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Czechoslovak Mathematical Journal, 36 (111) 1986, Praha 

ISOMETRIES IN RIESZ GROUPS 

MILAN JASEM, Kosice 

(Received June 8, 1984) 

Isometrics in the lattice ordered groups have been studied by K. L. Swamy [8], 
[9] and W. B. Powell [6] for the abehan case and by J. Jakubik in [3], [4] for the 
general case. Isometrics in the 2-isolated abelian Riesz groups have been investigated 
by J. Rachûnek [7]. 

In this paper isometrics in abehan Riesz groups are studied and some of Rachûnek's 
results on isometrics from [7] arc gencrahscd. It is also shown that the results on the 
relations between isometrics and direct decompositions of lattice ordered groups 
[3], which J. Jakubik and M. Kohbiar extended to abeUan distributive multilattice 
groups [5], can be also extended to abehan Riesz groups. Note that a Riesz group 
need not be a multilattice group and conversely, a multilattice group need not be a 
Riesz group. 

First we recall some notions and notations used in the paper. 
Let G be a partially ordered group. The group operation will be written additively. 

We denote G^ = {xe G; x ^ 0}, G~ = {x E G; x ^ 0}. If a^, ..., a„ are elements 
of G, then we denote by Ща^, ..., a„) and L{ai, ..., a„) the set of all upper bounds 
and the set of all lower bounds of the set {(^i,..., a,^}, respectively. For each a e G, 
\a\ = U(a, —a). 

The following notion of isometry in partially ordered groups was introduced 
by J. Rachûnek [7]. 

If G is a partially ordered group, then a bijection / : G -> G is called an isometry 
in G if |a — b| = \f{a) — f(b)\ for each a, b e G. An isometry/in an ordered group 
G is called a 0-isometry if/(0) = 0. 

A Riesz group is any partially ordered group which is directed and satisfies the 
Riesz interpolation property, i.e., for each a^, bj e G {i,j = 1, 2) such that â  ^ bj 
(i,j = 1, 2) there exists ce G such that ai ^ с S bj (i,j = 1, 2). See [1]. 

Throughout the paper we assume that G is an abelian Riesz group and / is a 0-
isometry in G. 

1. Lemma, a) If x e G"̂ , then there exist x^, X2 e G^ such that x = Xi + X2, 
fix,) ^ 0, f{x2) й 0, f{x) йх,^х+ f(x). 

Ъ) If XEG'^, teG, te [0; x] n [f{x); x + / (x ) ] , then x + f{x) = 2t. 
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Proof. If x e G ^ , x' = / ( x ) , then U{x) = \x\ = |x'|. Thus x ^ x\ x ^ -~x\ 
hence x + x' ^ 0. Because of x ^ 0, x + x' ^ x'. Since G is a Riesz group, there 
exists b' in G such that 

0 ^ b' ^ X , X Sb' йхЛ- X . 

x+ x' 

Fig. 1 

(Cf. Fig. 1.) Let b = f'^b'). From b' ^ 0, x ^ b' we get x e U{b') = \b'\ = \b\. 
Thus X ^ b. Because of x - Ь ^ 0, x' - b' ^ 0, from \x - b\ = \x' - b'\ it follows 
that X - b = b' - x\ Let d' = x' - b\ then d' ^ 0 , d' ^ x\ ~d' = x - b. 
Denote d =f~^{d'). Then we obtain x ^ x — J, since 

xe jb ' l - |x' - ^'1 = \x - d\. 

Hence d ^ 0. From \d'\ = \d\ we get d = -d' = x - b. Thus x = b + d. Because 
of X + x' ^ b\ b' ^Ov^Q get X + x' e U{b') = \b'\ = |x' - d'\. Thus x ^ - J ' = 
= X — b, hence fe ^ 0. 

From the relations Ь ^ 0, /(b) ^ 0 and \b\ = \f{b)\ we obtain/(b) = b. If we put 
Xj = b and X2 = d we obtain the required elements. We have proved tha t / (x i ) = ^i 
and also /(X2) = -X2. Thus x' = b' + d' = b — d = x^ — X2 and clearly x + 
+ x' = 2xi, X — x' == 2x2-

It is clear that for each t e G such that t e [0, x] n [/(x), x + /{х}] the relation 
^ + / (^ ) = 2^ is vahd. 

Hence the following assertion is valid. 

2. Lemma. Let x, x^, X2 be as in Lemma la) and let x' ^ / (x) . Then f(xi) — x^, 
/ ( •^2) = ""'^25 '" '̂ = Xi — X2, X + x ' = 2 X i , X — x ' = 2X2, X ^ X. 

The following assertion can be verified analogously: 

3. Lemma. If x e G~, then there exist elements x^, X2 e G~ such that x = x^ + 
+ XlJiXi) = Xi , / (X2) = - X 2 . 

4. Lemma. Let x, x^, X2 be as in la) and x = f{x). / / 0 g у ^ x, x' ^ j ; ^ x + 
4- x' holds for some у e G, then у = x^. 

Proof, Let у EG such that O^y^x, х'^уйх + х\ Since x^ S x, Xj й 
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^ X + x \ there exists Ух e G such that 

У й Ух й X, х^ й Ух й ^ + х\ 

From Lemma lb) and Lemma 2 we obtain x + x' = 2y, x + x' = 2y^, x + x' = 
== 2xi. Thus we get 2{ух — j;) = 0; 2{ух — x^) = 0. Since y^ — у ^ 0, y^ — x^ ^ 
^ 0, we have у = Ух = Xx-

4\ Lemma. Let x, x^, X2 be as in la) and let x' = / (x) . If 0 ^ у g x, — x' ^ 
^ 3; ^ X — x' hold for some y e G, then y = X2. 

Proof. From the assumptions we have x' ^ 3; + x' ^ x + x', 0 g v + x' ^ x. 
In view of 4 we obtain y + x' = x^. Then 2 implies that y = X2. 

5. Lemma. Let x e G^, x = и + v, u,v e G'^, f{u) ^ 0, f{v) g 0 and let x^, X2 
he as in la). Then и = x^, v = X2-

Proof. Clearly Дм) = и, f{v) = —v. Let x' = / (x) . Because of x - и ^ 0, from 
|x — M| = |/(x) — f{u)\ = |x' — u\ we infer that x — w ^ —x' + u. Since 2м ^ м 
we obtain x + x' ^ w. Thus м ^ x, м g x + x', x^ ^ x, x^ ^ x + x'. Then there 
exists an element t e G such that и ^ t ^ x, x^ ^ ^ ^ x + x'. In view of 4 we have 
t = x^. Thus и ^ Xx- Since x = x^ + X2 = м + i;, then и — X2 = x^ — w ^ 0. 
Because of x ~ t; ^ 0, f(v) = — i; we obtain x — i; e |x — i;| = |x' — f{v)\ = 
= \x' + v\. 

Thus X — V "^ x' + V. In view of 2 we infer that 2(x2 — v) ^ 0. In view of 
^2 — ^ ^ Ö we have X2 = v. Then clearly x^ = u. 

6. Lemma. Let x, у e G'^ such that x = x^ + X2, У = Ух + У2^ f{xx) ^ 0, 
/(^2) й О, f{yx) è О, /(у2) й О where х^, Х2, Уь yi^O"^. 

Then the following conditions are equivalent: 
(i) y^x; 

(ii) Xx ^ Ух ^^d X2 ^ У2-
Proof. The implication (ii) => (i) is obvious. Let у ^ x be valid, and let x' = / (x ) . 

Because of x — j ; = Xi + X2 — J i ~ J2 ^ 0, from |x — j] = |x' — y'\ we obtain 

X — 3; ^ x' — j ' , X — у ^ y' — x\ 

Thus X — x' ^ у — y\ X + x' '^ у + y\ In view of 2 and 5 we have x + x' ^ 
^ 2j/i ^ j i , X - x' ^ 2з;2 ^ j2-

Clearly ^i ^ X, з;2 ^ x. Since G is a Riesz group, there exist u,veG such that 
j i ^ M ^ X, x' ^ M ^ X + x', — x' ^ г; ^ X — x', }̂2 ^ î̂  ^ ^- From 4,4' it follows 
that Xx = u, X2 = V. Thus y^ ^ x^, У2 S ^2-

We denote ^ i = {x e G+; / (x) ^ 0}, Б^ = {x e G+; / (x) ^ 0}. 

7. Lemma. Т/ге se^ Ax is closed with respect to the operation +. 
Proof. Let X, j ; e ^ i , x = x^ + X2, J = У1 + 3̂2? where x^, X2, J i , J^a^G"^, 
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/(xi) ^ 0,/(x2) й 0,f{yi) ^ 0J{y2) s 0. Then from 5 we obtain x^ = x, y^ = y, 
^2 = 0, j2 = 0. Using analogous notation for x + j we infer from 6 that x̂  ^ 
^ Ĝ  + 3 )̂i; Ji ^ (^ + }̂ )i is valid. 

From the above inequalities and 2 we infer that x^ + y^ ^ x + y + /(x + y). 
Since X + J = Xi + Ji , we obtain /(x + }̂) ^ 0. 

Analogously we can verify 

8. Lemma. The set B^ is closed with respect to the operation +. 

9. Lemma. Let x, y e G'^ and let the elements x^, X2, Ух, У2, (^ + y)i, (x + y)2 
be determined according to la). Then (x + y)i = x^ + j i , (x + y)2 = X2 + У2-

Proof. This is a consequence of 5, 7, 8. 
Summarizing, we have 
10. Lemma. The partially ordered semigroup G^ is a direct product of partially 

ordered semigroups A^ and B^. 

Put A = A^ - A^, В = Bj^ - B^. Then from 10 and Thm. 2.3 [2] we infer 

11. Lemma. The partially ordered group G is a direct product of partially 
ordered groups A and B, 

Remark. For g e G WQ denote by g^^ and gß the components of g in the direct 
factor A and B, respectively. If x e G"̂  and elements x^, X2 are as in la), then ac
cording to the definition of A^ and B^ we have x^ = x^, X2 = Xß. 

The following two lemmas generahze Theorems 2.3 and 2.4 of Rachûnek [7] 
(in [7] it was assumed that G is a 2-isolated abeHan Riesz group). 

12. Lemma. / / g is an isometry in a partially ordered group H, a, с e H, a S c, 
g{a) й д{с), then g{[a, c]) = [g{a); д{сУ\. 

Proof. Because of с — a ^ 0, g{c) — g[a) ^ 0; then from |c — a| = \g{c) — g{a)\ 
we obtain с — a = g{c) — g{a), hence —g{c) + с = —g{a) + a. Let b e [a, c]. 
Since Ь - a ^ 0, from |b - a| = \g{b) - g{a)\ we get -g[b) + b ^ --g{ci) + a. 
Thus g[c) - g{b) ^ с - b ^ 0, hence g{c) ^ g{b). Because of с - b ^ 0, from 
\c - b\ = \g{c) - g{b)\ we obtain -g{c) + с ^ -g{b) + b. Thus g{b) - g{a) ^ 
^ Ь - a ^ 0, hence g{b) ^ g{a). We obtain g{[a, c]) ç [ö (̂a); б (̂с)]. If we consider 
the isometry g~^ instead of g we get g'^lgia), д{сУ] ç [a, с]. Thus [^(a), 6f(c)] £ 

Analogously we can verify 

13. Lemma. / / g is an isometry in a partially ordered group Я, a, с e Я, 
a й c, g{a) ^ g{c), then g{\a, c]) = \g{c\ д^а)^. 

If Я is a partially ordered group, then a quadruple (a, b, u, v] of elements of Я 
is said to be elementary if и e L{a, b), v e Ща, b) and v — a = b — u. 
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14. Lemma. Let {a, b, и, v} be an elementary quadruple in an abelian partially 
ordered group H and let g be an isometry in H. Assume that g{a) й diu), g(a) S 
^ g(v). Then {g{u), g{v), g(a), g{b)} is an elementary quadruple. 

Proof. Let v[ = g{v) - g{a) + g{u). Then the quadruple {g{u),g{v),g{a),v\] 
must be elementary. Let v^ = g~^{v[). Because of u — a = b — VWQ get 

К - 1̂ = \Ф1) - Ф)\ = Ыи) - д{а)\ = \и ~ a\ = \b - v\ = \v - b\. 

Since Î; — Ь ^ О, we obtain v — b ^ v — v^. Thus v^ '^ b. Analogously we have 

\vi ~ u\ = \g{v^) - g{u)\ == \g{v) - g{a)\ = \v - a\ = \b - u\ . 

Then b — и ^ 0 implies b — и ^ v^ — u. Thus v^ ^ b, hence b = v^. 
The following assertion can be verified similarly. 

15. Lemma. Let {a, b, u, v] be an elementary quadruple in an abelian partially 
ordered group H and let g be an isometry in H. Assume that g[b) ^ g{u)y g[b) ^ 
^ g(v). Then {g{u), g{v), g[a), g{b)} is an elementary quadruple, 

16. Lemma. For each xe G we have f(x) = x^ — Xß. 

Proof. Let X e G. Then there exists v e [/(0. x). If we put и = x — v, then 
{0, X, u, v} is an elementary quadruple. Because of Ü ^ 0, in view of la), 2 there exist 
elements v^, V2 e G^ such that v = v^ + V2, f(v^ = v^, f{v2) = —V2, f{v) = 
= ^1 — ^2- Since w ̂  0, it follows from 3 that there exist elements w ,̂ W2 ^ ^~ 
such that и = u^ + M2, f{u^) = u^, /(^2) = —^2^ /(w) = Wi — ^2-

Let z' = v^ — U2- Because of z' ^ 0, we obtain from 2 and 10 (by considering 
the isometry/"^) tha t /~^(z ' ) = v^ + «2. If we put z = / " ^ ( z ' ) , t = v + U2 then 
{0, z, U2, v^}, {f J, t, z, v} are elementary quadruples. Since z' = v^ — U2, f{v) = 
= v^ — V2 we have z' ^ f{v). Because of z ^ ^ ^ г;, 13 implies that 

f{v)uf{t)uf{z) = z'. 
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Next we put t^ = и + v^. (Cf. Fig. 2.) Then we obtain и й ti S ,̂ î '^ ^ ^ •̂ 
Thus the quadruples {u2, t^, u, z}, {z, x, t^, t] are elementary. From/(z) = v^ — U2, 
f{u) = Ui — U2 it follows that/(2:) ^ / (u ) . Because of w ^ î ^ z, by using 12 we 
get/(w) uf{ti) uf{z). Then according to 15 we obtain that {f[ti)j{t)J{x)J{z)} 
is an elementary quadruple. Since in each Riesz group, U{a) + U{b) = U(a + b) 
holds for each pair a, b of this group (cf. [1], Chap. V, Thm. 27), we infer 

u{fi^) - m) = u{f{^) - m+fit) - fix)) = 
= U{fiz)-f{t)) + Uifit)-fix)) = l/(z) ~fit)\ + 1/(0 -fix)\ = 

= |z — 1̂ + |r — x | = |r — z | + 1̂  — x\ == \v ~ V^\ + 1^2 — M| = 

= U(v — Vi) + U{u2 — u) = U{v — v^ + U2 — u) . 
Thus /(z) — f(x) = V — v^ + U2 — u, hence f{x) = v^ — V2 + u^ — W2. Clearly 
Ui = u^, и2== Uß, v^ = VA, V2 = Vß, Thus /(x) = {v^ + u^ - {vj, + Wß). From 
the relation x •= и + v = {v^ + Uj) + (% + Uß) we get Xj_ = v^ + w ,̂ x^ = 
= % H- UQ. Hence/(X) = X^ — Xjg. 

17. Lemma. Let H be an abelian partially ordered group and let H = P x Q 
be any direct decomposition of H, For each xe H define g(x) — Xp — XQ. Then g is 
an isometry of H and g(0) = 0. 

Proof. It is easy to verify that |z| = \zp\ + \ZQ\. Let x, y e H. From the relations 
X — y = (xp — УР) + (XQ — Уо), X ~ у = (x — y)p -• (x — y)Q we obtain 
(x — y)p = Xp — УР, (X — y)Q = XQ — yQ. Then we infer ^̂ (x - j;) = (x ~ y)p — 
- (^ - y)Q ^'^p- УР- {^Q - Уо) = (^p - ^0) - {УР - Уо) = â'(x) - д{у\ Thus 

\Q{^) - 9{у)\ == 1б̂ (̂ ' - у)\ = Ißi^ - у))р\ + |(б̂ (-̂  - у))а\ = 

= i(^ - У)р\ + | - ( х - y)Q\ = |(х - у)р\ + |(х - у)а\ = \х- у\. 

Clearly 0̂ (0) = О . 
Summarizing, we have 

18. Theorem. Let G be an abelian Riesz group. For each 0-isometry f in G there 
exists a direct decomposition G =' Ä x В such that f(x) = x^ — Xß is valid for 
each xe G. Conversely, if G = P x Q is a direct decomposition of G and if we 
put g(x) = Xp — XQ for each xeG, then g is a O-isometry in G. 

The notation from Thm. 18 will be adopted also in the whole remaining part of 
the paper. 

19. Lemma. Let x, y, ae G, y ^ a ^ x. Then the element c' == xj_ — Ув ^^ the 
smallest element of the set U{f{x),f{y)) andf{d) eL{U{f{x), f{y))), ^\с') e [y, x]. 

Proof. In view of 18 we have x = x^ + x^, у = y^ + JJB, a = a^ + a^, x^ ^ 
è ^л è УА^ -У^ ^ -flß ^ "Хд, Дх) = х^ - хд, f{y) = УА- УВ^ Л « ) = 
= «л "" ^в- If we put с' = х^ — yß, then we obtain с' ^ /(x), c' ^ f{y), c' ^ f{a). 
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Let d' EG, d'e U{f{x)j{y)). Then we have d'^ ^ x^, d^ ^ - x ^ , d'^ ^ y^, d'^ ^ 
è -Ув- Thus d' ^ c\ From the relation / ( a ) g с' we get f{a) e L{U{f{x)J{y))). 
Since/"^(c') = XA + Ув^ the relation/"^(c') e [j;, x~\ is vahd. 

Analogously we can prove 

20. Lemma. Let a, x, у e G, у ^ a ^ x. Then d' = у A — ^в ^^ ^^^^ greatest 
element of the set ÜJ(x)J{y)) and f{a) e U(L(f(x)j{y)% f~\d') e [y, x] . 

21. Lemma. Let x, у e G, у S x. Then fi[y, x]) = [ j ^ - x^, XA - J 'J-
Proof. It follows from 19 and 20 that f{[y,x'}) ^ [УА - Xg, x^ - Ув^- Let 

p' E G such that j ^ ~ x^ ^ p' ^ XA - Ув. Then we get y^^ й PA è X4, — x^ ^ 
^ p^ ^ ~yg. If we put p = f~^{p), then we have p = P'A — р'в- Thus >' ^ p ^ x, 
hence [УА ~ x^, x^ - 3; J ç / ( [y , x]). 

The following result generalizes Theorem 2.2 of Rachimek [7] (in [7] it was 
assumed that G is a 2-isolated abehan Riesz group). 

22. Theorem. / / g is an isometry in G and x, y e G, then 

д(и(Цх, у)) n L{U{x, y))) = U{L{g{x), g{y))) n L{U{g{x), g{y))), 

Proof. If 6̂  is a translation, the assertion obviously holds. Since each isometry is 
a superposition of a translation and a 0-isometry, it suffices to consider the case 
when 0̂  is a 0-isometry. Let a e l7(L(x, y)) n L{U{x, y)). Then there exist elements 
V e U{x, y), и E L(x, y) such that w ^ a ^ t;. In view of 18 and 21 we have g{a), 
9(x), g{y) e [uj, - v-^, VA - u^]. Let z[ E U{g{x), g{y)), t[ e L{g{x). g(y)). Then there 

Fig. 3 

exist elements z\ t' such that ^ (̂x) -^ z' ^ VA - UQ, g{y) й ^' й ^[, g{x) ^ '̂ ^ 
^ ^A- %. 9{y) к t' ^ ^i- Then we infer x^ ^ ẑ ,̂ - x ^ ^ ^i , x^ ^ t'^, - x ^ ^ t^ 
y^ S z'^, ~y^ S z'^, УА è t'^, -Ув è t'ß. If we put q = z'^ - t'^. p = t'^ - z'^ then 
we obtain q e (7(x, j^), P e L(x, j ) , because of ^^ = z^, ^ß - - f;j, p^ = t'^, Рв = 
= -Zß. Thus p g 0 é <î. In view of 21 we have g{a) E \}А + tß, z'^ + z^]. (Cf-
Fig. 3.) 

41 



Since z'j^ + Zß = z' ^ z[, t'^ + tß = t' ^ t[, we iiave t[ й д{а) й A- Hence 
Q{Ü{L{X, У)) n L{U{x, у))) ^ U(L{g{x), g{y))) n L{U{g{xl g{y))). 

Let x' = g{x) and y' = g{y). If we consider the 0-isometry g~~^ instead of g then 
we get, for x\y\ g-\U{L{x\/)) n Ь(и{х\/))) ^ U(L{g-\x% д-\У)))п 
nL{U{g-\x%g-\y))). Hence g'\U{L{g{x\ g{y))) n L{U{g{x), g(y)))) ^ 
с U{L{x, y)) n L{U{x, y)). Then we obtain U{L{g{x), g{y))) n L{U{g{x), g{y))) я 
Я д{и{Ь{х, у)) n L{U{x, y))). 

23. Lemma. Let x, y, a e G such that f{y) й f{ci) S /(л:). Then the element 
x^ + У в is the smallest element of the set U(x, y) and a ^ x^ + Ув^ 

Proof. In view of 18 we have y^^ a^^S ^A^ "УВ ^ — % = "^в- Thus a — 
= a^ + aß ^ x^ + JB, X^ + УВ ^ X, X^ + JB ̂  y. Hence Xj^-V УвЕ U(x, y). Let 
ve G, VE I7(x, y). Then 18 imphes that Vj^ ̂  x^, Vß ^ Xg, v^ ^ j ^ , % ^ j ^ ^ . Thus 
г̂  = *̂л + % ^ x^ + yß. 

Analogously we can verify 

24. Lemma. Let a, x, у e G such that f{y) S /(«) ^ f{x). Then y^ + x^ is the 
greatest element of the set L[x, y) and a "^ yj_ + Xß. 

25. Lemma. Let x, y e G such that f(y) й /(^)- Then [/(у),/(л:)] = /([Ул + Xß, 

XA + Ув])' 
Proof. In view of 23 and 24 we obtain [/(у),/(^)] ^/([Ул + Xß, x^ + у J ) . 

Let aeG, ae [ j ^ + Xß, x^ + Ув], then from 21 we get /(a) e [/(з^),/(:^)]. Thus 
/(Ьл + Xß, x^ + Ув]) ç lf{y)J{x)l 

26. Lemma. Я /s a directed convex subset of G if and only if f{H) is a directed 
convex subset of G, 

Proof. Let Я be a directed convex subset of G. a) Let z' e G such that f(y) ^ 
^ z' ^ /(x) for some x, y e H. If we put z = f ^(z'), then in view of 25 we obtain 
УА + Xß S z й Xj^ + yß. Since Я is a convex directed subset of G, from 23 and 24 
we obtain y^ + Xß, x^ + у в E Я. Then by the convexity of Я, z G Я. Thus z' Ef{H), 
hence /(Я) is a convex subset of G. 
b) Let x\y' Ef(H), X =/~^(x'), у = f~\y)' Then there exist elements U,VEH 
such that и E L(X, y), v E U(X, y). Since и ^ v^ + Uß ^ v, и S u^ + Vß S v, by the 
convexity of Я we get t;̂  + Uß, u^ + VßE Я. It follows from 21 that /([w, v]) = 
= [/(w^ + ^B)J{^A + WB)]. Since x, у e [w, t;], we obtain/(Ü^ + Uß) e l/(/(x),/(y)), 
/(w^ + Vß) E Ь(/(х),/(з;)). Thus /(Я) is а directed subset of G. 

If we consider the 0-isometry/~^ we can prove the sufficiency of the condition. 

27. Proposition. Я is a directed convex subgroup of G if and only if f{H) is 
a directed convex subgroup of G. 

Proof. Let Я be a directed convex subgroup of G. In view of 26 it suffices to prove 
that/(Я) is a subgroup of G. Let x\ / Ef{H), x = f^x'), у = f~\/y Then 18 
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implies that x' = x^ - Xß, / = УА " Ув- Hence we have 

^' - y' = i^A - %) - {Ул ~ Ув) = i^A - УА) - (% - Ув) = 
= (x - У)А - (X - у)в = / (x - у). 

Thus x' - y' ef{H), 
If we consider the 0-isometry /~^ we can similarly prove the sufficiency of the 

condition. 
The following example shows that the image of a convex subgroup of G under 

a 0-isometry need not be a convex subgroup of G and also, that the image of a directed 
subgroup of G under a 0-isometry need not be a directed subgroup. 

Example. Let R be the additive group of all real numbers with the natural order 
and H = R X R. Then the mapping/:/((xi, X2)) = (x^, —X2) is a 0-isometry in Я. 

The subgroup H^ = {(x, x); x e R} of Я is directed, but ДЯ^) is trivially ordered. 
The subgroup H2 = {(x, —x), x e R] of Я is convex, but /(Я2) is not a convex 

subgroup of Я. 
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