shall show

$$
\begin{equation*}
\text { if } u \in U_{s}, \quad v \in U_{t}, \quad\{u, v\} \in X \quad \text { then } \quad s \neq t . \tag{10}
\end{equation*}
$$

Suppose $u \in U_{s}, v \in U_{t},\{u, v\} \in X$ and $s=t$. Since $u \in U_{s}$, so $\left(K_{0} \backslash\{s\}\right) \cup\{u\} \in \mathscr{K}_{G}$. Analogously $\left(K_{0} \backslash\{s\}\right) \cup\{v\} \in \mathscr{K}_{G}$. Hence $\left(K_{0} \backslash\{s\}\right) \cup\{u, v\}$ is a complete subgraph and it can be extended to some clique K. Then $\left(K_{0} \backslash\{s\}\right) \cup\{u\} \subsetneq K$ which contradicts the maximality of the clique $\left(K_{0} \backslash\{s\}\right) \cup\{u\}$. Let now $u \in U_{s}, v \in U_{t}$ and $s \neq t$. Then $K_{1}=\left(K_{0} \backslash\{s\}\right) \cup\{u\} \in \mathscr{K}_{G}, K_{2}=\left(K_{0} \backslash\{t\}\right) \cup\{v\} \in \mathscr{K}_{G}$. We exchange the cliques K_{1}, K_{2} and the element $t \in K_{1} \backslash K_{2}$. Observe that $K_{2} \backslash K_{1}=\{v, s\}$. If $K_{1} \backslash\{t\} \cup\{s\} \in \mathscr{K}_{G}$ then $\{s, u\} \in X$ contrary to (10).

Now we shall show a class of graphs in which cliques form e^{*}-semimatroids but not necessarily matroids.

Let n_{1}, \ldots, n_{r} be a sequence of positive integers such that $n_{i} \geqq n_{j}$ for $i<j$. Consider a graph $G_{\left(n_{1}, \ldots, n_{r}\right)}=\left(U_{1} \cup U_{2} \cup \ldots \cup U_{r}, X\right)$ where $U_{i}=\left\{a_{i 1}, \ldots, a_{i n_{i}}\right\}$, $U_{i} \cap U_{j} \in \emptyset$ for $i \neq j, i, j \in\{1, \ldots, r\}$. The set X contains all possible edges except those of the following three forms:

$$
\begin{align*}
& \left\{a_{i k_{1}}, a_{i k_{2}}\right\} \text { for } k_{1}, k_{2} \in\left\{1, \ldots, n_{i}\right\} \tag{11}\\
& \left\{a_{(2 s-1), k}, a_{2 s, k}\right\} \text { where } k^{\prime} \neq k \text { and } 1 \leqq k, k^{\prime} \leqq n_{2 s}, \tag{12}\\
& \left\{a_{(2 s-1), t}, a_{2 s, t}\right\} \text { where } n_{2 s}<t \leqq n_{2 s-1}, 1 \leqq t^{\prime} \leqq n_{2 s}, 1 \leqq s \leqq\left[\frac{1}{2} r\right] \tag{13}
\end{align*}
$$

Observe that the intersection of any clique of the graph $G_{\left(n_{1}, \ldots, n_{r}\right)}$ with any of the sets U_{i} $(i=1, \ldots, r)$ contains exactly one element. Checking that the condition (e*) holds for the clique is easy.

The following problem is open:
Describe all simple graphs in which cliques form e^{*}-semimatroids.

References

[1] C. Berge: Graphs and Hypergraphs, North-Holland Publishing Company, 1973.
[2] L. Szamkolowicz: On problems of the elementary theory of graphical matroids, In: Recent Advances in Graph Theory, Praha, 1975, 501-505.
[3] W. T. Tutte: Lectures on Matroids, Journal of Research of the National Bureau of Stan-dards-B. Mathematics and Mathematical Physics, Vol. 69B, Nos. 1 and 2, JanuaryJune 1965, 1-46.

Authors' addresses: Z. Majcher, Opole, ul. Oleska 48, Poland (Wyższa szkoła pedagogiczna),
J. Płonka, Wrocław, Poland (Instytut Matematyki PAN).

