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(Received March 31, 1980) 

0 

The notation of the semimatroid is known from literature (see [2]). A semimatroid 
is a pair H = {X, J^>, where Z is a non empty finite set and J* is a non empty anti-
hereditary family of subsets of X, which means that J* satisfies the condition 

(i) ВеШ A As В=>Аф^ . 

The sets from ^ will be called bases of the semimatroid H. A semimatroid H = 
= (X, Ж) satisfying the condition 

(e) Б „ Б , е ^ = > A V [(^i \ {x}) u {3;} G ^ ] 

is called a matroid (see [З]). 
In this paper we consider a generalization of the condition (e), namely: a semi

matroid Я = <X, ^ > will be called an t^-semimatroid if H satisfies the condition 

(e*) B„B,elM^ ^ V V [ (BiN{xj ,y i} )u 
XieBi\B2 yi^Bi Х2,У2еВ2 

u {x2, У2]е^ A (xi = y^=^x2 = УгЯ • 

It is easy to verify that any matroid is an e*-semimatroid. On the other hand, there 
are e*-semirnatroids that are not matroids, which is shown by the following example. 

Figure 1. 

Example L Let us take the simple graph G (see [ l ] ) in Fig. 1. 
Let us consider a semimatroid H = <Z, J*>, where X = {1,2, 3, 4, 5, 6} and ^ is 
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the set of all cliques of G, i.e. the sets of vertices of maximal complete subgraphs 
of G. Therefore (Ш = {{1, 3, 5}, ( l , 3,6}, {2,4, 5}, {2, 4, 6}}. Observe that И satisfies 
(e*) but not (e). We see that some semimatroids generated by graphs can be e*-
semimatroids which was the reason for the authors to consider e*-semimatroids. 

In this paper we prove in Section 1 that any two bases of an e*-semimatroid have 
the same number of elements (Theorem l). 

In Section 2 (Theorem 2) we show the following result: Let G = (I/, X) be a simple 
connected graph. Let T be the set of edges of a spanning tree of G, let Г* be obtained 
from T by removing one pendant edge. Denote by 5^* the family of all sets of the 
form Г*. Then the pair H = {X, c^*> /5 an e^-semimatroid but not neccessarily 
a matroid. 

In Section 3 we give a representation of graphs in which cliques form a matroid 
and produce examples of graphs in which cliques form an e*-semimatroid. 

Let H = <X, ^y be an e*-semimatroid. We shall consider the following condition: 

(*) B,,B2E^, В, = {В,\{х,.у,})и{х2,У2}е^, 

where x^e Bi\ B2 , y^^ B^ , X2, у2 e B2 and (x^ = y^ => X2 = У2) • 

Lemma 1. / / (*) holds then {x2, У2} Ф B^ n B2. 

Proof. Let Х2,У2^^1 (^ ^2, then B^\{xi, y^^} = Б3 ф Б^. Hence and by (i) 
5з ^ J* — a contradiction. 

Lemma 2. Let (*) hold, let B^\B^ = {У2} and x^ ф y^, then X2 = yi-

Proof. Suppose X2 Ф у I. Then y^ ф B^. We apply (e*) to the bases Б3 and B^ 
and to the element у2- So there exist Z2 e B^ and w ,̂ v^ e B^ such that (Б3 \ {3/2, ^2}) ^ 
u (w^, v^} = Б4 e J* and (у2 = Z2=> «i = v^). We shall show that B^ 5 B^ thus 
obtaining a contradiction B^ E ̂ . Let Z2 e B^. Since x^, y^ ф B^ and B^\B^ = {^2} 
so B^ = (Б^ \{л:1, >'i, Z2}) u (wj, t'l}. Observe that Z2 Ф x^ and Z2 Ф J^i, since 
х^^.у^фВ^ and Z2eB2. Moreover, x^ Ф 3̂ 1, hence Б4 5 Б^. Let now Z2фB^. 
Then Z2 G Б3 \ Bj, so Z2 = У2- Thus we have u^ = v^, hence Б4 = (B^ \ (x^, y j ) u 

Lemma 3. / / (*) /го/^5 then we have exactly one of the following three possibilities: 

(1) x^e B^\ B2, у I, X2 e Б^ n Б2, У2^ ^2^ ^i ^^^ ^2 = У11 
(2) x^e Bi\ B2, У1Е Bi n Б2, X2, У2Е B2\ Б1 önJ X2 Ф У2', 
(3) Xi, У1 e Б1 \ Б2, X2, У2Е B2\ Б1 rt/iöf (xi = Ух and X2 = У2 or x^ ф y^ ^^^ 

^2 + V2). 
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Proof. Consider all the possibilities for the condition (e*): 
(4) ууЕ By n B2, Л-2, У2 e ^1 n Б2; 
(5) j ' l eBj^n Б2, X2 6 Б1 n Б2, у2фВу n B2; 
(6) >'i e Б1 n Б2. ->̂ 2. У2ФВ1 ^ ^2; 
(7) j ' l фВу r\ Б2, X2, 3̂2 ^ ^1 »̂  ^2^ 
(8) >'i ^ ß i n Б2, X2 G 5 i n ^2, У2 ^ ^1 П ^2; 
(9) J ' i ^ B i ПБ2, Х2,У2ФВ, ПВ2. 
By Lemma 1 the cases (4), (7) cannot hold. The case (5) gives (1) by Lemma 2. The 
case (8) cannot hold. In fact, if X2 e Б^ n B2 and У2 Ф B^ n B2 then X2 =(= .Уа- Hence 
by (*) we have B^ \ B^ = {У2} and х^фу^. In view of Lemma 2 we get X2 == y^ which 
is impossible. Consider the case (6). Let уу e Bi r\ B2, X2, У2Ф B^ n Bo and (*) 
hold. Then X2 Ф У2- In fact, if X2 = У2 then Б3 \ ß j = (^2}- Since x^ 4= j ^ ^ so by 
Lemma 2 we have X2 = У1 which is impossible. So we have the possibility (2). 

Consider the case (9). Let y^, X2, j'2 Ф ^ i ^ ^2 ^̂ ^̂  (*) hold. If x^ = y^ then X2 == 
= j'2 by (*). Suppose that x^ ф Vi and X2 = у2. Then ^ 3 X ^ 1 = { y j and by Lemma 2 
-̂ '2 = Vi which cannot hold. So we have x^ Ф J i => X2 Ф ĵ 2- In the case (9) we 
have the possibility (3). 

Corollary 1. / / ( * ) holds then | Б З | = | B I | . 

Proof. It follows from Lemma 3 that the number of elements rejected from B^ 
is equal to the number of elements added to B^. 

Theorem 1. Any two bases of an e'^-semimatroid have the same number of 
elements. 

Proof. Let H = {X, ^ > be an e*-semimatroid and By,B2e0ß. If Б1 4^2 Ф 0 
and Xi еВу\В2 then we can form the basis ^3 as in (*) and by Corollary 1 we have 
1̂ 3] = 1̂ 11• ßy Lemma 3 we obtain that the basis Б3 arises by deleting at least one 
element from the set B^ 4^2 and adding at least one element from the set Б2 \Bj^. 
If Б3 \ Б2 Ф 0 then we can form the basis Б4 for the bases Б3 and Б2 analogously 
as we formed the basis Б3 for the bases B^ and B2 in (*). 

Then by Corollary 1 we get |B4| = | Б З | = |Б^ | . Observe that Б З \ Б2 cz B^\B2 
and Б4 arises by deleting at least one new element from the set B^ \ B2 and adding 
at least one new element from the set Б2 \ Б^. After a finite number of steps we get 
a basis Бд. such that Bj, с Б2 and |Б^^| = \Bi,_y\ = \Bf._2\ = ... = | Б З | = [Б^] . 
By (i) we have B,^ = B2 which completes the proof. 

Let G = {и, X) be a simple connected graph. It is known that a pair <X, ^У, 
where ^ is the set of all spanning trees'of G, is matroid (see [1]). L. Szamkolowicz 
asked which subsets of Z form an e*-semimatroid. We answer this question in the 
following theorem. 
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Theorem 2. Let G = (JJ, X) be a simple connected graph. Let T be the set of edges 
of a spanning tree of G, and Jet Г* be obtained from T by removing one pendant 
edge. Let .^* denote the family of all sets of the form T*. Then the pair H = 
= {X, 5^*> /5 an e^semimatroid but not necessarily a matroid. 

Proof. If |t/| s 3 then any spanning tree has at most two edges and any Г* has 
at most one edge and (e*) is satisfied. Suppose \u\ ^ 4 . Let T* be obtained from T 
by removing a pendant edge. Denote the removed edge by p{T). Denote by /(Г*) 
the vertex of p[T) which becomes an isolated vertex after removing р(Т) from the 
tree T. Observe that ^ * satisfies the condition (i) of the semimatroid. We shall show 
that (e*) holds. Let Tf, T2 e .Г* and x^ G Tf. The graph ([/, Tf \ {xi}) has three 
components i(Tf ), K^, Kz-

If there exists X2 E T2 such that X2 = {̂ î, ^̂ 2} ^n^ ^ i ^ ^ b 2̂ ^ ^ 2 ^̂ ^̂ ^ 
(T* \ {xi}) u {X2} = Г3* e ^ * since T^ u (K'^i)} ^ ^ - If such an edge X2 does not 
exist then necessarily /(Tf) Ф /(^2*) since otherwise we have three components in 
the graph ((7, T2). If |i^i| = 1 and K^ = {K^i}} then there exists in Tf an edge 
X2 = {M, /(Tf)} with и e Kz- Hence (Tf \ { x j ) u {X2} e ^ * . We have the analogous 
situation xi K2 = {/(Tf)}. In the remaining case there exist in T2 edges {w, /'(Tf)} 
and {i{Tt\v} with wei^ i , VEKZ^ Putting X2 == (w,/(Tf)}, у2 = {i{T^), v} and 
taking for j^i an arbitrary pendant edge of Tf different from x^ we obtain Г3* = 
= ( r f \ { x i , y i } )u [х2,У2}- Such an edge y^ exists since one of the components 
K],K2 has more than one vertex. Obviously Tf e ^ * as (T^ \{^ i} ) ^ (xj , У2] is 
a spanning tree. 

Consider now the graph in Fig. 2. 

Figure 2. 

Denote Tf = {l, 2, 3), Г2* = (3, 4, 5}. For x^ - 2 there does not exist X2 e T2* \ Tf 
such that ( r f \ (x J ) u {X2} e c^*. This proves the second part of Theorem 2. 

Nov/ v/e shall consider the problem when the chques of a graph form a matriod 
or an e*-seminiatroid. 

It is known that 
(a) if <X, J*> is a matroid then the following condition is satisfied: 

A Л V \_{В,\{х])и{у]еЩ. 
Bi,B2em yeBi\Bi хеВ^ХВг 

Let G = ([/, X) be a simple graph. We denote the set of the cliques of G by Жд. 
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Theorem 3. The pair H = <t/, X ^ ) is a matroid iff there exists a partition 
{^i}iei of the set U such that 

(**) Д Д [{t/, I?} e X о 5 Ф /] where s, r e / ; 
ueVs veUt 

in other words G is a complete I-partite graph. 

Proof. Sufficiency is obvious since the only cliques of G are the sets of the form JB* 
where Д |ß* n I7,-| = 1. 

iel 

Proof of necessity. Let H = {U, Jf^} be a matroid and KQ a fixed basis of Я , 
i.e. a fixed clique of G. For every aeK^v^Q define the set U^ = [u e U; (KQ \ {a}) u 
u [w} e Jfo}' We shall show that the family {C/o}aei/ is a partition of U. Obviously 
for any аеКо \MQ have U^ Ф 0 since a e U^. If a ф b, a, b e KQ then U^nU^ = 0. 

Suppose on the contrary that a vertex и in the graph G is connected with all vertices 
of the chque KQ. This, however, contradicts the maximality of i^o-

Л yueU,. 
ueU аеКо 

In fact, if u G KQ, then и e l/̂ ,. Let ueU\ KQ. Obviously [u] can be extended to the 
maximal complete subgraph M of the graph С So M is a chque and M e ЖQ. 
Applying Lemma 4 with у — и and the cliques KQ and M we find a GKQ such that 
[KQ \ [a]) u {u} is a chque, hence и E U^. 

Now we shall show the validity of the condition (**). We shall show 

(10) if UEU,, ve Ut, {U,V}EX then s Ф t. 

Suppose и EU^, V E Uf, {u, v] E X and s = t. Since и E U^, SO (KQ \ [s]) u [u] e J^Q. 
Analogously (i^o "̂  {̂ }) ^ {̂ } ^ ^^G- Hence (i^o \ {s}) u {i/, z;} is a complete subgraph 
and it can be extended to some chque K. Then (KQ \ {s]) u {u} g i<̂  which contra
dicts the maximality of the clique (i^o ^ {^}) ^ {"}• Let now UEU^, VEU^ and 
5 Ф t. Then K^ = (KQ \ {s}) u {u} E J T ^ , K2 = (KQ \ {;}) u {v} E J T ^ . We exchange 
the cliques K^,K2 and the element tEK^\K2' Observe that K2\K^ = {v,s]. 
If K^ \ [t] u {s} e Jf V then {s, u} e X contrary to (10). 

Now we shall show a class of graphs in which chques form e*-semimatroids but 
not necessarily matroids. 

Let Hj, ...,Пг be a sequence of positive integers such that n̂ - ^ nj for i <j. 
Consider a graph G(„i,...,„^) = (t/i u 1/2 "-̂  • • • ̂  ^ r . ^ ) where [/̂  = {a^, ..., a^-,,.}, 
[7,- r\UjE0 for Ï Ф j , /,J E { 1 , . . . , r} . The set X contains all possible edges except 
those of the following three forms: 

(11) {a , , , ,a , , J for /C i , /C2e{ l , . . . , n j , 

(12) {öf(25-i),fc, ^2s,fc} w^^^^^ fc' Ф /c and 1 ^ /c, /v' ^ П2,, 

(13) {fl(2s-i),r, «25,r} where П2, < t й " i s - i . 1 ^ '̂ ^ "2s, 1 ^ ^ ^ [*^]. 

176 



Observe that the intersection of any dique of the graph G^^j,,,^) with any of the sets Ui 
{i = 1, . . . , r) contains exactly one element. Checking that the condition (e*) holds 
for the clique is easy. 

The following problem is open: 
Describe all simple graphs in which cliques form e^-semimatroids. 
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