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HOLOMORPHIC EXTENSION OF A FUNCTION WHOSE ODD 
DERIVATIVES ARE SUMMABLE 

Ivo VRKOC, Praha 

(Received September 15, 1983) 

Some applications in the physics of elementary particles lead to interesting problems 
of analytic functions. In discussing the theory of particle scattering [1] the problem 

00 

arises whether a function / e C°° for which ^/^^""^^^(0 converges for every t is 
holomorphic. ""^ 

We shall solve the problem in a slightly more general setting. Let R^ be the real 
line, / an open interval in R^, C°°(/) is the class of all complex valued functions 
defined on / having all derivatives on / . 

Theorem. Let fe C^(/). / / 

liminf |/^2" + i>(r)|-i/^ ^ С for every tel 
n-^oo 

where С is a positive constant, then f can be uniquely extended to an entire function 
in the complex plane. 

Proof. The assumption of the theorem yields j/^^"^^X^)| ^ ^ (^ ) i^l^Y ^^^ ^ ^^ ' 
n = ù,l,... where M{s) is a positive function. Choose h > 0, h^ < Cjl and denote 
g{t) - f{s), s = ht, J = {sjh\ sei}. Then 

00 

(A) YJ \Q^^''^^\t)\ converges for every te J . 
/1 = 0 

Conversely if the theorem is proved for g i.e. g can be extended to an entire function, 
then the same is vaHd for the original function / . This enables us to replace the 
assumption of the theorem by assumption (A). Certainly we can restrict ourselves 
to the case of real valued functions. The investigation of the class of functions fulfilling 
(A) requires a series of lemmas. 

Lemma 1. Let I be an interval and F a closed subset of L Let f„ be continuous 
functions, fn'. I -^ R^. If lim fn(t) exists at every point tel, then there exists an open 

/I->00 

interval (a, b) a I,{a,b) гл F ф $ and a number M so that 

\f{t)\ й M, |Л(0 | й M for te{a,b)nF 

where f{t) = lim f„{t). 
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Proof. Define ^„(f) = max {|Л(г)|;/с = 1,..., n], ̂ (г) = sup {|/,(0|; ^ = 1,...} = 
= lim g„{t). The functions g„ are continuous and since /„ converge we have g{t) < oo 

П-+ 00 

for t e L Since g is a function of the first class the restriction of Ö' to F has a point 
of continuity at F by Baire's direct theorem [2]. We conclude that g{t) and hence 
Qn{t)^fn{t\f{t) are bounded in a certain neighbourhood of the point of continuity 
in F. 

Lemma 2. Letfe ^^{a, b) and let |.f "̂ + ̂ ^01 = ^ f^^ t e{a, b), n = 0, \, ... , 
Then \ß^"\t)\ S MM, for te {a, b), n = 1, 2, . . . where M, = 4/(b - a) + 
+ {b- a)/4. 

Proof. We have 

J to 

so that |/^'"^'^(^o)| й (2M + M{t - fo)^/2)/|r - ô| й 4М/(Ь - a) + M{b - a)/4 
for every t^ e [л, b]. 

Now we derive a result which is used in [1] and which is very close to Lemma 2. 

Corollary. Letfe ^^(a, b), let X/^^^^^XO converge for t e (a, b). If there exists 
n k = 0 

a constant M such that \Y,f^^^^^\t)\ ^ M for te{a,b) and every nonnegative 
00 /c = 0 

integer щ then ^^/^^''^O ^o^^^^rges for every t e (a, b). 

Proof. Using the first equality from the proof of Lemma 2 we conclude 

I tf^'^'m ^ I tf^'^t) - tf^'^mt - to\-' + M\t - to\ 
k=s k-s k=s 

for t, to e {a, b) . 

Choose 0̂ e (a, b). For a given e > 0 we find t e (a, b) so that t Ф to, M\t — to\ < 
< e/2. Since the odd derivatives are convergent we can find По so that the first term 
on the right-hand side is smaller than e/2 for n, s ^ WQ. By Bolzano-Cauchy Theorem 
the sum of even derivatives is convergent for ô e (a, b). The corollary is proved. 

00 

Remark L Letfe ^^(a, b) and ^ |/^^"X0| ^ oo for t e (a, b). Then there exists 
00 /1 = 0 

0̂ e (a, b) such that E K̂ '̂X̂ o)! < oo. 
/1 = 0 

ft 

Proof. Applying Lemma 1 to functions ^ j f̂ '̂'̂ (r)| we conclude that there exists 
fc = 0 n 

an interval (t^, f̂ ), ci й t^ < t2 й b and a constant M' such that Y, |/^^^X0| = ^ ' 
k = 0 
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for t E{ti, t2), n ^ 0. As in the proof of Corollary we obtain 

X|/^«-^'(g| ^ {t\f''\t)\ + t |/<-'Ы|)/к - ô| + M'\t - t,\ 
k=s k = s /c = s 

f o r r , Го G ( ^ 1 , ^ 2 ) , 
00 

which yields that ^ |/^^^'''^(?o)| < 00. 
fc = 0 

Let a function g fulfil condition (A) on / . Choose an interval [ao, bo], a^ < bo, 
[«0, bo] c: J. Denote 

00 n 

(1) s(O = Z0(^"^'XO. s„(O = S0^"""(O-
n = 0 fc=0 

The functions iS, »Ŝ  fulfil the assumptions of Lemma 1 with F = [«о, Ьо]. There 
exists an interval (a^, b^), a^ ^ «i < b^ ^ bo and a number M such that 

|S„(f)| й M , |5(r)| ^ M for te (ai, b^). 

Thus {д^^^^^Щ S 2М for te{a^, b^), n = 0, 1, . . . . By Lemma 2 we have 
|ôf̂ "XO| ^ 2MM,i for ? G («1, bi), n = 1, 2, ... . 

00 

Denote g{t, t^) = ^ ^("'(ïo) {t - ^o)"/«! • 
n = 0 

We have proved 

Lemma 3. Let a function g fulfil (A) and let an interval [ao, bo] a J be given. 
There exists an interval (a^, b^), «o = '^i < ^1 = ^0 ^o t^^^ Q{U h) ^^ defined for 
all complex t and real t^, t^ e (а^, b^, g{t, ÎQ) is an entire function in tiftQe (a^, b^) 
and g{t) = g{t, t^) for t, to e (a^, b^). 

Let t(y be chosen in (a^, b^). Consider a maximal open interval /^ containing 
(a^, b|) so that g[t) = g(t, to) for t el^. 

Lemma 4. The function g{t, t^) is defined for t^ el^ and g{t) = g(t, t^) is valid 
for t, ti e 1^. (II is the closure of I\.) 

Proof. Since g(t, to) is an entire function we have 
00 

9{t, to) = E g^'^Kt,, to) {t - t.fjnl for every t, . 

Choose ti from I^. The definition of/^ gives б'̂ ^Х^О "̂  d^"\h^ h) so that 
00 

git, to) = E 9^"\t,) {t - «i)7«! = g{t, t,). 
n = 0 

Since g(t, t^) does not depend on t^ if ^̂  e /^ we can denote ^'(^ ^1) as g(t;I^). 
Either /jL = J or we can repat this construction in J — Ii .We conclude that 

there exists a countable family ^ of disjoint intervals I^ and entire functions g(t; 4 ) 
so that the intervals Ij^ are maximal in the sense that 

g{t) = g{t;I,) for tel,. 
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Remark 2. The family J^ can be constructed so that {U4- h ^ ^] is dense in J. 

Proof. If G = J - U4 7̂  0 we can repeat the construction in G. 

Remark 3. If 4 n /̂  = 0 then I^nl^ = 0. 

Assume Ij^nl^ ¥• 0. Choose t^elk n Д. Since g{t) = О̂ (Г; 4) for ^ e 4 we obtain 
^̂ "X ô) = ^̂ "X ô; /,) forn = 0, 1,. •. . Similarly g^-\to) = ^̂ "X ô; h) for n = 0, 1, • • • • 
Since g{t;Ik) and g{t\I^ are entire functions we have g(t;Ik) = g{t;Is) = ö̂ (0 ^̂ ^ 
tel^Kj /5. This contradicts the fact that 7;̂? ŝ are maximal. 

We shall need a result from the theory of entire functions and an auxiHary state­
ment. 

Lemma 5. Let numbers z^^ fulfil 
n 

(2) X Zfc/(2w - 2fc + 1)! = 0 for n = 1, 2, . . . , zo = 1 . 
k = 0 

Т/геи [ẑ l ^ 2c" ""̂  where с = 1/2. 

Proof. Assume \zi,\ ^ 2c""^* for к = 0, I,..., n. By (2) we conclude 

|z„H.i| g 2(с/(2и + 3)! + c3/(2n + 1)! + ... + c^"^^lV.) = 

= 2с2"+*(с-(2"+з)̂ (2?г + 3)! + c-^^"+'^l{2n + 1)! + ... + c-^jy.). 
00 

Since с = 1/2 we have (exp(l/c) - exp(-l/c))/2 - 1/c = ^ c"^''^'V(2/c + 1)! ^ 

^ 1/c so that \z„+A g 2c "̂"̂ .̂ The lemma is proved. We conclude that 
00 

(3) EW^4/3. 
k = 0 

00 

Lemma 6. Ler / be an entire function fulfilling ^ |/^^^X0| < ^ for t e (0, /i), 

/i > 0. T/zen ^ l/̂ '̂X^)! ^ ^ f^^ eyerj; complex w anJ 

Z 2 „ E / ^ ' ' " ' ' ( 0 ) / ( 2 f e - 2 « + l ) ! = / ' ( 0 ) , 

where z„ are йе numbers given by (2). 
00 

Proof. By Remark 1 there exists ô e (0, Щ such that X |/̂ ^X^o)| < oo. Since/ 
IS entire we have 

00 OO ^^ 

E I/'^'WI g Z I |/'"X'o)|. |w - ïol"-"/!« - /с)! = 
n °° 

и=0 fe=0 

for every complex w. 
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We have 
0 0 OO 

Iz„I /^ ' " 'X0) / (2 /c -2n+ \)\ =1^.р'''^ЩЦ2к -2n+ 1)! + 
СЮ 00 

+ È -« Z /<̂ 2it + i)(0)/(2/c - 2n + 1)1 . 
71 = 0 /c = max(iV+1 ,") 

By the first statement of Lemma (w <̂  0) and by (3) the first and the last terms con­
verge. Denote the last term by Q,^. Si<̂ ce \zi^\ è 4"̂ " (see Lemma 5) we conclude 

СЮ 00 . 

IQNIUY^'" У I/C2/C+1̂ (0)1 -^ О for N -^ CO . 
n = 0 fe = max(iv+1 '^) 

The definition of the numbers z„ (L^mma 5) У̂ ^̂ ^̂^ 

Z z, if''''\0)l{2k - 2n + 1)! = /'(0) for N^O. 

The lemma is proved. 
Lemma 7. Le? g be an entire function fulfil^^^Q (A) on (0, /z), 0 < /i ^ 1. (/ 

(4) |^^'"^^^(0)| й 1 , |^^'"^'W| ^ 1 /^^ ^ = Ö' 1̂  ••• • 
then 
(5) [̂ '̂"""'XO! ^ ^ 0 /^^ r 6 [0, /i] , n = 0, 1,... , 

where MQ = 4e(l + e)/3. 
Proof. Denote 

(6) /(O==0'(s), th = s. 
The function / is entire again and since /z ^ 1, 

(7) \f^'"\^ ^ 1 ' |/^'"^(0| ^ 1 f̂^ n = 0, 1, ... . 
Define 

00 

/t(0 = Z/^''"''(O)''''V(2/c+l)!, 
k = 0 

00 

/2(0 = E/^""(0)«"'/(2^)!-
/c = 0 

Notice that the series are absolutely convergent since/is entiie. By (7) we have 

| / n i ) | = I I ; / ' ' ' ( 0 ) / ( 2 f c - 2 n ) ! | g e . 
k=n 

Again due to (7) we conclude 
(8) | / Г ' ( 1 ) | а 1 + е. 
The numbers/U''+i)(0) fulfil 

00 

^/(2<c-M)(o)/(2^_2„ + i ) != / (2" ) ( i ) . 
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Since g is entire and fulfils the condition (A) the function / fulfils the assumptions 
of Lemma 6 so that 

00 00 00 

/'(0) = E ^̂ . 1.Л^""'*(0)/(2^ - 2„ + 1)! = X zj['"\\) 
and due to (3), 

| / " ( 0 ) | ^ 4 ( И - е ) / 3 . 

Since/^^"^ fulfils the conditions (7) again we obtain 

Taking into consideration the first part of the inequahties (7), 

\^"Щ\ й 4(1 + e)/3 for n = 0, 1 , . . . 
so that 

00 CO 

| / ( 0 | = 1 1 Р " Щ t"lnl\ ^ 4(1 + e)/3 X «•/«! ^ 4e(l + e)/3 for t e [0, 1] . 
И = 0 n = 0 

The identity (6) yields \gXt)\ ^ MQ for t e [0, h] if ^ is entire. Since the derivatives 
g^^"\t) fulfil the same condition (4) the lemma is proved. 

Now we are able to prove 

Lemma 8. The family #" (which is defined after Lemma 4) is a one-element set. 

Proof. Assume that #" contains intervals /^ = {u^, v^), /2 = («2, V2), v^ g W2-
By Remark 3, v^ < и2. Denote 

The set F is certainly closed, nonempty since v^, M2 e F, and has no isolated points 
due to Remark 3. 

Applying Lemma 1 to this F and to the functions S,^(t) we conclude that there 
exists an interval (x, y), x < y < x + \, v^ ^ x < y ^ U2, (x, j;) n F"' 7̂  0 and 
a number M so that 

\gi2--^^\^M for ^ e ( x , j ; ) n F , n = 0,l,,..,. 

Since F has no isolated points there exist infinitely many points of F in (x, y) so that 
we can additionally assume x, j e F. Let /^ = {uf,, v^) be from ^ such that 4 с (x, y). 
Since the end-points of 4 belong to (x, y) n F we have 

\g<''^^'\u,)\^M, \д^''^'Щ^М, n = 0 , l , . . . . 

By the definition of/^ we have g{t) = g{t; Д) on /̂ ^ where g{t; 4 ) is an entire function. 
By Lemma 7, 

|^(2. + i)(^)[ ^ |^(2n4-i)(^.j^)| ^ д^д^^ for tel,. 

Since this bound is independent of such 4 we obtain 

\д(^'^ + Щ\^ММо for ^е (х , з ; ) , n = 0, 1, . . . . 
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By Lemma 2, \g^^"\t)\ g MMQM^ for t e (x, j ) , n = 1, 2 , . . . . By Remark 2 and due 
to the fact that {x, y) r\ F ^ (j^ there exists /„ e ^ such that /„ с (x, y). The previous 
estimates for ^̂ ^мч-1) ^^^ (̂̂ 2,0 ̂ j^i^ ^^^^ ^:^^ interval /„ is not maximal. This contradic­
tion proves the lemma. 

The p roof of the theorem is now very simple. By Lemma 7 the family #" contains 
only one element I^. By Remark 2 v̂ e have /^ = / . The theorem is proved. 

Conclusion 1. Let fe C°°(i^^). / / 

lim inf |/^2« + i)(^^|-i/n ^ g^^^ > 0 for every t e R^ 
n-> 00 

where g is a continuous function then f can be uniquely extended to an entire 
function. 

Let /„ = ( —n, n). Since /„ is compact, there exists C„ > 0 such that the assumption 
of the theorem is fulfilled on /„ wehere С is replaced by C„. By the theorem / is holo-
morphic on every /„ and the extensions of/ coincide. 

Conclusion 2. / / M{t) = sup{|/^^"+^XO|' n = 0, 1,..,} < 00 for every tel 
{we do not assume that M(t) is bounded) then the statement of the theorem is valid. 

Since [/̂ "̂'̂ ^ (̂5)1 ^ M(5)for sei WQ can transform / to ^̂  by / (s ) = g(t), s = ht, 
О < h < 1 similarly as at the beginning of the proof of the theorem so that condition 
(A) is valid. 

00 

Conclusions. / / ^/^^""^^^(0 converges for every tel then the statement of the 
theorem is valid. "^ 
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