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ORDERS WITH A NORMAL BASIS

JURAI KOSTRA, Bratislava

(Received December 14, 1983)

Let K be a finite extension of the rational number field Q. Such a field will be
called an algebraic number field. The integral closure Zy of the ring Z of rational
integers in an algebraic number field K will be called the ring of integral numbers
of the field K.

In the present paper we shall show that if an Abelian algebraic number field K
has no normal integral basis then there is no order of the field K with a normal basis,
and if the field K has a normal integral basis then there are infinitely many orders of
the field K with a normal basis. The former assertion follows from the known results
while the latter is a corollary of two theorems about circulant matrices which will
be proved in the sequel.

Defivition 1. Let K be an algebraic number field and let the degree of the extension
K|Q be equal to n. A Z-module B = K is called an order of the field K if B satisfies
the following three conditions:

1) LeB.

2) B has a basis over Z consisting of n elements.

3) Bis aring.

Remark 1. (Borevi¢, Safarevi€ [1].) The ring Z is an order of the field K which
contains all the other orders of the field K.

Defirition 2. Let K be a normal algebraic number field. A basis of K over Q is
called a normal basis if it consists of all conjugates of an element. A normal basis is
called a normal integral basis of the field K if it is a basis of Z; over Z. If B is an
order of K then a normal basis is called a normal basis of B if it is a basis of B over Z.

Lemma 1. Let R be an order with a normal basis of a normal algebraic number
field K. Then the trace of any basis element in the field Q is equal to +1.

Proof. Let G(K/Q) = {9, g1, --., 9,} be the Galois group of the extension K/Q.
Let

x?l’ xaz, s x9n
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be a normal basis of the order R. Remark 1 yields

TI'K/Q(x!I,-‘) =x" 4+ x2 4+ ...+ x"=aq

fori =1,2,...,nand a € Z. From the definition of an order we have 1 € R and so
1 1 1
] = —x9 4+ Zx% 4 . 4 = xon
a a a

where 1/a € Z, hence a = +1.

For the proof of Theorem 1| we shall need the following known results:

(1) Narkiewicz [5] (from the proof of Theorem 4.5): Let K be a normal algebraic
number field and let the degree of the extension K|Q be equal to n. If the homo-
morphism Try,o is surjective then the discriminant D{K) cannot be divisible by the
n-th power of a prime.

(2) Narkiewicz [5]: Let K be the same as in (1). If the discriminant D{K) is not
divisible by the n-th power of a prime then the extension K[Q is tamely ramified.

(3) Leopold [3]: An Abelian algebraic number field K has a normal integral
basis if and only if the extension K|Q is tamely ramified.

Theorem 1. An Abelian algebraic number field K has a normal integral basis if
and only if there is x € Zy such that

Trgo/x) = 1.

Proof. Let K be an Abelian algebraic number field. If K has a normal integral
basis then Lemma 1 implies that there is an element x € Zx such that Trgo(x) = 1.
Now let [K : Q] be equal to n. If there is an element x € Zy such that Tryo(x) = 1
then the homomorphism Try,q is surjective and from (1) we have that the discriminant
D K) is not divisible by the n-th power of a prime. From (2) it follows that the exten-
sion K/Q is tamely ramified and so (3) implies that the field K has a normal integral
basis.

Remark 2. The previous theorem is not true for a genetal field K. A counter-
example is found in Martinet [4].

Corollary 1. If an Abelian algebraic number field K has no normal integral basis
then there is no order of the field K with a normal basis.

Proof follows from Remark 1 and Lemma 1.
Now let K be a cyclic algebraic number field with [K : Q] = n and let G =
= G(K/|Q) be the Galois group of the extension K/Q. Let g be a generator of G and let

2 -1
x, x9, x9°, .., x5

be a normal basis of the field K over Q. Let 4 be a regular rational circulant matrix
which we shall write in the form

- i T
A =circfay, as, ..., a,)" .
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The matrix A transforms the normal basis

to the basis
Vi Yas oo )

where

n =1

yi=ax +ax? + ...+ ax’
n=1
yo=ax +ax! + ...+ a,_x

Yo = axx + asx? + ... + ax?

From the above we see that
Yiv1 = )’ql
fori =0,1,...,n — 1 and so yy, ¥, ..., ¥, is a normal basis of K over Q.
Let

n-—1
x, x% ..., x?

and

n =1

/0 A

be two normal bases of the field K over Q. Then there are rational numbers ¢y, ¢5, ...

..., ¢, such that

n=1

=c X +cx? + ..o+ e x?

y =
and so
n-1
Y o o=cex+oex? + .+ X,
2 n-=1
Yo = x + X! 4+ o+ X,

-1
X + e3x? + .+ e x? .

Consequently, the transformation matrix from one normal basis to another is
a regular rational circulant matrix.

In the following we shall need two propositions from [2].

Proposition 1. Let A, B be rational circulant matrices and let the degree of each
of them be n. Then the following matrices are circulant:

1) A + B,

2) a. A where ae Q,
3) 4.B,

4) A7V if A7 exists,
5) A"

Proposition 2. Let C = circ, (¢, ¢3, ..., ¢,) and let { = e*/". We denote y =
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= (¢15 €25 ..., ¢,) and
p(z) =c¢y + ez 4+ ...+ 2"t

Then we have
det C = [ p,(0"Y).
j=1

Theorem 2. Let K be a cyclic algebraic number field and [K : Q] = n. Let
A = circ, (ay, az, ..., a,)"

be a regular circulant matrix and ay, a,, ..., a,€ Z. Let D be the determinant of
the matrix A. By A;, i = 1,2, ..., n, we denote the algebraic complement of a; in
the matrix A. Let

a; = +1
1

n
i=

and

il

a; (mod h)

fori,jef{1,2,...,n}, where h = D[l and | = (A,, A,, ..., A,) is the greatest com-
mon divisor of the algebraic complements. Then the matrix A transforms a normal
basis of any order B of the field K to a normal basis of an order C of the field K,
where C < B.

Proof. Let x,, x5, ..., X, be a normal basis of an order B of the field K. Let

a;

(yb Yas o5 yn) = (xh X2y eney xn)'A’

so that Yy, V2, ..., Vu is @ normal basis of a Z-module C = B which contains n
linearly independent elements over Z. By Lemma 1

n
z x; = *1
i=1
and we have

Trgso(y1) = Trge(aixy + azx, + ... + a,x,) =_Zl a;.y x; = +1
i= j=1

and so 1 € C. Now it is sufficient to prove that C is a ring.

Since
. [A, A A,
A~ =cire, (=L, 22, ..., =2
D D D
we have
1
X; = ]_(t1,i)”1 + 1y s et V)
1
for i =1,2,...,n, where t; ;,t,; ..., t, ;€ Z. Hence

h.Bc C.
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Now we choose arbitrary Vi, ¥; from the basis elements of C and we shall prove

that y;y; e C. Let
blxl + b2x2 + ..+ b“X",

yi
yj = C1Xg + Xy + .+ 0,
where (by, by, ..., b,,)T and (¢1> €2 -+ c,,)T are the i-th and the j-th column, respec-
tively, of the matrix A. Then

Yivi © Z byeixi + Z(bkcl + biey) xpx, =
k=1 k*1
n n
= byey Y xi + (bac2 + bzcl)lekxz +kzl(bkck — byey) x; +
k=1 k¥ L=
+ Z(bkcl + blck - blcz - bzcl) XXy .

k¥1

For any automorphism g € G(K/Q) we have

and so

n
2
byc, Z xp =1L,
k=1

(b1cz + bzc1) Z xx; =L, ,
k*1
where Ly, L, € Z. From
a; = a; (mod h)
for i,je{1,2,...,n} we have
b.c, — byey, =0 (mod h)
and
bye, + bie, — bye; — byey =0 (mod h).
Now we can write
yyi=L+ Ly +h.zy + h.z,
where z,, z, € B and so
yiyjeC.

The theorem is proved.

Theorem 3. For any natural number n = 2 there is a circulant matrix A of
degree n such that the assumptions of Theorem 2 are satisfied and IdetAI * 1.
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Proof. First we shall prove the case n = 2. Let A = circ, (ay, a,) be a circulant
matrix such that a; + a, = 1, a;,a,€Z and a; > 1. We have

D = det 4 = det (circ, (ag, | — ay)) =2a, — 1 > 1.

For the algebraic complements we have

and so
(A, A7) = 1
and
= —D =2a, — 1
(Ay, 45)
Then

a; =a, —(2a, — 1) =1 —a, = a, (mod h)
and for n = 2 the theorem is proved.

Now let n > 2 and let m be a natural number greater than 1 sich that (m, n) = 1.
Then there is an integral rational number x such that

n.x =1 (mod m)
and x = 1. We put

z=1-(n—-1)x,
then

z = (1 — nx) + x = x (mod m)
and so there is an integral rational number t such that
zZ—Xx=1.m.

Now we shall prove that the matrix A = circ, (z, Xy Xy ouns x) satisfies the assumptions
of Theorem 2. From the definition we have

l=z+(n—-1)x.
Clearly

z

x (mod t . m)

and so it is sufficient to prove that h = ¢t . m. By Proposition 2

D=detd=[]p("
i=1

where y = (z, x, x, ..., x) is n-dimensional. We have

Hp(l)=z+(n—-1)x=1,
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2) p (U =z 4+ xf™' + x4 4 x(VD=z—x=1t.m
for j > 1.
Hence D = (t.m)""" and |D| > 1.
For the algebraic complements we have

Ay = det(circ,_y (z, %, X, ..., x)) = (1 — x) (1. m)""?
and
|4i| = |4

il

for i, j > 1, because if we leave out the first row and the i-th column in the matrix 4
for i > 1 we get matrices transferable one to the other by means of an exchange of
the rows. If we leave out the first row and the second column in the matrix 4 we get
a matrix H which can be obtained also by replacing the first row of the matrix
circ,_4(z, x, x, ..., x) by the (n — 1)-dimensional vector (x, x, ..., x). If we multiply
the first row of the matrix H by

1 —x

X

and subtract all the other rows from the first one we get the matrix circ, _(z, x, x, ...
..., x) by virtue of

z+(n—-1)x=1.

From the above we have

A, = — Ti— det (circ,_(z, x, X, ..., x)) = —x.(t. m)"" 2.
- X

Then
(Ay, Az, ..., A,) = (t.my—?
and so
h=t.m.

Theorem 3 is proved.

Corollary 2. Let K be a cyclic algebraic number field with a normal integral
basis. Then there are infinitely many orders of the field K with a normal basis.
In the proof of Theorem 4 we shall need the following proposition.

Proposition 3 (Leopold [3]). Let K be an Abelian algebraic number field. Then K
has a normal integral basis if and only if K is contained in a cyclotomic field
generated by the m-th primitive root of unity with a square-free m.

Theorem 4. Let K be an Abelian algebraic number field with a normal integral
basis. Then there are infinitely many orders of the field K with a normal basis.

Proof. Let [K : Q] = n. The Galois group G = G(K/Q) is a finite Abelian group
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which contains n elements. The main theorem about Abeliari groups yields that the
group G can be decomposed into a direct sum of cyclic groups

G = dirZCj
j=1
For j =1,2,...,k we put
l; = card C; ;

then
k
n=card G = []1;.
j=1
By G, for i = 1,2, ..., k, we denote the following subgroup of G:

k
Gi = dlr Z Cj .
j=1
j¥i
It follows from the Galois theory that for each of the groups G; there is a subfield K;
of the field K such that the action of G; on K is identical and

G(K;[Q) ~ G|G; ~ C;.

The group G(K,/Q) can be identified with the group C; because the restrictions of the
automorphisms from C; to K; generate the group G(K,/Q).

The field K has a normal integral basis. Proposition 3 implies that each of the fields
K; has a normal integral basis. By Corollary 2, for i = 1, 2, ..., k, there are infinitely
many orders of the field K; with a normal basis. From the field K;, fori = 1,2, ..., k,
we choose an order B; with a normal basis.

B = {xi,l’ Xi,25 005 xi,t,} .

No we shall show that the set

B(B;, By, ..., By) = {l;llyj | y,-eB,-}

is a normal basis of an order B of the field K.
Denote the least field generated by the fields K;, K; by
K; v K;.
Clearly

k
K;=K.
j=1

j=

By e we denote the identical automorphism. Let g € G and g # e. Then
=gl+g2++gk
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where g, € C; and there is g; =+ e. It means that there is z; € K such that
9(z;) = 9,(z)) + z;.

Now it follows from the Galois theory that

for me Z and

where a, ; € 0, x; ;€ B;. If we denote (B, By, ..., By) = {t;, 2, ..., t,} we have

where a, € Q. So, from the above and from the fact that all elements from
B(By, B,, ..., B;) belong to Zg (Remark 1) we conclude that the set B(By, B,, ..., B;)
is a basis of an n-dimensional Z-module B = Z;. Now we shall prove that this basis
is normal. Let t,, t, be elements from B(By, B,, ..., B,), then

k
Hxi,sv

where X; 5, X; s, € B;. Since each of the bases f8; is a normal basis of the corresponding
K; we have that for any i there is an automorphism g; € C; such that

k
tu = ],—Ixi,su > tv =
i=1

i

gi(xi,su) = Xis,
and so
(g1 + g2+ ... +g) t,—t,.
This implies that f(By, B,, ..., B,) is normal.
Lemma 1 yields that

x; ;= £l

j=1

— 1~

n
Ztr:
=1

i=

—-

r

and so 1eB.

Now we shall prove that B is a ring. To this end it is sufficient to show that¢; . ¢;€ B
for i,je{l,2,...,n}. Let
k k

ti= 11 %> t=11%.;

s=1 s=1
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where iy, j,€{1,2,..., }. Then

and from the fact that each of

X, X

S,is * V8, Js
can be expressed as a linear combination of elements from f; with integral rational
coefficients we have that #;¢; is a linear combination of elements from BBy, B,, ..., B;)
with integral rational coefficients. Hence it follows that B is a ring and thus an order
of the field K with a normal basis.

Now if Bj is an order of the field K; with a normal basis and B; £+ B; we get
a normal basis

ﬂ(Bl’ ‘325 ERRS] Bi—l’ B;3 Bi+1’ ey Bk)
of an order B’ of the field K. The set
B(By, By, ..., Biog, Bisy, ..., By)

is a basis of the field K over the field K; and we get B and B’ as all linear combinations
of elements from this basis with coefficients from B; and B;, respectively. The fact
that an expression in a basis is unique yields that B + B'.

The proof of the theorem now follows by Corollary 2.

Now we shall show, in the quadratic field of algebraic numbers K with the integral
normal basis, an example of an order invariant with respect to the Galois group
G(K/Q), which has no normal basis.

Example 1. Let K = Q(/d), where

1.d=*#1,

2. d =1 (mod 4),

3. p* td for all primes p.

By ([1], p. 154) the numbers
1+ /d
2

form a basis of the ring Zx over the ring of integral rational numbers Z, hence an
integral basis of the field K. Now we show that the numbers

1—Jd 1+.Jd

2 2

form a normal integral basis of the field K. The property of being integral follows
from the fact that this basis is obtained from the basis

! 1+ /d
’ 2
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by the transformation with the unimodular matrix

-]

The fact that these elements are the roots of the polynomial

which is irreducible over Q implies that this basis is also normal.

Now it is easy to see that the generating automorphism g of the group G(K/Q)
can be represented as

g oV 1y
2 2

It is clear that the Z-module B = Z[1, \/d] is an order in the field K, which is
invariant with respect to G(K/Q). Further,

Trgo(y/d) = Jd — d =0
and
Try(1) = 2,
hence the order B contains no element of the trace 1. By Lemma 1 the order B has

no normal basis.

In the following example we shall show a ring 4 with a normal basis, which is
a complete module in the cubic field of algebraic numbers K without an integral
normal basis. This example does not contradict Corollary 1, because the ring A
does not contain the unit element.

Example 5.2. Let L = Q({), where { is a primitive root of degree 9 from 1. By
[5], Lis a normal extension of degree 6 over the field Q. The numbers

1, C’ gz, CS! C4’ CS

form a basis of the ring of integral numbers Z, over Z and the Galois group G(L/Q)
is isomorphic to the multiplicative group of residual classes (mod 9) prime to 9.
In our case G(L/Q) is a cyclic group of order 6. The elements of the group G(L/Q)
map the primitive roots of degree 9 from 1 onto the primitive roots of degree 9
from 1. If { is a primitive root, then

LG G0 8
are all the primitive roots. The element g € G(L/Q) which maps
(-8

has order 2 and hence forms a cyclic subgroup of order 2, under which by the main

401



theorem of the Galois theory the cyclic extension K of the field Q of degree 3,
L > K o Q remain fixed.

Now we shall show that the submodule 4 = Z[a,, a,, o] of the ring of integral
numbers Zj of the field K, where

oy =140+, ay=14+03+, ag=1+¢*+0,

is a complete Z-module with the normal basis a,, 5, o3, and simultaneously a subring
of the ring Z,. We shall also show that Z, contains no element of the trace 1and hence
the field K has no normal integral basis.

To show that oy, a5, o3 form a normal basis of a complete submodule of the ring Z
we need to show that

(1) oy, oy, 3 belong to Zy;

(2) «y, ay, a3 are linearly independent over Q;

(3) &y, @, a3 are mapped onto each other under automorphisms of the group
G(K/Q). '

(1) follows from the fact that these elements belong to Z, and remain fixed under
the automorphism g € G(L/Q), under which the field K remains fixed.

Now we prove (2). Let

a0y + a0, + azoy = 0
where a,, a,, az € Q. Using
C+C+1=0,

which means that the sum of all roots from 1 of degree 3 is equal to 0, we lower the
exponents in the expressions for «;. In this way we get

0=1.(a, +a, + a;) + {a; — a,) + *(a, — ay) +
+ Maz — ay) + B(az — ay).
As
1’ C’ C23 Cs’ C4’ Cs
form an integral basis of the field L over Q we get that all coefficients in the last
expression are equal to 0. From this it can be easily shown that
Ay = dy = dz = 0

This proves (2).

(3) follows from the fact that the generating automorphism h of the group G(L/Q)

h:i (-2

restricted to the field K is a generating automorphism h of the group G(K/Q), which
maps oy On o,, o, on o3 and oz on oy.

Thus we have proved that A4 is a complete submodule of the ring Zg.
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Tt is easy to show that
2 _ o 2 _ o 2 _ 9
oy = 200 + 0y, oy = 20, + o3, oy = 2003 + oy,
00y = 0 — O3, OOy = 0y — Oy, O30y = Oz — 0y .

Hence we see that A is a subring of Zy.
Now we shall show that Z, contains no element of the trace 1. The proof proceeds
by way of contradiction.

Let o € Z, be such that
TIK/Q(O() =1.
As o4, a,, 003 is a basis of the field K over Q we can express o using rational coef-
ficients:

o= a0y + ao, + azos.
Now we shall evaluate the trace of the element o by using the last expression:
Trjo(%) = ay Tryo(ey) + a3 Try(s) + a3 Tryjoles) = (ay + az + a3). 3.
Hence
a; +a, +a; =%.

Now, similarly as in the proof of linear independence of the basis oy, a,, 003, We
express o in the integral basis of the field Las

a=1.(a; +a, + a3) + C(al —a,) + {*a; - a;) +
+ C4(03 - 512) + CS(% - a1)-
The fact that the coefficient at 1 is not an integral rational number yields that « ¢ Z,

and hence o ¢ Z, which contradicts the assumption.

Thus we have proved that Z does not contain any element of the trace 1 and hence
we conclude from Theorem 1 that the field K has no integral normal basis.

Lemma 1 together with the fact that the trace of the basis elements oy, o,, a3 is
equal to 3 imply that A is not an order of the field K.

From the preceding it could appear that if an Abelian field of algebraic numbers
contains an integral element with a trace h, then there is a ring A < Zy with a normal
basis, whose elements have the trace h. The following example shows that this need
not be true.

Example 3. Let K = Q(/2). By ([1], p. 154) the integral basis of the field K is
1, 2.

Hence :
TrK,Q(l) =2, TrK,Q(\/Z) =0.

Consequently, if there exists a ring 4 < Z; with a normal basis x,, x, where
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Tryjo(x;) = 2 then

xp=1+1.2
where [ € Z. Then

xp Xy =(14+1.J2)(1 —1y2)=1-=2l.

It means that x,x, can not be expressed in the basis xy, x, with integral rational
coefficients, because 1 — 2] is odd.
Hence we have shown that though the field K contains an integral element of

the trace 2, it does not contain any subring A = Z, with a normal basis, whose
elements have the trace 2.
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