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INTRODUCTION 

Let ^ be a smoothly bounded open set in R", Q = Q x [O, cx)[ and let L be a uni­
formly elliptic operator given by 

Lu = — t)̂ â ^ dßU 
with coefficients 

satisfying for all С ^ R" 

(1) ci^'^e^ß à Щ' 
with a uniform constant Я > 0. Moreover, let / : Q x R^'^"^ -^ R^ Ы a Carathéodory 
function and assume that 

(2) \f{x,t,u,p)\ua\p\' + b 

for all (A-, t,u,p)E Q X !R^+"^ with constants a, be R. 
Consider the Cauchy-Dirichlet problem for the quasilinear diagonal parabolic 

system 

(3) d^u' Л- Lu' = f\x, t, u,Vu), 1 ^ i ^ N 

u\ {dQ X [0, оэ[) u (ß X {0}) = uo 

for smooth boundary and initial data UQ and assume that и e L^{Q; R^) n 
n Li,{(0, сю[; H^\Q\ R^')) is a weak solution to (3) in the sense that 

î/(-, t) - Wo(-, 0 e Hl\Q; R^) a.e. in [O, oo[ 

and that the relation 

(4) 

[ -w ' dy + a'^ dßU' ô^(p'] dx dt = f\x, t, u, Vu) cp' dx dt + \ u^cp dx 
JQ JQX{0} 

)̂ This research was supported by the Sonderforschungsbereich 72 of the Deutsche For-
schungsgemeinschaft. 
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is satisfied for all cp e C'^(ß) vanishing in a neighborhood of dQ x [O, cx)[ and also 
vanishing for large t. 

In [7], [2] it was shown that such a weak solution и is Holder continuous (and 
hence regular) in the interior of Q if the ellipticity constant Я in (l), the growth 
coefficient a in (2) and M — Ц^Ц^ are related by the condition 

(5) üM < À . 

Moreover, it was noted that condition (5) is best possible. Indeed, on Q = 
= {xeR^l \x\ < 1), the function heH^^^ n U^(Q', R^) given by 

(6) h{x) = x\x\-^ 

weakly solves the diagonal elliptic system 

(7) -Ah = h\Vh\^ 

but is discontinuous at x = 0. Since we may interpret h as a stationary weak solution 
of a parabolic system (3) with a = M = À == i condition (5) in general cannot be 
improved. 

However, the above example due to Hildebrandt-Widman [4] and other counter­
examples to regularity in the case of elHptic systems given by Frehse [ l ] and Heinz 
[3] leave open the question of whether the parabolic "flow" preserves regularity 
properties of the initial and boundary data as the solution evolves in time, even 
without any restriction on the size of the ratio aMJl. In fact, it was conjectured by 
Sampson [6] that parabolic systems arising from harmonic mappings between 
Riemannian manifolds act conservative in this sense, and it is suspected that the 
regularity properties of the initial data will even be conserved if the solution is only 
bounded locally with respect to t. 

However, the example below shows that in general the answer will be negative and 
that in general solutions of systems (3) may lose the regularity properties of the initial 
data in finite time if aMJX is too large. (We suspect that this will be true if aMJX > 1, 
already, leaving open the limiting case аМ = Я.) Thus, the special (variational) 
structure of the operator must be held responsible for the phenomena occuring in 
the case of harmonic mappings. 

Again, one should ask: Do parabolic systems of the kind (З) preserve regularity 
if they are of variational type? A positive response to this question should be of great 
interest for various apphcations in differential geometry. 

Example . Let ß = (x e ^^ | |x| < 1} be the unit ball in R^, Q -= Q x [O, oo[. 
Let Г be the fundamental solution of the (backward) heat operator with singularity 
at (0, 1) G Ö, i.e. 

(47r|l - t\y^^ \ 4|l 

if t < 1, r (x , t) = 0, otherwise. 
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By classical results we have the following representation formula for the solution v 
of the initial value problem 

(9) -ô,v - Av = 0 in ^ ^ x ] - o o , 1] 

v{-, i) = v,: 

For any v^ G U'^R^; R) the unique solution v of (9) is given by 

(10) v{x, t)= [ r{x~ y, t) v,{y) dy = : ( r ( - , 0 * ^i) (x) . 

Moreover, v is smooth for ^ < 1 and hence satisfies (9) in the pointwise classical 
sense (cp. [5, p. 262]). Also the initial data v^ are assumed continuously in Ûi^^^R^; R) 

as may easily be verified using again the estimates in [5, p. 262 f.]. 
Now, define for t e R, x e Q 

nix A _ K 2 ^ * ^ ( ' ' 0 ) W > 
''^''' ^̂  ~ [2 /i(x) 

t < 1 
t > 1 

r (2 /z*r ( - , r ) ) (x ) , t<l 
v(x, t) = <2 h{x) , t = 1 

[ ( 2 / i * r ( - , 2 - 0 ) ( x ) , t>l 

where h E L^ n HI^^{R^; R^) is given by (6). Also let 

L = - a A , M = -ßA 

where a, ß e L°°(ß) are given by oc = ß = 3 if t < 1, a = 4 if t ^ 1, ß = 4 if t = 1, 
ß = 5 if t > 1. Clearly, both Land M satisfy condition (l) with Я = 1. 

Lemma 1. 
u,ve L°°(Ö; R^) n Ь Ц [ 0 , oo[; H^\Q; R^)) . 

Proof. Using the fact that Г ^ 0 and ^Г(х, t) dx = 1 for Г < 1 the first assertion 
is a simple consequence of the convolution estimate 

\\срЩ^ ^ \\<p\\^ 1Ф1 
for all ÇEL^, феЬК 

To verify the second part of the claim we show that ||Vw(*, t)\\2 is even bounded, 
uniformly in ? < 1. Indeed, using the smoothness of Г and the definition of weak 
derivative for Г < 1 we may write 

Vw = {2h * v r ( - , t)) = (2V/i * r ( - , r)). 

Thus, by standard estimates and Fubini's theorem 

f |Vw(-, 01^ dx S с Ç Г \Vh{x - у)\^ Г{у, t)dx dy S с [ \Vh{x)\^ dx . 
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Here, we also have used that |V/i(x)|^ = 2|x|~^, whence the integral of |V/ip over 
any unit ball is dominated by that taken over Q. 

qed. 
Next, observe that и weakly solves the parabolic system (cp. (9), (10)) 

(11) d,u + Lu = {ôt + A) {2h * r ( - , t)) - 4A{2h * Г(-, t)) = 

= ( -4A(2 / ï )* r ( - , r ) ) ==(2/i |V(2/i) |^*r(-,0), if ^ < 1 

dtU + Lw = M|VW|^ , if r > 1 

hence a system of the type (3) if we formally define/via "Tomi's trick": 

r8(/i|V/f *r (> , r ) ) (x) ^ ^ ^ 

f{x,t,u,p)=l \Vu{x,lf 

[2h{x)p^ , ^ ̂  1 . 

(Note that, again, we have used the fact that Г is smooth and decays rapidly at 
infinity for r < 1 in order to differentiate under the integral sign and shift the dif­
ferential to /i. Also we have used (7).) 

Similarly, v is a solution of 

(12) d,v + Mv = / ( x , r, V, Vv), if t < 1 

ô,v + Mv = (d, - A) (2/z * r ( - , 2 - t)) - 4At; = 

= - / ( x , 2 ~ t,v,Vv), if t > 1 . 

To make the above calculations precise simply note 

Lemma 2. The function f is well defined on Q x 'j — cc, l[^ x R^ x R^ and 
measurable in (x,t)eQ x ] — oo, l [ and continuous in (w, P)E R^ x R^, Moreover, 
there exists a constant a e R such that 

\f{x,t,u,p)\Sa\p\^ . 

Proof. Clearly, it suffices to show that there exists a e R such that 

\2h{x)i\V{2h)\Ur{;t))ix)\ ^ a\V{2h*r{;t))ixf. 

Denoting absolute constants by с and using the identity (with ôij = 1 if i = j , 
ô,j = 0 if /• Ф 7) 

we have for ^ < 1 
|(ft|v/,p*r(-,0)(x)| = 

T 2 i ^ i ^ ^ expf Z!_\d, 
}R'\X- y\44Tt\l-t\y'' ^ \ 4\l-t\) 



1 - 1 JA 
^ - n exp { — ц^) àf] 

..m 
where i, = x/2 ^ ( 1 - t),t] = y/2 7 (1 - 0- '^'so 

|v(/z*r(-,0)(xr = E№-*r(-,0)(x)p = 

= 1 
-̂  - ^̂  

exp 

E 
^ i, 

J^ ^ 
4 | i - i 

12 
d?7 = : 

)H (4я|1 - l|)'/2 

_.уВЫО_. ВЦ) 
' i j l - t • 1 - f • 

Let ^ be any vector in IR^. By a rotation of our coordinate system we may assume that 
^ = {^i, 0, 0). Since h commutes with rotations such a transformation does not alter 
A or B. We estimate B[^) ^ ßf гС )̂ änd, using symmetry around the Xj-axis, 

5 2 2 © = С 
Jlf, 

(^ - ^)i + (^ - >,)̂  
1^ - »/Г 

exp ( —^^) àr] ^ 

^ c .Qxp{-f]^)di^^c\ ( exp ( -^^ )dy / . 

Thus we obtain 
Б ( с ) > 0 , Б ( ( ^ ) ^ c | ^ | - ^ 1̂1 large. 

Moreover, Б is a continuous function of ^. 

Similarly, Ä is continuous as a function of ^ and decays asymptotically at a rate 

A{^)uc\i\-\ Щ large. 

Thus, the quotient AjB is uniformly bounded, proving the lemma. 
qed. 

Let 
/ \ f/(^5 t,u, p), t < 1 

/ ^ 1 
/ (x , t,u,p), t <l 

h{x, t, u, p) = -f^ 2h(x)p^', t = 1 
- /(л- , 2 - r, w,p) , r > 1 . 

Lemma 3. The functions u, v are weak solutions in the sense of (4) of the parabolic 
systems 

d,u' + Lu' = g\x, t, w, VM) , 1 ^ i g 3 

д/ + Mv' = h\x, t, V, Vv), 1 ^ / ^ 3 . 
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Proof. Clearly, if cp is admissible in (4) and (p vanishes in a neighborhood of Г = 1 
then the analogues of (4) will be satisfied for ы and v, as follows from the derivation 
(11), (12) and Lemma 2 above. For an arbitrary testing function cp let cpi ~ ç{t S 1), 
9 j = О (г > 1) and let (Pz ~ (p ~ ^i- Since by the remark after (10) и and v eue 
continuous at r = 1 in Ljô  inserting (Pi and (p2 into the equations may be justified 
by an appropriate limiting process, yielding e.g. for the function u: 

[ —w dfCpj^ + a Vw V(pi] dx df = gcpj^dxdt + ucpidx — ucp^ dx 
J o x ] 0 , l [ JQ J ß x { 0 } J ß x f l } 

\^ — u д^(р2 л-0LVuV(p2]^dxdt =" ^(/)2dxd^ + u(p2dx. 
J ß x ] l , o o [ JQ J ß x { l } 

Adding these identities and taking account of the continuity of cp at ^ = 1 the claim 
follows. 

Similarly, the conclusion is obtained for v. 
qed. 

This concludes the construction. We remark that both и and v are solutions of 
uniformly parabolic diagonal systems with quadratic growth and smooth initial and 
boundary data but that develop a discontinuity in finite time. In the case of и the 
singularity persists for all later times whereas in the case of v the discontinuity im­
mediately disappears again as t is further increased. 
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