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A non-commutative generalization of locally compact Hausdorff spaces was
independently offered by Ch. A. Akemann [1—3], R. Giles and H. Kummer [8; 9].
They used the description of such topological spaces in terms of the bounded con-
tinuous functions algebra as the matter to be extended to the non-abelian situation.
In that way a non-commutative or ‘‘quantum” topology associated with- a C*-
algebra was defined as a certain family of projections in its atomic W*-envelope, and
the C*-algebra was interpreted as an algebra of “‘continuous” elements in accordance
with this topology.

In the present paper we give an intrinsic axiomatic definition of a general non-
commutative topology in terms of the lattice of all projections in an arbitrary atomic
W+*-algebra B. The system of axioms connects the properties of non-commutative
topology with order, Jordan and C*-structures on B. For all that two key ideas are
pursued: firstly, to generalize to non-abelian case the description of any topology
by means of the bounded lower semicontinuous functions cone and, secondly, to
provide that the set of “‘continuous” elements in B be a C*-algebra. Moreover, we
give an effective characterization of compactness and show that a non-commutative
topology is locally compact iff it is the Akemann-Giles topology associated with
a certain C*-algebra.

1. Preliminaries. Let us consider, together with any set X, the commutative W*-
algebra B(X) of all complex-valued bounded functions on X. The field of all subsets
of X may be naturally identified with the atomic boolean algebra PrB(X) of all
projections in B(X) (each subset of X is assigned its characteristic function); the
points of X are in one to one correspondence with the atoms in the lattice PrB(X).
Now, if there is a topology 7 on X, it may be regarded as some family of projections
in B(X). Namely, t = PrB(X) n L(X), where L(X) is the convex cone of all lower
semi-continuous bounded functions on X. In particular, if 7 is completely regular,
let C(z) denote the C*-algebra of all continuous bounded functions on X and let C(t)"
denote the set of suprema in B(X) (i.e. pointwise suprema) of all bounded increasing
nets of real-valued elements in C(t), then © = PrB n C(t)™.

It easily follows from the spectral theory that an arbitrary commutative atomic
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W*-algebra M is isomorphic to the W*-algebra B(X), where X is the set of all minimal
projections in M (i.e. atoms in the atomic boolean algebra PrM). In the light of these
facts the lattice PrB of all projections in an arbitrary non-commutative atomic W*-
algebra B can be regarded as a non-commutative analogue of the concept of set;
minimal projections in B play the role of points, any projection in B, being the supre-
mum of minimal ones, plays the role of a subset. Finally, a ‘‘non-commutative topo-
logy™ arises as the appropriate family of projections in a non-commutative atomic
W*-algebra.

This outlook at a non-commutative generalization of topology was the basis for
the Akemann-Giles analogue of a locally compact Hausdorff space. In what follows
we construct a non-commutative analogue of a general topological space and show
that the Akemann-Giles construction coincides with ours in the locally compact case.

For the general theory of C*- and W*-algebras we shall make systematic use of
books [6] and [12].

1.1. g-sets. An atomic W*-algebra B together with the set of all minimal projec-
tions therein will be called a g-set, the elements of PrB g-subsets and the atoms
in PrB ¢g-points. Union and intersection of g-sets are to be taken in the lattice PrB.
Two g-sets e and f will be called disjoint iff ef = 0. (The terminology is lifted trom
[8])-

Any C*-algebra A4 is associated with a g-set as follows. The second conjugate
space A*¥* is a W*-algebra; let Z, be the supremum of all minimal projections in A¥¥*,
then Z , belongs to the center of the algebra 4** [1; p. 278]. Set B, = Z,A**, then B,
is the atomic W*-algebra and we can consider 4 as the weakly dense sub-algebra
of B,, since A = A** and A — Z,A is an isomorphism (see [3], p. I). If 4 is abelian
with the spectrum X, then the points of X are in one to one correspondence with the
minimal non-zero projections of A** so that B, ~ B(X) and the Gelfand isomor-
phism give 4 ~ Co(X) = B(X).

1.2. Notation. For any subset E « Bput E* = {a e E [ a20},E={acE|a=
= a*},E, = {aeE||la] < 1}. Recall that the self-adjoint part B° of a W*-algebra B
is an ordered space, in which every norm bounded increasing net has a supremum.
Let E™ denote the set of suprema in B® of all norm-bounded increasing nets of elements
of E*; put E,, = —(—E)".

1.3. The Akeman-Giles Q-topolegy. For any C*-algebra A consider 4 = B,
as above. The family of g-sets t, = PrB, n (A™)" will be called the Akemann-Giles
g-topology on B,. The elements of 7, are called g-open g-sets, the elements of
l—t,={l-e [ eet,} are called g-closed. The pair (B, t,) will be called the
g-spectrum of the C*-algebra 4 and denote as g spec 4. If A is commutative, then 7,
is the usual topology on the spectrum of 4 and therefore is Hausdorff and locally
compact. In the non-abelian case 7, has similar properties. Namely, a g-topology 7,
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is Hausdorff: i.e., given disjoint g-points x and y there exist disjoint open g-sets e
and f with x < e and y < f [8; IIL.6]. After Akemann a g-set p e PrB, is called
g-compact if p is closed and there exists a € A" with p < a [3; ILI and IL5]. The
g-topology t 4 is locally compact: i.e., for any g-point x there exist an open g-set e
and a compact g-set p with x < e < p (this follows from [3; IILI]). In the abelian
case, when 4 &~ Co(X) = B(X), these concepts of g-compactness are equivalent to
the usual definitions.

1.4. Gelfand-Akemann-Giles theorem. An element a € B, is called 7 -continuous
if each spectral projection of a which corresponds to an open subset of the real
numbers is also an open g-set. A 7,-continuous element a is called vanishing at
if each spectral projection of a corresponding to a closed subset of the real numbers
which do not contain 0 is g-compact [3; L.I and IIL3].

Denote by C(t,)* the set of all t,-continuous elements of B, and by Co(t,)* the
set of all elements vanishing at oo. Set C(t,) = C(t,)° + iC(t,)® and Co(r), =
= Cy(14)° + iCy(7,)’. The elements of C(z,) and Cy(7,) will also be called 7 ,-con-
tinuous and vanishing at oo, respectively.

Theorem [3; 5; 8]. A C*-algebra A is exactly the algebra of all t,-continuous
elements of B, vanishing at oo, i.e. A = Co(t4); the set of all continuous elements
of B, coincides with the C*-algebra of all multipliers of A, i.e. C(t,) = M(A) =
= {beB,|4b + bA < 4}.

Throughout the whole paper B will always be used to denote an arbitrary atomic
W*-algebra, and © = PrB a family of projections (i.e. g-sets) in B. We start to discuss
the individual axioms which will connect the properties of 7 with various structures
on B.

2. Order axioms. It is easy to see that any Akemann-Giles g-topology contains 0
and 1 and that a union of open g-sets is also open. Akemann has shown that in
contradistinction to the usual topology, the intersection of two open g-sets is not
necessarily open (see a counterexample in [I]). The first three axioms describe the
corresponding properties of the general g-topology.

AXIOM Al. 0,1€7;

AXIOM A2. (e,) = T = V,e, €1, i.e. “union of open g-sets is open”.

AXIOM A3. e, fer, [e,f] = 0= e A ferT,ie. “intersection of two commuting
open g-sets is open”’.

Remark that actually axiom A3 is an order condition since [e, f] = 0 <> e =
=(enf)v(en(1—/f) Any Akemann-Giles g-topology satisfies all these
axioms [I].

We have noticed in § 1 that in the commutative case a topology of a topological
space X may be described algebraically by the equality © = PrB(X) n L(X). Our
fourth axiom will be a non-commutative version of this description, therefore we need
an appropriate definition of the class of lower semicontinuous (LSC) elements in B.
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Definition 2.1. The set E < B® is lower monotone closed (LMC) if E = E™; E is
upper monotone closed (UMC) if E = E,,. The minimal LMC set in B® containing E
is called the lower monotone closure of E and is denoted by L(E). The upper monotone
closure of E is similarly defined and denoted by U(E).

Lemma 2.2. If E is a convex cone in B®, then L(E) is a convex cone, too. If, besides,
E o R .1, then the convex cone L(E) is norm-closed in B’.

Proof. Take A, pe R* and a € E, then
(*) E < M(a) = {be L(E) | ia + pbe L(E)} = L(E)

and the set M(a) is LMC. So M(a) = L(E) and for each a € E and b € L(E) we have
Aa + pb € L(E). This implies that for each a € L(E) (x) is correct and we get similarly
M(a) = L(E). The last equality shows that L(E) is a convex cone. Let E > R . 1.
If a sequence (a,) = L(E) converges to an element be B* we may suppose that
|a, — b] £27". Then the increasing sequence d, = a, — 27"*' .1 is contained
in L{E) and also converges to b. Hence b = V,d, € L(E) and L(E) is norm-closed.

Put A*(t) = { ) e | 420, e;e1, ne N} and consider A(t) = A*(x) + R .1,
i=1

the minimal convex cone containing T and ‘“‘constants”. We now define the class of
lower semicontinuous (LSC) elements in B® as L(t) = L(A(r)). By Lemma 2.2,
L() is a norm-closed convex cone in B’. If t were the usual topology on a set X,
L(r) would be the class of all lower semicontinuous real-valued functions on X.

Similarly we may define the class U(t) of upper semicontinuous (USC) elements
in B® by setting

AT =) ={Y Afi| %20, fiel — 1},
i=1
Al —1)=4"1 =1+ R.1 and U(r) = U(A(1 — 7).
For any subset E = B° we shall denote by E the norm-closure of E in B°.

Lemma 2.3.If A is a C*-algebra and t is the Akemann-Giles topology associated
with A, then

L(z,) = 4",
where A=A + C.1 < B, is the C*-algebra obtained by adjoining the unit 1
of By1o A.
Proof. We have A(t,) = 4" < A" since 7, = (A*)". By [4; 3.3] the convex
cone A™ is LMC, therefore we get L(ty) < A™. To show the converse inclusion notice

that by virtue of the Gelfand-Akemann-Giles theorem (1.4) we have 4 = C(t,)
and so by the spectral theory 4* = A(t,)". This implies 4™ < L(t,), which means

A™ < L(t,) as desired.
The proof of the last lemma was based on the assertion in [4], which was stated

381



there in terms of A**, but applying theorems [9; 3.8 and 4; 2.6] we get the result in
terms of B,.
From the papers [9; 4] by Pedersen and Akemann we know that there is an.iso-

metric map of A™ onto the set I%(S(A4)) of all bounded LSC affine functions on the
state space S, = {¢p € 4**| [l¢| = 1} provided with the weak* topology of A*.
Through Lemma 2.3 we may therefore identify the convex cone L(t 4) With the cone
I2(S(A)) (see also § 5 below).

The next definition coincides in essence with that in 1.1, and in the commutative
case it is the usual definition of continuous functions.

Definition 2.4. An element a € B® is called g-continuous, if for each open set [ = R
the spectral projection E,(I) belongs to 7, a = [ dE, being the spectral representation
of a. Let C(z)° denote the set of all g-continuous elements of B® and C(t) = C(t)’ +
+ iC(1)*. The elements of C(z) will also be called g-continuous.

Proposition 2.5. If a family © < PrB satisfies axioms Al — A3, then

C(xy = V{C
Proof. Let ae C(r)° and let C*(1, a) be the commutative C*-subalgebra of B,
generated by a and the unit 1. By the Gelfand representation theorem C*(1; a) is
isomorphic to the C*-algebra C(Spa) of all continuous functions on the spectrum of a,
and any be C*(1, a)’ is associated with the continuous real-valued function f, on
Spa with E,(I) = E,(f; '(I)) for each I = R. This shows that for any b e C*(1, a)*
and any open set I = R the g-set E,(I) € , which means that C*(1, a)* = C(r) and
completes the proof.
It follows from the spectral theory that C(t)* < L(t) n U(t), i.e. that any con-
tinuous element in B® is both lower and upper semicontinuous. Set

Q(rf = L(tr) n U(r) and Q1) = Q) + iQ()°.
The elements of Q(t) will be called g-quasicontinuous. By Lemma 2.2, Q(t} is
a norm-closed linear subspace of B. In the commutative case, when t is the usual
topology, Q(t) certainly coincides with C(r). But it is not so for Akemann-Giles
topologies.

C < C(v), C is commutative C*-subalgebra} .

Proposition 2.6. Let 4 be a C*-algebra and (B4, t,) = q spec A. Then
O(t4) = {xeB,|a x be A Va, be 4} = Q(4),

i.e. Q(t,) is the space of all quasimultiples of A.

Proof. It follows from Lemma 2.3 that Q(z,) = A"~ 4,; by [4; 4.1] this inter-
section is exactly the space Q(A) of all quasimultiples of 4 in B,,.

By the Gelfand-Akemann-Giles theorem, C(t,) = M(A4) where M(A) is the
C*-algebra of all multiples of A in B,; in the paper [4] an example is given of a C*-
algebra A for which Q(4) = M(A) and Q(A) is not a Jordan algebra.
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AXIOM A4. 1 = PrBn L(‘L’).

Definition 2.7. A family 7 < PrB, which obeys the axioms Al— A4, is called
a g-topology. The elements of 7 are g-open g-sets the elements of 1 — t are g-closed
g-sets. Given any g-set e € PrB, its g-closure is e = /\{f[f is g-closed and e < f};
similarly its g-interior is °e = V/{g ] g is open and e > g}. The pair (B, 1) is called
the g-topological space.

It follows from Lemma 2.3 and [4; 3.6] that any Akemann-Giles g-topology satis-
fies axiom A4. In the commutative case that axiom follows from Al— A3, but if B
is non-abelian, A4 is independent of them. Axioms Al— A3 imply neither that C(t)
is a linear subspace of B nor that it is norm-closed.

Theorem 2.8. If 7 is a g-topology, then
C(r)y = {aeB

a"e Q(t) for all ne N} .

Proof. If a € C(t)* then by Proposition 2.5 a" € C(z)* for all n e N and so C(7)' =
c{ae B’] a" e Q(z)* for all ne N}. Conversely, let b e B, b"e Q(t) for all ne N
and denote by C*(1, b) the C*-subalgebra of B generated by b and the unit 1. then
through the Stone-Weierstrass theorem we get C*(1, b)* = Q(t)". Since for any open
I = R such that E,(I) + 0 there exists an increasing sequence (b,) = C*(1, b){
with E,(I) = V,b,, it implies that E,(I) e (Q(r))" < L(t). Thus in virtue of axiom A4
E,(I) is open, whence b e C()".

Corollary 2.9. If © is a g-topology then C(t)’ is a norm-closed subset of B’.
Recall that B’ is a real Jordan algebra and B is a Jordan C*-algebra (JC*-algebra)
with multiplication a o b = 4(ab + ba).

Proposition 2.10. Let T be a g-topology. If C(t)* is a convex cone in B* then C(z)*
is a norm-closed real Jordan subalgebra of B® and C(t) is a JC*-subalgebra of B.

Proof. By Proposition 2.5, given a, b € C(t)* we have a + [[a|.1,b + |[b]|.1eC(7)*
so(a + b) + (|a] + ||b])) . 1€ C(x)* whence a + be C(r)*. Moreover we get again by
Proposition 2.5 a® € C(t)* whenever ae C(t)*and thus ao b = ¥((a + b)> — (a — b)?) e
€ C(t)° whenever a, be C(t)*. Together with Corollary 2.9 this proves the first assertion.
Take a sequence (a,) = C(t) which uniformly converges to b e B. Setting Re x =
= ¥(x + x*), Im x = }(x — x*) e B for any x € B we see that [Re a, — Re b — 0
and |Im a, — Im b|| - 0. Since C(t) is closed, we obtain that Re b, Im b e C(1)*
which implies b € C(t).

Lemma 2.11. Let t be a g-topology . Suppose X < Q('c)+ is a convex cone satisfying

(i) X > R™ . 1; (ii) a'/? € Q(z)° for any aeX.

Then X = C(r)*.
Proof. Take a € X. By Theorem 2.8 it suffices to prove that a” € Q(r)* whenever

n € N. This assertion is trivial for n = 1 and we assume that it has been proved for
all values of n < m. Consider « > |a|; since by (i) 1 + ™ 'a € X we see from (ii)
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that the element
%(% 1) o= 24> _i_f('%_ 1)(l_2) a 3ad + ...

1 -1 1/2= -1
(1+ o« 'a) 1+ a7 'a > 3

belongs to Q(t)*. So a™ is the uniform limit

1\ -1 m—1 %_
a™ = lim oz'"(z) l:(l + o ta)'? =y < )cx‘"a"]
a—=+ o m k=0 k

of elements in Q(t)’. Because Q()* is closed, we get the lemma.

3. Algebraic regularity of g-topology. Next we introduce a condition connecting ©
with the Jordan algebra structure on B.

AXIOM AS. If ae A*(1), then a'/? € L(1); if a e A*(1 — 1), then a'/? € U(x).

An arbitrary Akemann-Giles g-topology satisfies this axiom. Indeed, if 7 = 74
for a C*-algebra A, then T < (A4*)" whence A¥(t) = (A*)" and A™(0)'? =

< ((4*)™)/2. Since (4%)"/> = A™ and '/ is an operator monotone function on B*
[10] we have ((4*)")"/* = (47)"; aplying Lemma 2.3 we see that (4*)" = L(7).
From all that we obtain (A4%(7))"? = L(r). Similarly we can conclude that
(A1 =)' = U(x).

Theorem 3.1. If a g-topology t satisfies axiom A5, then C(t)° is a norm-closed
real Jordan subalgebra of B°* and C(t) is a JC*-subalgebra of B.

Proof. Let X denote the convex cone A*(t)nA*(1— 7). In view of Proposition 2.10
it suffices to show that C(t)* = X. The inclusion C(7)* < X follows from the spectral
theory. The inverse inclusion is valid since the cone X satisfies all the conditions of
Lemma 2.11 (we have a'/? € Q(t)* whenever a € X in virtue of axiom A5 and norm-
continuity of the operator function '/?).

Axiom A5 may be weakened to get a necessary and sufficient condition for the set
C(r) be a JC*-subalgebra of B. Such a weak variant, being equivalent to the original
axiom A5 for completely regular g-topologies (see Definition 3.4 below), will concern
only the part of g-topology 7, which can be reproduced by means of C(x).

Let us define the regularization t™# of a g-topology t by setting 77 = PrB n
N (C(r)*)" (in general the projections family t™¢ need not be a g-topology).

Lemma 3.2. If © = PrB satisfies axioms Al—A3, then C(t) = C("*%).

Proof. Clearly, C("€) = C(t). Conversely, by Proposition 2.5, given a € C(t)* the C*-
subalgebra C*(1, a) = C(t), so for any open I = R the spectral projection E(I),
being a supremum of an increasing sequence of elements in C*(1, a), belongs to 77,
Thus we get C(7)° = C(z"#)° and, consequently, C(t) = C(t"%).

AXIOM A5°. If ae A*(7"%), then a'/? € L(x), if a € A™(1 — 7™%) then a'/? € U(x),

Theorem 3.3. 4 g-topology 7 satisfies axiom AS5° iff C(t) is a JC*-subalgebra of B
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Proof. Necessity follows from Proposition 2.9 and the equality

Cr)* = A* (™) n A (1 — ™F),

which can be easily deduced from Lemma 3.2 and axiom AS5° in a manner similar
to the proof of Theorem 3.1.

Sufficiency. If C(r) is a Jordan algebra, then C(r)* is a convex cone and

A* (%) = (C(r)*)". Indeed, whenever a =) Ae;, 4; 20, e;et™, there exist
i=1

increasing sequences (by)i=; < C(t)*, i =1,2,....n, with e; = Vb, and a =

= V¢, where ¢, = Y 1;by is an increasing sequence in C(1)*. Now by Proposition

i=1

2.5 we have (C(1)*)"? = C(r)* and the operator monotonicity of the function

1'% gives ((C(x)*)")"/* = (C(x)*)" = L(t). Similarly we can conclude that

A*{(1 — %)/ < U(t). Hence axiom A5° holds.

Definition 3.4. A g-topology t is called completely regular, if for any g-point x
disjoint from a closed g-set f there exists an element a € C(7); withax = xand af = 0
(this means that a takes the value 1 at x and the value 0 on f).

Any Akemann-Giles g-topology is completely regular [8; 4.7].

Theorem 3.5. If a completely regular g-topology t satisfies axiom AS°, then
T = 178, :
Proof. Given any open g-set e € T put
Ie)={(1+a)"'.a | aeC(t)*, a < Je for some / > 0} .

Whenever (1 + a;)""' .a;el(e), i =1,2, we have d=(1+ (a; + a;))"".
(a, + ay)el(e)and (1 + a;)' .a; < dfori = 1,2 (since by [6: 16.8] the function
(1 +1)~"' is antimonotone and so the function (1 +¢)™'.1=1— (1 + 17" is
operator monotone). This means that I(e) is a directed set and there is a supremum e,
of I{e) in B°. To complete the proof we shall show that e = e,. The implication
asle=(l+a)'.axegivese =< e Inasmuch tiscompletely regular, for any
g-point x < e there exists a, € C(r)* with a,x = x and a, < e. So for each natural n
we have (1 + na,)”'na,el(e) whence e; = (1 + na,) ' na, = (1 + nx)~"' . nx
and ¢; = x. Finally, we have e; = V,., X = eand e; = e.

Corollary 3.6. A complete regular g-topology t satisfies axiom AS iff the set C(t)
is a JC*-subalgebra of B.

4. Symmetry: the sixth axiom. Every unitary u € B (i.e. such that uu* = 1 = u*u)
yields an * automorphism ¢, : a — u*au of the W*-algebra B, which induces an
automorphism of the lattice PrB onto itself. If 7 is a g-topology in B and a unitary
element u is T-continuous, it is very natural to require ¢, to be a ‘““homeomorphism™
of 7. Such requirement seems to be independent of axioms A1 — A5 and so it becomes
our Jast axiom.



AXIOM A6. u*tu < 7 for any unitary u € C(1).
As a matter of fact we need only the weakened variant of A6 like that in § 3.
AXIOM A6°. u*t"*u < t for any unitary u € C(1).

Theorem 4.1. Let © be a g-topology. Then C(x) is a C*-subalgebra of B T
satisfies axioms AS° and A6°.

Proof. Necessity. In view of Theorem 3.3 we need to check axiom A6° only.
Take a unitary u € ((z), then u* C(z)* u = C(x)* since ¢, is an * automorphism
and ((z) is a C*-algebra. Axiom A6° holds because

w*t"fu = u*((C(r)*)" " PrB)u =
= u*(C(t)")"u n PrB = (C(1)*)" n PrB = "¢

Sufficiency. By Theorem 3.3, C(7) is a JC*-subalgebra of B and we have to prove
that i[a, b] = i(ab — ba)e C(1)* whenever a, b e C(t)° for this implies that ab =
=asb + 3[a, b] e C(x). For any t > 0 consider the unitary element.

u, = exp (ith) = Zo %t} b"e C(z) .

Then (1/t) (ufau, — a) = a, uniformly converges to i[a, b] as ¢ tends to 0. Since for
any unitary u € C(r) we have by the spectral theory, Lemma 3.2 and by virtue of
axiom A6°

u* C(t)f u = u* C(v"!) u = C(u*t"*u)* = C(z)*,

the elements a, belong to C(z)* and thus i[a, b] € C(7)".

Definition 4.2. A g-topology tis a T} g-topology, if for any two disjoint g-points x
and y there exists an open g-set e € T with e = x and ey = 0. It also means that any
g-point is t-closed.

Proposition 4.3. Let a T, g-topology t satisfy axioms A5° and A6°, then t is com-
pletely regular iff T = 17°€,

Proof. By virtue of Theorem 3.5 it is enough to prove sufficiency. Since 7 is T},
elements of C(r) distinguish normal pure states of B and so the C*-algebra C(7) is
weakly dense in B. For any e € 7 consider the C*-subalgebra A(e) = {a € C(r) | eae =
= a}. By [8; 4.2 and 4.5] A4(e) is weakly dense in the W*-algebra eBe, so by the transi-
tivity theorem [8; 2.7] for any g-point x < e there exists a € A(e); (ie. a < e)
with ax = x.

We now define a C*-topology as a g-topology which obeys axioms A5 and;A6.
Any Akemann-Giles g-topology is a C*-topology. :

5. Compactness. Ch. Akemann introduced the notion of g-compactness in terms
of the C*-algebra A (see 1.3), but an intrinsic g-topological description of g-compact
g-sets has not been given. Nevertheless, Akemann showed in [3] that the intersection
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condition for a g-set p (for any decreasing net (g,) of 7 -closed g-sets Vp A ( /\ q,) *

+ 0 implies p A (A,4,) + 0) and the regularity after Effros [7] follow from the ¢-
compactness of p, it being unknown whether these conditions are sufficient. We make
use of a multiplicative version of the intersection condition.

Let us define a g-topological space to be a pair (B, t) where 7 is a g-topology.
A g-set pePrB is called regular if for any open g-set eet | pe|| = | pe| (p is -
closure of p).

Definition 5.1. Let (B, 7) be a g-topological space. A g-set p e PrB is called quasi-
compact if for any decreasing net (b,) = U(t)* with b = A,b, € U(z)*, inf | pb,p| =
= “ pbp”, If (B, 7) is a completely regular T; g-topological space, then a g-set p € PrB
is called compact if p is quasicompact and regular. (B, 7) is called a compact g-space
if the unit | is a compact g-set.

Proposition 5.2. If a completely regular T, g-topology satisfies axiom AS, then
any.¢compact g-set p is closed.

Proof. Suppose, on the contrary, that p + p and consider a g-point x with
x £ p — p. By Theorem 3.5 there exists an increasing net (a,) = C(t); with 1 — x =
= V,a, Put b =1 — a,, then x = A,b,, (b,) = C(t)* = U(z)*. For all natural n
and all « we have x < E, ((1 — 1/n, ©)) = e,,e tand b, = ((n — 1)/n) . e, Since p
is regular we see that

2 [pbop] 2 " [peap] = " et 2 " |7l =

and finally |pb,p| = 1. Since p is compact, this implies that hpxpl‘ = 1 which
contradicts xp = 0.

Any Akemann-Giles g-topology is T; complete regular [3; IIL.1 and 8; 3.9] so
Definition 5.1 of compact g-sets is applicable.

~Theorem 5.3. Let (B, t,) be the g-spectrum of a C*-algebra A. A q-set p e PrB,
is g-compact after Akemann (see 1.3) iff p is compact in the sense of Definition 5.1.

Proof. In §2 we have mentioned an isomorphism of A, on the cone U“(S ).
With any g-closed g-set pe 1 — 7, this isomorphism correlates the USC affine
function p on S, and the closed face F(p) = {p € S, l b(e) = 1}. The map p — F(p)
is induced by the Effros-Akemann correspondence between the g-closed g-sets and
the 6(A4*, A)-closed order ideals of A* ([7], [2]). So that map is a bijection of 1 — 7,
on the set of all closed faces of S, and for each pe 1 — 1, and be A, we have
I pbp] = max [B(o)].
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Notice that a g-closed p is g-compact after Akemann iff F(p) is a compact subset
of S,. It may be proved in the same way as Akemann-Urysohn’s lemma [3; IIL1].

Necessity. It is enough to prove that p is quasicompact. Consider a decreasing
net (b,) = U(7)* with b = A,b, and put A = inf ||pb,p| = ||pbp|. For each «, F, =

= {pe F(p)| b(@) = 4} + 0 is a closed subset of the compact set F(p) so F, =
= NF, # 0. Take § € F,, then b(¢) = inf b,(¢) = A whence | pbp| = max b(¢p) = A.
x 2 eF(p)

Sufficiency. If 45 1, it follows from Proposition 5.2. Let 4 51 and A=4+C. 1
as in 2.3. Denote as F(p) = S; the o(A*, )-closure of F(p). Since Sj is compact, it is
enough to show F(p) = }'T(;) For any ¢ e}@ we have ¢ = ¢y + Ao, where
@o€ A**, 1 2 0, ¢, is the unique pure state of 4 which vanishes on A and ”(p”
= |oo| + ’Af We shall show |¢|| = ||@o|, whence A = 0 and ¢ € F(p). Let (v,) =
< A" be an increasing approximate unit, then |pu,p — p| - 0 since (1 — u,) <
= C(t4)", 0= AJ(1 — u,) in B* and p is compact. Let us choose u, = u,, with
U,,, =2 u,and pu,p =2 p — 27"p, n being natural. Consider the closed subsets F, =
={0ed**|4,0) 2 1 — 2"} = 4*; then F(p) < F,, hence F(p) < F,. This means
that @(u,) = @o(u,) Z 1 — 27". Since n was arbitrary, |¢,| = 1 = |¢| as desired.

Definition 5.4. A completely regular T; g-topological space (B, t) is called locally
compact if for any g-point x there exists an open g-set e = x with the compact g-
closure é.

Theorem 5.5. A g-topological space (B, 1) is the g-spectrum of a certain C*-
algebra iff © is a locally compact C*-topology.

Proof. Necessity. Let A be a C*-algebra, then 7, is the complete regular T,
C*-topology by the above. For any g-point x € B, take a € A] with ax = x, then
e=E/(} o)) =E(%,1]) 2 x, eet and & < E,([4,1]) < 2a. So e is g-compact
after Akemann, hence e is compact by Theorem 5.3.

Sufficiency. Let (B, 7) be a locally compact C*-topological space. Then C(7) is
the weakly dense C*-subalgebra of B and t = PrB n (C*(q))" (see 4.3). Put (B, %) =
= g spec C(7). By [8; 3.4] there exists a central projection z € PrB with B ~ zB.
Since the indentification B = zB agrees with the inclusions C(t) = B and C(z) < B,
we have

© = PrB n (C(7)*)" = Pr(zB) n z(C(r)*)" = z(PrB n (C(z)*)") = zt.

Let us show z e 2. By hypothesis, if x < z is a g-point in B (hence in B) there exists
ee T with e = x and & g-compact. Besides, there exists a € C(t); with ax = x and
a < e. Let p be the support of a in B. Then pe £ and x < p. If we show p < z, the
assertion will follow for then z = V{pe?|x < p < z, xis a g-point} which is
2-open. To prove p < z we consider any g-point y < 1 — z and show ay = 0.
Indeed, by [8; 3.9 and 4.2] there exists a decreasing net (b,) = C(t);, with y = A,b,

388



in B. Then |laya| < inf |ab,a| and
lab.a] = |[(b.?a) = (b;a)]| = [[b"2a*b' 2] < |b'%eb'2| = [ebye] .

Since 0 = A,(zb,) we have ||eb,e| — 0, for ¢ is a compact g-set. Thus |jaya| = 0,
i.e. ay = 0. It implies that py = 0, hence p < z. So we have that z is t-open. Now
consider A4 = {ae C(r)|az = a}. Then by [8; 5.9] g spec 4 = (zB, zt) = (B, 1),
which completes the proof.

Corollary 5.6. A C*-topological space (B, t) is compact iff (B, 1) = q spec C(t).

This last theorem shows that for an arbitrary locally compact C*-topological space
(B, 7) the g-space (B, t) = g spec C(t) may be described as “‘the Stone-Cech com-
pactification of (B, 7)”.
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