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1. INTRODUCTION AND STATEMENT OF RESULTS

This paper is a contribution to the study of vector fields on the Grassmann
manifold G, , of r-planes in the real n-space. As vector fields we always consider
continuous cross-sections of the tangent bundle.

Recall (Thomas [11]) that the span of a closed connected smooth manifold M
is defined as the maximal number of linearly independent vector fields on M. Ob-
viously, if span M = j, then

Wi js1(M) = Wy j1o(M) = ... = w,(M) =0
for Stiefel-Whitney classes of M, where m = dim M.
This fact, producing an estimate span M < m — k provided w(M) # 0 for

some k, motivates our interest in the Stiefel-Whitney classes of Grassmann manifolds.
Namely, it is known, see for instance [5], that

(1.1) TG, @ Vi ® Vnr = 1Y,y

where TG, , denotes the tangent bundle and y, , the canonical r-plane bundle over G, ,.
By Borel [4],

(12) H*(Gn,r; ZZ) = ZZ[WI(Vn,r): s wr(yu,r)]/‘]n,r

for the cohomology algebra, where all the ideal J,,
equation:

(13) (1 + wyi(yr) + oo+ W) (L + Wy () + oo+ Wes(0y) = 1.

Here w{y,,) denotes the i-th dual Stiefel-Whitney class of y,, and, moreover,
J¥) = 0 for the k-th homogeneous component, if k < n — r (cf. [9], [3]).

Hence, if one overcomes difficulties arising when computing the Stiefel-Whitney
classes of the tensor square y, , ® ¥, in terms of wi(y,,,,), i=1,...,r, then one can
explicitly express wy(G,,) in the same terms (dealing with ny,, is not hard) and, in
addition, decide whether or not w,(G, ) + 0.

This is, essentially, what has been done in [3], for k < 9. The present paper
provides an improvement of the method used there, making the induction in com-
puting the dependence of Wy(Vu,r ® Vur) ON W{(¥,,), i = 1,..., 7, transparent. So,

is determined by the only
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one can verify the following extension of [3, 1.1], where, as always in this paper,
p; (i = 0) means the i-th dyadic coefficient of the positive integer p:

(1.4) Theorem. Let w; abbreviate w{y,,) € H(G,,; Z,). Let a =n, + ry, b =
=n,+r,c=n+n,+r,d=n,+ry+ry, e=ny+r,and f=n, + r;.
Then
wio(G,,r) = (1 + a) (bry + e) wi® + no((any + ry) b + e) wiw, +
no(l + a) bwiw, + neadwiwi + (1 + ac) wiws + no(an, + b) wiws+
(1 + a)(1 + b)ywiws + no(1 + a) wiwg + adwiw} +

no(1 + a) wiw,w} + no(l + arg + b) w3 + ngaw,w} + noawiwiw, +

+

+ o+ +

2 2.2 2
noawiw, + noawiwg + awiwl + aw: + nowo ;

wia2(G,,) = (1 + any) bry + (¢ + nyre) e) wi> + no(l + a) (bry + e) wi’w, +
(ale + o) + cnyrg + dnyry) wiwi + no((any + ry) b + e) wiw, +
neadwiwi + (1 + a) (1 + b) wiw3 + no(1 + a) bwSws +

(1 + a)(1 + b) wiws + noadwiwiw, + no(l + ac) wiw,w3 +

(1 + ad) wiwi + no(any + b) wiwg + no(l + a) (L + b) wiw; +
acwi + no(1 + ary + b) wiw, + noawswg + no(1 + a) wiwiw, +
neawy + (1 + a) wiwiwl + (1 + a) wiwz + no(l + a) wiwy, +

2 2 2
(1 + arg + b) Wi + neawiwiwe + noawiwg + neawiw,wj +

o+ 4+ o+ o+ +

noaw2w§ + awé + noWy, ;

wia(G,,) = (1 + a) b(e + r{) wi* + no(an, + b)(bry + e) wi’w, +

no(1 + a)(bry + e)wiwy + (1 + a) (1 + b) + (a + bny)ro +
ale + nyry) + (1 + d) nyny) wiws + no((any + ry) b + e) wiws +
(1 + a)(1 + b) wiws + no(1 + a) (L + b) wiw,w3 + acwiw; +
no(1 + a) bwiwg + no(l + a) (1 + b) wiw3 +

no(1 + a) (1 + b) wiwswy + no(1 + ac) wiwiw, + acwiw: +
no(an; + b) wiwso + (1 + a) bwiw} + no(l + a) wiw,, +

a(b(d + ny) + e + ro) wiw} + noa(b(d + n,) + e + ro) wiwi +
no(1 + ad) wiw,wi + acwiw$ + ngacw) + no(1 + a) wiwiws +
no(1 + a) wiw,wl + no(1 + arg + b) wowi + noaw,wi +
noadwiwiw, + noadwiwiwg + acwiwi + no(1 + arg + b) wiws +

2.2
noawiwiwg + noawiwg + ngawswyo + no(l + a) wiwiwe +

. T T S

noawiwi + ngawaw? + ngawiwg + awiwi + awi + nowyy ;
wi6(Gy,) = ((any + 7{) b(e + 1) + ery + f) wi® + no(1 + a) ble + ry) wi*w, +
+ no(any + b)(bry + &) wiw, + (1 + a) (L + bny + €) wi°w3 +

+ no(1 + a) (bry + e) wiws + (1 + a(l + erp) +
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+ b(c + nyre + nyrory) + (1 + b) &) wiwd + no(1 + ale + n) +
+ ab(ny + r,) + b)wiw,wi + (1 + ale + nyry) + b +
+ (cro + nyry) my) wiwg + nol(any + ry) b + e) wiwg +
+ no(1 + a) (1 + b)Y wiw3 + nol1 + a) (1 + b) wiwiws +
+ no(1 + a) (1 + b)Y wiwiw, + (1 + a) bwiw? + no(1 + @) bww,, +
+ (1 + (1 + a)(1 + b)) wiws + nolany + b) wiw,, + (aled + ro) +
+ b(nynyry + nyry + 1o)) witws + no(ale + ro) +
+ b(nyrg + nyre + nyry)) wi%wd + noacwSw,w? + acwing +
+ noacw?wl + ngacwiw,w? + nob(1 + a) wiw,w? + noawiw,w? +
+ no(ale + ro) + b(nyry + nyro + nyro)) Wiwzws + noddwiwiwg +
+ (1 + a) bwiwiwi + no(1 + a) (1 + b) wiwiws + noadwiwlwg +
+ no(1 + a) wiwiwg + noawwiwyo + no(l + ac) wiwiws +
+ no(1 + ad) wiwl + no(1 + a) wiw,wi + noawiwiws + adwiw? +
+ (1 + a) wiw? + no(1 + a) wiwyy + (1 + a) (1 + b) wiwiw? +
+ awiwiwi + ((arg + ny) b + e) w3 + noacwiw, +
+ no(1 + arg + b) wiwg + no(1 + a) wiwiwiw, + awiwiw? + acwiw? +
+ noaw?wy, + noacwiw? + no(1 + ary + b) wiw, + awiwiw? + wiw? +
+ noawiwyo + acwiwi + (are + b) wi + noawiwg + noawiwg +
+ noaw4w§ + noaw2w§ + aw§ + neWie -
Since the formulae are very long, we have omitted those for wk(G,,,,) with odd values
of k. Nevertheless, one can close the gaps easily, if required.
Namely, by the classical formula of Wu (e.g. Borel [4, 7.1]), if i < j, then
(1'5) Sqi(wj(é)) =ki0 (J - -;;k B 1) Wi—k(é) Wj+k(€)

for an arbitrary vector bundle £ (Sg’ being the i-th Steenrod square,

(’;) = u!f(u — v)! ).

Therefore we have
wi(Gor) = wi(G,,) We—1(G,r) + Sq*(wi—1(Garr))
whenever k is odd. Hence, keeping in mind that ([3])
wi(G,,) = nowy ,

one can compute the omitted formulae without difficulties.
Moreover, using elementary facts about the binomial coefficients, including

(1.6) (Z‘) =11 (Z) mod 2,
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it is easy to verify the following assertion:

(1.7) For a positive even integer x there exist even integers m > n > 0 such

-1
thatm+n=xand<mn >E1mod2iﬁ’xisnotapowerof2.

This implies (cf. (1.5)) that for an arbitrary w,(G,,) with 2° < k < 2'*1, the for-
mula can be derived from those for w;(G, ) with j < 2°.

In particular, the formulae for w(G,,), k = 10, 12, 14 could be computed using
only Steenrod squares and the knowledge already contained in [3]. Nevertheless,
we have prefered to give them here not only for reader’s convenience but also for
future references.

More specifically speaking, one can observe, for instance, that w? has the coef-
ficient n; + ro mod 2 in w,{(G,,) i = 5,6,7,8. One can suspect that this will be
the case for i = 9, 10 etc., as well.

As a matter of fact, this property can be verified. A research of phenomena of this
kind was initiated in [7], and we hope that the formulae for w,(G, ,), k = 10, 12, 14,
will be useful in its development.

Finally, supposing n = 2r (which is not restrictive because G,, and G, ,_, are
diffeomorphic) we obtain from Theorem 1.4 the following

(1.8) Corollary. If n = 10 is even and r = 3 is odd then

span G, , < r(n — r) — 16
with the exception of
span G553 = 7.

Recall that G, ; is the projective space (therefore span G, ; = span $"~'; cf. [1]
for its values) and that span G,, = 0 if dim G,, = r(n — r) is even. Moreover,
span Gg 3 < 7 and span Gg 3 = 7 (cf. [3]).

We also remark that the minimal from the two upper bounds should be always
taken: one given by 1.8, the other by [7], when estimating the span of some grassman-
nian. For lower bounds we refer to [8] or [6].

Concluding this section we observe that although our method has produced the
best known upper bounds for the span of grassmannians, its disadvantage is con-
siderable. Namely, briefly speaking, the higher we go, the longer and more com-
plicated all the computations involved become.

Hence, in this way we can enrich our knowledge to some extent, but must remember
that we stay still very far from achieving the final, general solution of the vector
fields problem on G, ,’s (if such is possible at all), unless some new, intensive approach
appears.

544



2. PROOFS OF RESULTS

We postpone the proof of Theorem 1.4, proving first its corollary.

(2.1) Proof of (1.8). As we have mentioned already, J{*) = 0 for k < n —r,
in (1.2). From 1.4 we read that the coefficients of wiwj and wSwjw3 in wy4(G, ) are
always different mod 2. This yields that w4(G,,) # 0 and therefore span G, , <
<rin—r)— 16, when 16 <n — r.

To make the proof complete, we are left with 26 cases where n — r < 16.

Thanks to (1.3), we can find all generators of J{'® and also decide whether
wi6(G,.) € J\'® or not.

To facilitate this task, it is useful to recall that if
i1:Guy G Gyuiyyr
i3:Gur1,r Q Grazrrt

are the usual inclusions, then
i*(wk{_Gn+2,r+1)) = wk(Gn,r)

for i = i, . i;. Hence, for example,
wi(G,,) # 0 implies Wy(G,14,42) £0.

It turns out that from all the cases, only for G, 3 the 16-th class vanishes. Fortu-
nately, in a similar way one checks that w,4(Go,3) # O.

Besides some other facts, we shall need the following two lemmas for the proof
of Theorem 1.4.

(2.2) Lemma. Let n be an r-plane bundle over a paracompact space M. Let us
abbreviate the Stiefel-Whitney class wn) e H{M; Z,) to w;. Then:
wio ® ) = (L + 1) (L + 71y + ra) wi® + (1 + rory) wiwi +
+ (14 1o) (1 + ry) wiws + ro/l + 1) Wiw] + rowiwi + row? ;
wi(n®n) = ((1 4 7o) (1 + ry) + (1 + 7y + ro) r2) wi® + ri(1 + ro) wiwi +
+ ro(1 4 ) wiws + ro(l + ry + ry) wiwl +
+ (L + oL+ r)) wiwg + roll + 1) w§ + (1 + ro) wiwiws +
+ (1 + ro) wiwZ + (1 + ry) wh + rowe ;
wian ®n) = (1 + ro) (1 + ) (1 + r)wi* + (ro(1 + 1) + ry) whw] +
+ rorywiwh + roriwiws + ry(1 + ro) wiwd +
+ro(L 4 ry + 1) wi%wi + o1+ r) wiws + (1 + 1) wiwd +
+ roWiwZ + rows ; '
‘v16(’1 ® 7’) = ((1 + ro) (1 + rl) (1 + rz) + r3) W}ﬁ +
+ro(l 4 1) (14 r2) witwl + (L4 ry) (1 + r,) whws +
+ (1 + ro)(l + r2) w}owg + rl(l + 7‘0) w?w%w% + (ro(l + rz) +
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+ (1 + r)) wiws + (L + 1y + ra) w3 + ry(1 + o) wiwiw] +

+ ro(1 + ) wiws + rowiwiwl + (1 + ro) (L + ry) wiw? +
+ 1ol + 1) wiws + 1ol L + ry) wiwi + rowiwiwi + rowiwiwl +

2 2 2
+ ro(1 + r) wiwZ + rowh + wiwl + (1 + ro) wiw3 + rows .
(2.3) Lemma. With the notation of (2.2) we have for the n-fold Whitney sum nn:
2 2 4 2
Wm(n’l) = NoWie T NoMiWiWig + R Wi5W15 + Hol,W Wi, + HoyW3Wo +
2
NN MaWSW1o + MW + non,wiwg + non,wiwg + nonn,wiwiwg +
8 2 2 4. 2
RoMsWiWg + nin,wiws + ngn wiwg + non n,wiwiwg +
Rl MaWaWsWe + non nawiwe + non waw? + nywi +

4.3 4.2 8,2 4
ol MWW, + NiN,Wows + Ninswiw, + nonWiw, +

2 8. .2 2 4
MM N WIW,W3 + Mol maWiws + Mol nswiwawy + nynawiws +

+
+
+
+
+ noh MaWSWy + Ron naywiwiw, + Honanswiw, + ngh wowl +
+
+ nywd + nynawiws + ninunawi?wl + ngnnywiw,wt +

+

1
Nl hynswi*w, + nawit .

Assuming (2.2) and (2.3) we are able to prove (1.4).

(2.4) Proof of Theorem 1.4. By (1.5), we have the following Wu’s formulae
for an arbitrary vector bundle &:

(2.5) W1o(f) = Wz(f) Ws(é) + qu(Ws(é)) >
(2.6) wi2(&) = wa'8) we(&) + Sq*(ws(8)),
(2.7) wia(&) = wy(&) wia(8) + Sq*(wya(8)) -

By [3, 1.1], we know wy(G, ) for k = 2, 4, 8. Hence, we can compute the formulae
for w(G,,), k = 10, 12, 14, putting ¢ = TG, , and using only elementary properties
of Steenrod squares.

Having done this, we can compute le(G,,,,) as well (of course, in another way:
cf. (1.7)).

Namely, recalling that odd-dimensional Stiefel-Whitney classes of y,, ® 7,.,
vanish (cf. [3, 2.1]), we obtain from Hsiang and Szczarba’s relation (1.1):

8
w16(Gn,r) = ‘ZIWIG—ZE(Gn,r) Wzi(yn,r ® )’n,r) + W16(n?n,r) .

Clearly [3, 11.1, 2.1], Lemma 2.2 and Lemma 2.3 now provide all the information
needed.

As the proof of Lemma 2.3 is very easy (therefore omitted), all that now remains
is to prove (2.2).

(2.8) Proof of Lemma 2.2. Let w(n ® 1) denote the total Stiefel-Whitney class
of the tensor square n ® 5, and o4, ..., 0, the elementary symmetric functions in
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variables x;, ..., X,. Then (cf. [10])
(2.9) win @ n) = & (wy, ..., w,),

where @, is the only element in Z,[x,, ..., x,] such that

(2.10) D0y, ... a)— H( + x; + X;).

This makes it clear that our ablllty to express Stiefel-Whitney classes of 1 ® 5
in terms of wy, ..., w, is determined by our knowledge of the polynomial ,.
However, (2.10) obviously yields

(2.11) B(0y,....0) =1+ 51 + ... + &),
where G, denotes the k-th elementary symmetric function in variables x; + x;,
i<j.

Since each &, can be expressed in a unique way as a polynomial in o, ..., g}, our
strategy is straightforward.

As a matter of fact, an improved (as compared with [3]) alrogorithm for computing
g, in terms of o, ..., 6, mod 2 now follows.

(2.12) Algorithm for computing &, provided that we have already computed &,
for k < p.

The procedure will have three steps.

(2.13) Step 1. Let

M,={o" .. P i(1) +2i2) + ... + pi(p) = p} .
We define the leading monomial of 6V ... 6\”) € M, to be
Im (61D ... giP) 1= xiF o H DI ki) i)
o) > coxpP)
Further, we order the set
{Im(ai" ... 6}"); 6V ... 0l P e}
by the rule
(R,) X LxP < XD f
(s(1),...,s(p)) < («1),...,4(p)) in NLO,

where NLO is an abbreviation for the natural lexicographical order.

Finally, we order .#Z, as follows:

oM. 6P < gV glP if
Im (¢ ... 6J?) < Im (c{V ... 6}?).

This completes the first step of the procedure. The set (.#,, <) has the following
very important property:

if we interpret oi'" ... 0iX” €., as an element of Z,[xy, ..., x,], then the coef-
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ficient of
Im (¢{V...¢i”) in o]V .. .6l
Im (¢}V ... i) 4 ¢V ... ¢IP
for short, can be 1 only when
() j(p) i(1) i(p)
(2.14) ofV .. ol < iDL oP

in the set (./#,, <). This is easily implied by the definition of the order in .7 , and by
the simple fact that Im (61"’ ... 65?) is the greatest element in the set

{33 O (0L x5O g oV L) =1,
ordered by the rule (R,).
(2.15) Examples.
p=1 4l = {0}
p=2:dl, = {0}, 0,}
Since Im (¢7) = x{ and Im (0,) = x,x,, we have Im () < Im(s?}) and
therefore
(M5, <) = {0} < 0,3} .
p=3: My = {0},0,0,,03}.
Now, Im (a}) = x3, Im(0,6,) = xix, and Im (o3) = x;x,x;. Hence
(M5, <) = {0} < 0,0, < 03} .

We observe that the number of all elements in ./, is part (p), the number of partitions
of p. For instance (cf. [2]):

P 1 1 2 3 4 5 6 7 8 9 10 11
part(p) | 1 2 3 5 7 1l 15 22 30 42 55
(2.16) Step 2. Let us search for the number
(2.17) V. x® g6,

h
with s(1) = ... = s(h) > 0, Y s(i) = p.
i=1
To begin with, let us denote

S ={xi+x315i<jsr},

Ly ={x; +x;32=j=h},
both considered as naturally lexicographically ordered, and

h
G, = (x4 oxg®; (x4 LD 4 TT(L + %4 + %)) = 1 mod 2,
j=2

and s(i) — g(i) 2 0 for i = 1,..., h}.
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By definition, &, is the sum of all products of the form

)4
kl_—ll (i + Xja0) »

where {X;4) + X;u}h< is an increasing sequence in .&,.
This fact, a little thinking of the “list”

X1 F Xoy ooy Xg F Xy X+ Xpigs coes Xp F X | X2 + X3y ooy Xp + Xpy ooy Xpmg + X,
Zn

with realizing how the elements of the set ¥, are related with #,, clarify the following
result:

(2.18) (x4, = (’ 'p 1) mod?2, and

s s _ r—h
(xl(l) xh(h) 4 o'p) = Z(s(l) _ g(l)) Ns(Z)—g(Z).....s(h)—g(h) mOd 2

if h = 2.
Here the sum is taken over all h-tuples (g(1), ..., g(h)) such that x{" ... xj’ € 4,

and Ny g02),...st0-gen € Z2 18

2)—g(2 h)—g(h = . .
x5 7ID s ®TIW G (xy A Xay ey Xp F X Xpmq F X,)
h

with ¢ =Y (s(i) — g(i)).

i=2
It is clear, however, that Ny ,)_ 0y m-qm cOincides with
s(2)—g(2) s(h)—g(h = . .
{7 I 4G Xy A Xy ey Xy Xy g3 e Xz + Xpoy) -
So an induction can come in, finally. Indeed, since t < p and therefore we have
GlXy + Xas ey Xy Xpogs o3 Xpmg + Xpmq)

in terms of (X, ...,x,_q), i = 1,...,t, already computed (cf. 2.12), we are able
to find all the numbers N 5, _,02),... sthy—gtm-

Taking successively all the leading monomials Im (61" ... 65?), 61" ... 6P € 4,
for x{V ... x; in (2.17), we accomplish the second step of our algorithm.

We just note that the binomial coefficients in (2.18) are easily expressible in terms
of dyadic coefficients, using (1.6), and that it is very useful to remember that

h h
Hz(l + Xy + x;) =‘Zl(1 + X)) T oo (Xgs e Xy) s
Jj= =

when forming the set %,.

(2.19) Step 3. For a while let us denote by 4, the k-th element of the ordered set
(«4,, <). Then, of course,

(2.20) 6, =a(1) A; + a(2) 4, + ... + a(part (p)) Apare(p)
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for some a(k) € Z,, and our final aim is to find all these a(k). We are ready to do
this.

Namely, for any fixed 4, it is easy to find all 4; with the property
(2.21) (Im (4) 4 4;) = 1.
Recall that (Im (4;) 4 4;) = 1, and that all candidates for (2.21) have to satisfy
A; < A (cf. (2.14)). Hence, from (2.20) we get a linear equation over Z,, where the
left-hand side is the sum of a(k) and some a(i)’s, i < k, while the right-hand side is
the number Im (4,) 4 6,, computed in Step 2.

So, finding such an equation for every k = 1,2, ..., part (p), we obtain a very
simple system of linear equations over Z, giving us all a(k) as desired.

This completes the last step of our algorithm.

(2.22) Example. Say, we have
(2.23) Gy = (1 +ry) oy,
(2:24) Gy =(1+ 1o+ 1) 0] + 1o05,
and we wish to compute 5.

The first step was made in 2.15. Recall its result:

(M4, <) = {0} < 0,0, <03} .
Step 2.
-1
a) (xf-|63)=<r 3 >= 1+ ry + ry + rory mod2.
b) For the leading monomial x2x, of ¢,0, we have
G, ={1,xy,x,} .

So (2.18) gives

=2 r—2 —2
(xfx2-|a3)=< ) >N1+( 1 >N1+<r2 >N0.

We find
No = (1460(X1 + X25..0s %5 + X,_4)) = 1, and
(cf. (2.23))
Ny = (%3 4G1(X1 + Xp5 00 X4 + X,_y5 0.3 Xpmp + X,my)) = Tp .
Therefore

(x}x,46G3) =1+ 7y + ror; mod2.
c) For the leading monomial xx,x; of 63 we get

Y3 = {1, X2, X3, X1X3, X1 X3, xzxa} .
Now (2.18) reads

_ r—3 r—3 -3 r—3
(x1x2x3-|03)=< 1 )N1,1+( 1 >N0,1 +<r1 )N1,o+< 0 )No,1+
r—3 r—3
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We find
Noo = (14 Go(x; + Xp, 0y X, + X-q)) =1,

No,y =Ny = (x1 8| 51(x1 + Xpy iy Xy Xyl g3 e Xy + Xemy) = o,
and (cf. (2.24))
Nyy o= (%124 Gaxy + X5y Xy + X1y} Xpg + Xeoq) =14 1,.

Hence we obtain
(x1X2%3 4 G63) = 0 mod 2.
Step 3. Writing
73 = a(1) o} + a(2) 6,0, + a(3) o5
we get the system
a(l) =1+ ro + ry + rory,

a(l) + a(2) = 1 + ry + rory,
a(2) + a(3) = 0.

Clearly, 63 = (1 + ro) (1 + 1) 6] + 190,65 + 7o03.

Continuing these computations for &, k = 4,5,6,7, 8, one is able to check
Lemma 2.2.

We observe that Wu’s formula (1.5) is also true for elementary symmetric functions
(in arbitrary variables).

Hence, when k is not a power of 2, also the Steenrod squares techniques can be
used in order to compute &y.
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