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INTRODUCTION

Regularity of weak solutions for linear parabolic equations has been studied in
the monographs by J. L. Lions, E. Magenes [7] (using the Fourier transformation
technique and interpolation theory), O. A. LadyZenskaja, V. A. Solonnikov, N. N.
Ural’ceva [6], A. Friedman [1], K. Rektorys [9] etc. Smoothing effect for linear
parabolic equations has been considered by P. E. Sobolevskij [10], A. Friedman [1]
(using semi-group theory), etc.

The aim of this paper is to obtain regularity of the weak solution in the interior
of the domain by a simple technique using the regularity results of the elliptic equa-
tions theory. To this purpose we discretize the time variable and apply the technique
of Rothe’s method which allows to carry over the regularity results from elliptic
to parabolic equations. Since our data for ¢ = 0 are not regular, we prove some
a priori estimates for £ > 0 which imply the smoothing effect for the weak solution.
The idea of deriving such a priori estimates is due to K. Rektorys — see Remark 3.2.
The regularity results obtained are comparable with those in [7] restricted to the
interior of the domain. The results on the smoothing effect are comparable with those
obtained in [10] (see Remark 3.3). We assume a lesser degree of regularity of 0Q
and of the coefficients a;; (in the x variable) in the elliptic operator A4, since we con-
sider A: V> V* instead of A: D(A) = H—» H (see [10]). Under the regularity
assumptions on the data for ¢ = 0 we prove in Section 2 the regularity of (4k, 2)-type
in(x, t)-variables (the elliptic operator being of the order 2k). In Section 3 we establish
the smoothing effect for ¢t > 0. Using the procedure of Section 2 and the estimates
of the smoothing effect we obtain in Section 4 regularity with respect to the (x, ?)-
variables. In Section 5 the regularity results are applied to the convergence of Rothe’s
method.
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1. ASSUMPTIONS AND AUXILIARY RESULTS

Let ¥V, H be real Hilbert spaces with the norms |-, || and the duals V*, H*,
respectively. We assume the imbedding VG H to be dense and continuous. By (f, v)
we denote the duality between f e V*, v € V which coincides with the scalar product
in H provided f € H. By — (—) we denote strong (weak) convergence. The symbol C
stands for nonnegative constants. We allow different values of C in the same dis-
cussion.

We consider u € L,(I, V) n C(I, H) with du/dt € L,(I, V*) to be a weak solution
of the linear abstract parabolic equation

(1.1) (dzg), v> + a(t;u,v) = (f(t),v) forall veV; u(0)=u,eH

where a(t; u, v) is a continuous bilinear form in u,ve Vfor tel = (0, T), T< ©
and f(¢) e V* for t e I. The existence of such a weak solution is proved (under the
corresponding regularity assumptions on a(t; u, v) and f(f) in ¢), e.g. in [6], [9],

[1], [10], etc.

The identity (1.1) is an abstract formulation of the weak solution for linear para-
bolic initial-boundary value problems.

Example 1.1. Consider the equation

(1) O A= S ) e (0= 0 X

where @ < RY is a bounded domain with boundary 0Q,

Alyu = Y (=1 D¥(a;(x,t) D/u), a;;eL,(Q)

il lj1<k
with the corresponding lblollilndary and initial conditions

(1.3) Bu =g{t), i=1,...,n0 on 02 x1I,
(1.4) N{t)u =hft), j=1,...,k —p on Q2 x1I,
(1.5) u(x,0) = up(x) on Q.

Let the conditions (1.3) be stable (of Dirichlet’s type) and the conditions (1.4)
(of Neumann’s type) — see [8], [7], where B;, N (t) are linear differential operators
(B, N; are normal and cover A). A weak solution u of the corresponding elliptic
problem A(t) u = fo(x, t) in Q (¢ being a fixed parameter) with the boundary con-
ditions (1.3), (1.4) is defined in the following way (see [8], [9]). Let w(t) e W3(Q)
satisfy (1.3) and let V = W;(Q) be a subspace where V = {v € Wj(Q); By = 0 on 0Q
fori = 1,..., u}. A continuous bilinear form b(z; u, v) on Wy x Wy (corresponding
to (1.3), (1.4) and satisfying b(¢; u, v) = 0 if u or v is from W;) and f() € V* can be
constructed so that the weak solution u satisfies u — w(t) € V" and

a(t;u, v) = “”Z];lSkJ.Qaij(x, t) D'uD'v dx + b(t; u, v) = (f(2), v)
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for all v € V where ((2), v) = [ofo(x, t) v dx + (h(t), v) with h(t) € V*((h(t),v) = 0
whenever v e W(Q)).

Similarly, we define a weak solution u of (1.2)—(1.5) as u = i + w(t) where &
satisfies

dt

for all ve Vand a.e. t €I where
(/1) v) = f Folx. 1) 0 dx — a(t: w(), v) — (d_:g’), v) T (h(1), v),

which corresponds to (1.1) with H = L,(Q). If the weak solution u of (1.2)—(1.5)
is sufficiently smooth then it is also a classical solution of (1.2)—(1.5) (for the details
see [8]). In particular, if u =k, V= W(Q) and B, = (9/ov), i =0,....,k — 1
(vis the outward normal to Q), b = 0, h(t) = 0'then we have the Dirichlet boundary
conditions (1.3). If k = 1,V = W;(Q), u = 0,

b(t; u,v) = J a(s, f)uvds and (f(1),v) =I fo(x, t) vdx +

(d_lzg), v) + a(t; u(t), v) = (f(t),v), @(0) = u, — w(0)

4 J o(s. 1) o(s) ds (a, b € L, (39)
o
then we have Neumann’s type boundary conditions (1.4),

Uy als, f)u = (s, 1) on 0@ x I

A

vy

— = a;(x, t) cos (v, x;) i . (h(t),0) = | ¢(s. 1) v(s)ds.
=1 0x; 00

vy 1jls1.1il
We shall assume that a(7; u, v) is Lipschitz continuous in ¢, i.e.
(1.6)  |a(t; u,v) — a(t';u,0)| < Clt — ¢'| |lu| [lo| forall t,¢'el, u,veV.

We shall need a perturbed symmetry of a(t; u, v) in u, v in the following form:

There exist K = 0 and a continuous bilinear form ao(t; u,v) in u,veV, tel
satisfying |ao(t; u, v)| < Clul| [v] and |ao(t; u, v) — ao(t'; u, v)| £ Clt — t| [l ||
such that a(t; u, v) = a(t; u, v) + ao(t; u, v) + K(u,v) is an equivalent scalar
product in V uniformly for t €1, i.e.,

(1.7) a(t;u,v) = a(t;v,u) and Cflu)® £ a(t; u, u) £ C,|uf?
forall u,veV, tel.

By means of ao(t; u, v), we symmetrize the bilinear form a(t; u, v) in lower order
terms. If a(t; u, v) satisfies (1.6) then we put a, = 0, K = 0.
We shall use the functional spaces L,(I, V), L,(I, V) for measurable abstract
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functions u: I - V (u e Ly(I, V) if
J- [u()|?dt < 0 and ueL,(I, V) if esssup |u(f)] < o
I tel

(for the details see [5]). The space of continuous functions u: I — ¥V is denoted by
C(1,V). Let ¢ = 0 be an integer. Denote by HY(I, H) the B-space

Hq(z,H)={feL2(1,H);j—feLz(z,H) for i=],...,q}
tl

with the norm |f | gac.m = (i |d¥/de |}, cr.m)' " where diffdt’ are taken in the
i=0

sense of distributions on I with the values in H (i.e., df/dt e 2'(I, H) and 2'(I, H) =
= L(2(I), H) — see [T]).
To obtain the (4k, 2)-type regularity (in Q) we shall assume:

(1.8) fe H 1, V*);
there exists z, € V such that
(1.9) (2o, v) + a(0; uy, v) = (f(0),v) forall veV

(uo is from (1.1)) and

(1.10) (f(1),v) = (F(t),v) forall ve2(Q) with FeL,(I, W;*),
%? e Ly(I, L,)

where 2(Q) is the subset of functions in C*(Q) with a compact support in Q.

Frequently we shall use the following regularity result from the elliptic equations
theory (see [8]).

Theorem 1.1. Let | = 1 be an integer and let tel be fixed. Let a(t;u,u) =
2 Cy|lu|* = C,|ul? for all u e Wy (see Example 1.1). Suppose that (1.11)—(1.13)
are satisfied where

(1.11) a;i(x, t) e C"+'(Q) where r, = max {0, |i| + | — k — 1} for all |i|,|j| < k
(here C™'(Q) is the set of all ve C(Q) for which D'v are Lipschitz continuous
in Q for all M <r);

(1.12) a(t; u, v) = (G, v) for all ve P(Q);
(1.13) D'Ge Wy *! for all |i| <1 — 1 (Wy* = (W5)*).
Then u e WYit and the estimate |
il 5 C@) (] + 5 1G]y,
holds for any Q' = Q with Q' = Q.
By C"'*!(Q) we denote the set of all v e C(Q) for which D’DJv are Lipschitz

A
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continuous in Q for all |j| £ r and 0 £ p < s. We shall assume

(1.14) a;(x,t)e CorsP(Q) for all |i|,|j| £k and p=0,...,q where r,, =
= max {0, |i| + 1, — k — 1} and g = 0 is an integer.

The numbers [, will be specified in the sequel.

To apply Theorem 1.1 to parabolic equations we use time discretization (1.1)
in the form

(1.15) (li__—lh , v) + a(t;u,v) = (fi,v) forall veV
h
where u = u; is a (weak) solution of the elliptic equation, h = TJn,

1%
fi=~- S (s) ds
hJ._,
(Bochner’s integral — see [2], [11])and i = 1,...,n provided u; (j = 1,...,i — 1)
are known. The existence of u; = u;, € V satisfying (1.15) is (for h < h,) a con-
sequence of (1.7) and of the Lax-Milgram Lemma (see [8]). We denote

s — U._ . _
Syu; = ———=1 I “li=1,...,n) and u{” = 8fu; = oy '(Su;), Opu;=u,.
]

We construct
(1.16)  UP(t) = u?y + (t — t;img) B '@ — u?)) for t,_, <t <t

(i =p+1,..., n), and the corresponding step function
(1.17) UP()=wu; for t,_y <t=<t,y, i=p+1,..,n

In the case p = 0 we denote u,(f) = U(t) (Rothe’s function) and i,(t) = U(1).
Similarly for fe L,(I, V¥) (or fe L,(I, H)) we construct f;, f{¥(f) and fP(2).
Frequently we shall make use of the following lemma.

Lemma 1.1. If fe H(I, H) (g 2 0) then

0, & Jordin = [ |29

(i) J(:H)_

Proof. From the properties of Bochner’s integral (see [2], [11]) we have

ti s
5hfi:;11;J‘ J gJjLZ)dst, i=2,...,n
ti-1

s—h z

ti S1 Sp p
8f, = h~®*D d—f(—zldzdsp...dsl
ti-1 4 S1—h sp—h dzP

ds forall p=0,...,q

7o (1) — dpf ( t)

dt -0 for n—> o where p=0,...,q.

and
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for n > i = p + 1. Hence we obtain
d*f(z)

ti S1 'Sp
1627 < h““’“’f j f
" ”H ti—-1—ph o ti-1—ph ti-1—ph dz?
= h—(p"'l)J’tl‘ (—t‘ — Z)p ——‘dpf(Z) dZ é C <1 J‘“
ti-1—ph H h ti-1—ph

4(z)

dzds,...ds; =
p! dz? dz?

H
2 1/2
dz)
H
which implies Assertion (i). Similarly as above, we have

Fo(t) — df(t) h~(p+1)J’t;~ J~51 - .J‘Sp (%(;Z_)_ _ %@) dzds, ... ds;
ti-1dJs1—h

sp—h

for te(t,-_l,t,-), i=p+1,...,n and
T 3 T (| 4P p 2
J N - df(t) #<C sup f drf(e)  dPf(t + 2)
(P+1)n—

H lzls+0n Jo || dt? de?
as n — oo since ||u(r + h) — u(1)|| Lyr.my = O with h — 0 for u e L,(I, H) (see [2]).
Thus, the proof is complete.
Also we shall use the following modification of the Arzela-Ascoli Theorem (see

e.g. [5], [4]).
Lemma 1.2. Let V(Q H be compact. If the estimates
2
a0 _ o (o [ 0
dt | dt
hold for all n = ny > 0 then there exist u e L,(I, V)~ C(I, H) with

?EL (1, H) (—— e L,(I,H), respectwely)
t dt

dt -0

H

dr < c); la()| = ¢ (viel)

and a subsequence {u,} of {u,} such that

u, —>uin C(ILH), u,(t)—u(t), ua,(t)—u(t)inV
for all tel, and (d/dt) u, — (du/dt)in L,(I, H). Moreover, u:I — H is strongly
differentiable for a.e. tel.

The above assumed a priori estimates guarantee the equiboundedness of {u,}
in ¥V (and hence in H) and equicontinuity in H. Applying the Arzela-Ascoli Theorem
and the reflexivity of V, H, L,(I, H) we obtain the required assertions. Differentiability
of u: I —» H follows from

u(t) = uy + J; g(s) ds = ug +J: d';(s) ds (g = % in LI, H))

S

(du/dt is in the sense of 2'(I, H)) and from the properties of Bochner’s iﬁtegral

(see [2], [11]).
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2. REGULARITY OF (4k, 2)-TYPE

In this section we prove the regularity u e L,(I, W54 ), du/dte L,(I, W7% ),
d*u[dt?* € Ly(1, L,) for the weak solution of (1.1) where ¥, H, f, a(t; u, v) are the same
as in Example 1.1.

Remark 2.1. By means of ao(t; u, v) in (1.7) we symmetrize the form a(t; u, v)
in some lower order terms. So we can assume that the coefficients a}j(t, x) in the
form ay(t; u, v) coincide with some a,(t, x) in the form a(¢; u, v). Thus, in the sequel,
we assume that a}y(x, t) satisfy (1.14), whence a; satisfy (1.14).

Theorem 2.1. Suppose (1.7)—(1.10) and (1.14) for q = 1, I, = 3k, |, = k. If
ug € WX(Q), then the solution u of (1.1) satisfies

ue Ly(I, Wk ) 0 L(I, Wy), ? e Ly(I, W% ) o L (I, W§) and -—eL (I, Ly).
t

Proof. From (1.15), where u = u;, 8,u; = h™'(u; — u;_,) we obtain
(2.1) (Saus, ) + alty; Syus, ) + Spa(tss u;—y, v) = (8,15 v)

foralli=2,...,n, veV, where t; = ih,

:l_J‘“ f(s)ds
hit._,

and dya(t; u, v) = h™'(a(t; u, v) — a(t — h;u,v)). Using (1.9) with z, = §,uo and
(1.15) (for u = u,, i = 1), we obtain (2.1) also for i = 1. Now, we put v ~ J¥; —
— Su;—, in (1.15) and then we sum it up for i = 1,..., j. Owing to (1.7) we have

a(t; v, v —‘w) > da(t; v, v) — ta(t; w, w)
and hence

J
Z |6I2|u '2 h + Z(a tn 6huv 5}1") - a!t, 1’ 5’1”1 1° 6/: i— 1)) §
J
<cC Z |05ui]|> b + CzZ [oafillz h + Cs Z [Syta| |Spu; — 5,,ui_1| +

j
+ Y aolts; Opuy, Syu; — Syuiy) + Z Spaltyy u;—q, Syu; — Suu;—q) + c,.
i=1 i=1

Hence and from the estimates

J . J
{_Zlao(t.-; Opth;, Opth; — 5h“i—1)l = Czlnfshui” laﬁuil h =

IIA
N[O

i W22 h + S S o b,

i= 2¢ i=1

Jj Jj—1

.Zléha(ti; Uiy, Opu; — 5}.“:’—1) = - Z (5ha(ti+1; O, 51;”;') +
= i=1

¢
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2 .
+ 5ha(ti+la Uy 5,];,4'_)) h + 5ha(tj§ Uiy, 511“,‘) — ya(ty; o, Sutho) »

[9sa(z;; Yl Suuy)| £ % - o> + % 8w
15,,a(t;+12 Ontt s 6!:"““ + \57;Ia(ti+1§ Ui-1, 5;.“:‘)\ = C(H5hui\\2 + ”u"‘lllz)

b < c(uol? + 3 Jo.d? 1

and

\(6),”,‘, 5/1”1' - 5}1"‘5‘1)

< o] |62 B < |2 b (o
2 2¢
we conclude

J j
LI b+ o] < €1+ €2 o]
because of Lemma 1.1, ”6,,140” = |zo|| < co. Thus, Gronwall’s Lemma yields

(2.2) leéﬁuilz h + néhui” <C forall n=ng, i=1,...,n.
Now we construct UD(t) opq U(V(t) by means of z; = du; (see (1.16), (1.17)).
We have (d/dr) Ufa”(l) =%y, for t;_y <t <t, i=1..,n Thus, Lemma 1.2
implies U"(t) > Z in C(1,1,), UD(t) — Z(t), TM(1) — Z(1) in V for all tel
(d/dt) UD(1) = dZ[dt in [, L,) and ZeL,(I, V) since VQ L, is compact.
Moreover, the estimate

2 1/2

ds) <

020 = Ve = o= ([ [ v

< |t~ (3 |G )2 < cle - r]2
i=1

implies US"(f) = Z(t) in L, and |U{"(f)| £ Cforalltel. Thus U\" - Z in Ly(I, L,).
On the other hand,

TO(¢) = ad_tun(t) for ae. tel

and
d

du .
—u, =~ — in L,(I,L
dt " dt ol L)

(see Lemma 1.2) which implies Z = du/dt. Thus we have

du . d?u
—eL_(I,Wy) and — € L,(I, L,).
dt € oo( 2) dt2 2( 2)

The regularity of u with respect to x will be proved by means of Theorem 1.1 in
the following way (see [4]). From (1.15) where u = u;, |0,u;] < C and from Theorem
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1.1 for | = k we obtain

(2.3) il < c(@) (Jul® + o> + |F” < c(@)

for all n 2 no, i =1,...,n, where F is from (1.10) and F; = [i! | F ds. Due to
(1.14) (¢ = 1, Io = 3k, l1 = k) we have

Sua(t; u;—q,0) = (z;-4,v) forall ve2(Q'),

where z;_; € Ly(2') and |z,_,|,, < C(@) for all n, i = 1, ..., n because of Green’s
formula and (2.3). Then (2.1) and Theorem 1.1 yield

lowalli.. < C(@) (J0wi]]? + |zimislZucary + [0l + |8F )
where Q" < Q" with Q" < @', i = 1, ..., n. Hence and from (2.2) we conclude
24 J [T, dt < €(Q") forall nzn,.

Similarly as above, from (1.15) where u = u;, 5,u; € W;7(Q") and from Theorem 1.1
for I = 3k we conclude

ludli,. = c@) (ludl® + 1Rz + o)

210(:—

for i = 1,..., n, which implies

2 loc

(2:5) J ()|, dt < C(Q") for all n = n,

because of (2.4) and Lemma 1.1. Assumption (1.10) implies F; e W;* for all i =
= 1,..., n. The a priori estimate (2.5) implies i, — g in L,(I, W;*(Q")). On the other
hand, &, — u in L,(I, L,(Q")) and hence u = g. Thus u e L,(I, W,*_.). Similarly,
from (2.4) and from UV - Z = du/dt in L,(I, L,(Q)) we obtain du/dt € L,(I, W75 ).
Thus, Theorem 2.1 is proved.

Example 2.1. Consider the initial boundary value problem (1.2)—(1.5). Suppose
we Ly(I, W3*), dw|dt e Ly(I, W;*) and d?w|dt* € L,(I, L,) and let f(t): I — L,(Q)
(fot) = fo(x, 1)) satisfy

foe Lz(I, szk) dfo

e L,(I,L,).

We assume that a;; = aj; for all |if, |j| < k and that (1.14) takes place for ¢ = 1,
lo = 3k, I, = k. If ug € W2, h, dhJdt € Ly(I, V*) and
Yoay(x, 1) &g = Clélz )
lil.1j] =k
then the weak solution u of (1.2)—(1.5) satisfies

du

2
ue LZ(I W;I;OC) 5 a; € L2(Ia WZZ,I;OC) > d 2

~ € LZ(I, Lz) .

In particular, if (h{t),v) = [,q g(t, s) v(s) ds then g, dg/dte L,(I, L,(0Q)) implies
h, dh/dt € L,(I, V*).
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3. SMOOTHING EFFECT FOR >0

In this section, we study higher order regularity of the solution u of (1.1 with)
respect to ¢ assuming the corresponding regularity of a(t; u, v), f(¢) with respect
to t. Further, we assume u, € H where V, H, f, a are the same as in Section 1.

In obtaining the higher order regularity of u in t, the procedure of Theorem 2.1
is limited by the assumptions for ¢ = 0 (see (1.9)). In the proof of the following
theorem, a priori estimates |[6fu;|? < Ce™@?*" will be obtained for all n = n,
i=Jjg....n where ¢ >0 (¢ < T), jo, = jo(n) satisfies 3¢ < Kjoh < ¢ for all n
(K > 0is a suitable constant) and C = C(p, |uo|u, |f|ur+1c1,v+)- Then we use the
procedure of Theorem 2.1 (with respect to the interval (&, T')) and obtain

g_u € Ly(<e, T, V) (p = 0 is an integer) .
t?

The idea of deriving the above estimates is due to K. Rektorys [9] — see Remark 3.2.

Theorem 3.1. Let g = O be an integer and let V(Q H be compact. Suppose (1.7),
uo € H and let u be a (weak) solution of (1.1). Denote g,,(t) = a(t; v, w), g (1) =

= ao(t; v, w) for all tel, v,weV (see (1.7)). Let g,.(1), g;.(t) e C? (<0, T))
and let

gv W( ) gv,w(t

)| = Cle =7l el 1wl

_ng()— n ng(t)

dr?

forallt,t el,p=0,...,q9 — 1 and v,we V. If fe H" (I, V¥*), or if fe HY(I, H),
then

Cle = ] wl o]

t”“/zﬂeL (I, V) and **7 il € L,(I,H) forall =0 q
dtp o\4>» dtp+1 PAGE] p EICRRE)

and y > 1/2.

Proof. First we prove some auxiliary inequalities (see (3.9), (3.11)) from which
we then obtain the a priori estimates

(3.1) [opu? < Ce=@*0 S |optiuft h < CamCreD

1101

for all p=0,...,q where ¢ >0 (¢ < T) is arbitrary, jo < i < n, j, = jo(n),

e <3.47Yjo,—2p)h<e p=0,...,q, n=ny, h=h,=Tn and C =
= C(q7 luol,
Let 0 < p < g. From (1.15) (u = u;), we successively obtain the formula

p=1 /i
(32) (60 up 0) + a(ts Ofus, ) + (;) 68~ Ta(ts; Slurs - 0) =
j=0

= (60f,v) forall veV and p+1<i=<n.
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(For p = 0 the third term vanishes.) Let us put v = 6fu; — 8fu;_,. In virtue of
(1.7), similarly as in the proof of Theorem 2.1 we estimate

|5t uil? b + a(ty; 6fuy, Sfuy) < %a(t,; ofu,, 8fu,) +

i=r+1
G Y S b+ Y (S0f Sy — Suis) + 4 Y [ortul h +
i=r i=r+1 i=r+1
+ Z aO(ti; Opuy, Ofu; — Opu;_q) +
i=r+1
+ | }j Z ( )5!’ Ja(ty; Sy ;- py Ou; — Sfu;_y)|
i=r+1 j=0

where p + 1 < r <s < n and 1 is sufficiently small. Here we use the estimates

s Y laoltss Shuy, Sfu; — Sfu,_y)| < i <£ |6,’,’+’u,~|2+£![5,’,’ui”2>h
i=r+1 \2 22

i=r+1 i=r

s p—1 .
FA Y
Z ( ) on J“(tis Oplitj—ps opu; — 5;’:ui—1) =
i=r+1j=0
s=1 p—1 ;
i (- 85i+
=-h 3 ¥ ( )(511: Ta(t; 07 Uiy jopars OFU;) +
i=r+1j=0

+ O Aty 5 Ouis s e 1> G5)) +
+ Z < )(51’ Ja tsa 5hus+j—p7 55”8) - 5}’;Mja(tr+l; 5ll;ur+1+j—p’ 5,’:“,)) )
|0F ~a(ty: Ofugs j- py Sfu)] < C(|0fugs-p]* + [|6Ful]?)
S = S, + S 51 w3 5 IS + 3 1wl )
i=r+1 i=r+1

for r < m < s. In the case f € HY(I, H), we use the estimate

= 3 @fedu - uo) S A Y Tl h e, X [l

i=r+ i= r+l i=r+1

In the case f e H"“([, V'*), we estimate

Joo=— Y W& 0u_y) + (30fur SFu) — (301, OFu,)

i=r+1
and hence (see Lemma 1.1)
Vosl < Callf lznscrivny + 207us]? + 05u.]?) + C; |9uai]* b
Then we conclude

DT LN EERS TR o| L R ol L L

i=
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Hence we have

p p . S A
Z 61" "ui|* h + ||Sfuy|?) £ CZO(I +.20|[5;,u,_,4|[2 + ; [ 5u:]|* h) -
Jj= i= i=r+l-p

j= 0 i=r+1
In virtue of Gronwall’s Lemma we estimate

P . P P . r .
Y oim]? £ € X (0 + X [ohu—il> + X [[ofui]* h)
j=0 ji=0 i=0 i=r+1-p
forallr + 1 £ 1 £ s and hence

(33) Z ot bt o) =

i= 0 i=r+
SCY U+ [+ 3 [ofuln).
i=0 i=0 i=r+1-p
Similarly, from (3.2) for i = I + 1, ..., s and v = &[u; we obtain

jopu? + 3, opuil? h <

1

+

i=1
p—1 s
SO+ [Sful> + 3 X [Guies-pf* b + Cl l‘sp“ > h)

j=0 i=1+1

because of 2 |o2fil|lz h < €, HQ V* and (1.7). In virtue of Gronwall’s Lemma,

i=1+1

we may put C, = 0. Then we obtain
(34) Sl + 3 olul ) <
- p: o
S+ TP+ S ().
In the case p = 0, (3.2) immediately YI;ldS
(29) w2+ 3 Ju s ool + 3 A2,

In virtue of (3.4), (3.5), successively for p =1, l=r —m; p=2,l=r —m + 1;
..; p = m,l = r we conclude

(3.6) iwmvfiuwwwgca+iiwm4w

Inserting (3. 6) (for m = p and with r, r — p instead of s, r, respectively) into (3.3)
we obtain

(3.7) 2( Z ]5’“14 [>h + ||ofug]?) < 02(1 + Z 6, —o])* + Zl5hu, )

j=0 i=r+
The crucial point of proving (3.9), (3.11) consists in the following estimates. Let j,
jo > 2q be fixed. Consider (3.7) (the first term being omitted) for jo + 2p < r <
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< 2jo —1=s(1€{0,..., p} is fixed). We have
2jo—1

2jo—1
zwmmwww(—bn+ﬂ S o)t n+

r=jo+2p—I+1j=0

=0 r=jo+p—1+1
2jo—1 .
+ Y |6jud*h) foraln 1=0,..,p.
i=jo=1+1

Hence and from (3.6) (where m = p, r = j, + p — I and the first term is omitted)
we conclude
(68 Eladussl? s 1+ (S o
. u o < + 2 2
PG (o —2p) I ; I”Ih‘*'Zl‘S“I))

Jj=0 i=jo— i=jo—1

forall 1=0,...,p

We use this estimate and (3.6) in (3.3) (where $ Z 2jo, * = 2j,). Finally, we obtain

(39) Z( Z o, Izh+ lofus]?) <

SR E e 3 £ 8

for all 2j, < s < n. Now, we prove (3.11). Subtract (3.2) for i = j and i = j — 1
where v = 5”“ . Then summing it up for j =r + 1,...,s and using (1.7) we
conclude

65" uy? + €y i““az“u,-llz AR Y FAsPA L
i i=r+1

s s )4 P
+C X TP+ Co Y Y X u|Ph +
i=r+1j=01=0

i=r+1
+C5 Y l“6ll|’+1fi”>2k h)
i=r+

where A is sufficiently small. The third term on the right-hand side can be handled
by Gronwall’s Lemma. Then, in virtue of (3.6) and Lemma 1.1 we estimate

G10) Bt e 5 s o g+ 53 o )
=r+ j=0i=0
Hence, similarly as in (3 8) we estimate (s = 3jo, 2jp < r < 3j,)

3jo
|68 ug; > < _h L+ Y |60 u, |>h + Z Z |67ui]? B) <
J

0 r= 2,0 Jj=0i=2jo—2p

é——(1+Z( Z ot ® + Z |5’u|2)+2 S lotuf )

Jj=0 i=2jo-p 2jo—2 j=0i=2jo—2p

because of (3.7). Here we use the estimate (3.8) and then put it into (3.10), where
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r = 3j, and s = 3j,. Finally, we have
3Jjo

C d P12
— (1 + |ou]* +
((jo - 2P) h)2 ( jgo(i=3j§~zp !

2

Jo ) jo=p p 3jo s
Y |l Y ) Y X (o)
i P

i=2jo—2p i=jo-p j=0i=jo—

(3.11) [6p+ uy|? <

for all s = 3j, where C = C(p, [uo|u> |f|mr+1cz.v+)-

The a priori estimates (3.1) are obtained from (3.9) and (3.11) in the following
way. Let us take jo(n) such that ¢ < 3.47 Y(jo(n) — 2p) h, < ¢ for all p =
=0,...,q and n = n, where & > 0 is arbitrary (fixed) and n, is sufficiently large.
In virtue of (3.5) and (3.9), we have (3.1) for p = 0, where n = i = 3jo(n). Then we
take 4jo(n) instead of j, in (3.11). Since 4j, — 2p > 3jo(n) (Jo(n) > 2p), we can
use the estimate

I\

Iéhuslz = _—C”""z %
((jo — 2p) h) ¢
foralln = s = 3jo(n) from the case p = 0. Thus we obtain
|67ug?* < 941‘ forall n=s=3.4jy(n).
€
Repeating the above procedure we obtain

|6puy|? < ;C;'; forall p=0,...,q and s=3.47"jy(n).

Hence and from (3.9) we obtain (3.1). Now we prove the estimates (3.13). We rewrite
(3.1) in the form

(.12) orol s e |

€ e

du®), 2
i, C
dt | = g2+t

forallp = 0,...,9,te(¢, T)and forall n = n,, where UP)(t), UP(t) are constructed
by means of &fu; (see (1.16), (1.17)). These functions are defined in (s, T) since
€ > 3.4 j,/n) h, for n = n,. Th virtue of (3.12) and Lemma 1.2 we have

UP - UP in C(Ke, T),H) forall p=0,...q and
d _
@ — gt _ e+

dt Un Un U m L2(<£, T>’ H) .

Taking the limit as n — oo in (3.2) for p = 0, we conclude that U satisfies (1.1)

for t € (¢, T). By the uniqueness argument we have U()(f) = u(t) in (e, T). Moreover,

by a standard argument we have (d/df) U® = Urtn(p =0, ..., g) and hence

(d?/dt")u = U forall p =0, ..., g + 1. In virtue of (3,12) and UP(1) — UP(f) =

= d”u(t)/dt” in V for all € <&, T) we have

Pyl T|4p+1
(3.13) dru < ana [P
A’ Lo rym €7 .| dsrtt = el
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foralle > 0 (e < T) and p =0, 1, ..., q. Hence we obtain

T pt+t1
J 2pta d u S)
N
0

d p+ 1
because of the equality

T T T T T
J 77t g(s)ds = _{s““j g(t)dt} +(2p + a)J tz"*“*lj g(s) ds de
& N t4 & t

where g(s) = |d”*'u(s)/ds***|* and & — 0. Thus, Theorem 3.1 is proved.

In particular, considering the weak solution of (1.2)—(1.5) where F e L,(I, L,)
(see (1.10)) we obtain also the W, -regularity of du(t)/de® (p =0, ..., q). Here,
Wkecve wk

ds<C<ow(p=0,..,q9) for a>1

Theorem 3.2. Let q = O be an integer. Suppose (1.7), (1.14) for 1, =k (p =
=0,...,q9; see Remark 2.1), fe H""!(I, V*) or fe HYI, L,)), upeLy(Q), Fe
€ HYI, L,) (F is from (1.10)) and let u be a (weak) solution of (1.2)—(1.5) (see (1.1)).
Then

p
tP+73_:4_ €L2(I, WZZ,I;oc) fOr all D= 0: e q and 7= 1/2 )
t

Proof. We shall make use of the a priori estimates from the proof of Theorem
3.1 since its assumptions are satisfied. Consider (3.2) for p = 0 (where the third term
is omitted). Hence and from Theorem 1.1 (I = k, G = F) we have

Jud,. < C@) (] + ol + [F) forall joln) < i < n
and n = n, where
ti
F = lj F(s) ds .
b,

In virtue of (3.1) (for p = 0), we then conclude
19 Ttz ns o [jafin. s
€

i=jo
because of Lemma 1.1. Analogously as in Theorem 3.1, in virtue of (3.14) we conclude
'u € L,(I, W7..) which is our statement for p = 0. Let us suppose that our theorem
is proved for p = 1, ..., r < g with the estimates

, e Cc(Q' . , C
(3.14) 121”5 lzzwc §82(p“), J”U(zn(t)” B di =82TT

p=1,...,r. Then, from (3.2) for p = r + 1 and from (3.14") we obtain
(3-15) I i, < C(@) (16" il + X |ziajmrmal® +
j=0

+ lér+1F‘l2 + 15;+2ui|2)

(@)
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for all i = j, where &," " Ja(t; Sfuisj—r—1,0) = (Zisjmr—1,0)s Zinjor—1 € Ly(Q)
(Q" = @ with Q7(Q") for all v € 2(Q) because of Green’s Theorem, and dju;, ;_,_; €
e W7K(Q') for all j = 0, ..., r. Moreover, the estimate
i C(Q'
vl S IO s-r- o 5 )
takes place for all i = jo and j = 0, ..., 7. Then, (3.14'), (3.1) and (3.15) imply

. c(Q . c(Q”
£ jr il s G or [ 1o, s S5

i=jo
for all n = n, which is (3.14") for p = r + 1. Similarly as above, the last inequality
implies
P, dr+l -
! d"“ € Ly, Wil »
and Theorem 3.2 is proved.
In deriving (3.9) and (3.11), the estimates

,-;1”5 i3 b = C|fllanap = CF)

have been used. In fact, the estimate (3.9) can be written in a more detailed form
where ||f]| e+ 1.+ and |u,| stand in the place of 1. Similarly, in (3.11) we have
[+ 1cz.+ instead of 1. Then, taking account of (3.5), by the same arguments
as in Theorem 3.1 and Theorem 3.2 we obtain

Theorem 3.3. (i) If the assumptions of Theorem 3.1 are satisfied, then

d?ult)| o
I dl;;) < CP 2 (fugl, + 1 e rawm)
Wk
forall tel,
| P+ydp+1u
! pt1 = C(luOILz + ”f“HP'*‘l(I’V*))
” dt Ly(I,L2)

forallp=0,...,q and y > 1/2;
(ii) If the assumptions of Theorem 3.2 are satisfied and y > 1/2 then

dp t ’
+y uf’) < C(Q)(lu()'Lz + ”f”H”“(I’V*))
dt La(1L,Ww¥@")

for all tel and for all p =0, ...,q. If fe H(I, H) then, in the above estimates,
[ lsw+ 12+ can be replaced ||| o m-

Remark 3.1. Theorem 3.1 holds true without the éssumption that VQ H is
compact. Indeed, the a priori estimates (3.12) and the uniqueness of the weak solution
of (1.1) imply

UP(t) = UP(t), UP(f)— UP(¢) in H and also in V
forallp =0,...,q and ¢ € {&, T). This is sufficient to establish (3.13).

579



Remark 3.2. In [9] a special case is considered: a(t; u, v) = a(u, v); a(u, v) =
= a(v,u); a(u,u) = Clu|? (f(t),v) = [of(x)vdx with feL,(Q) and uy = 0.
It is proved that d”u/dt” € C(<e, T, V) for all p = 0, ... (see [9], Theorem 12.2).

Remark 3.3. In the paper [10], the semi-group theory has been employed.
Homogeneous Dirichlet boundary conditions are considered and more regular
coefficients a;j(x, f) (in x) are supposed. Assertion (i) in Theorem 3.3 corresponds
to the estimate (2.37) in [10] for B = % (where ||A"/?v]| ~ |[v]y . see [3]). The
a priori estimates of the smoothing effect can be used in the error analysis for the
approximate solutions of linear parabolic equations with non-smooth initial data
(see [12], etc.).

4. REGULARITY IN (x, )-VARIABLES

Higher order regularity of the (weak) solution of (1.2)—(1.5) for u, € L,(Q) with
respect to the (x, f)-variables in the interior of the domain Q is obtained under
stronger regularity assumptions on a;,(x, t), F (from (1.10)) with respect to the (x, ¢)-
variables.

Let g = 0 be an integer. We assume

4 d?’F 2y

(4.1) EEGLZ(LWZ) forall p=0,...,q

where «, = 0 are integers and F is from (1.10). We construct nonnegative integers
» = 0in the following way: Successively forl = 1,...,q, where | = r + s (r, s being

nonnegative integers), we define

(4.2) B = min (B, B 1, BE5Y, L BETTTY, 0) + 2Kk

where B = B — 2k, r=0,...,9, 1<s<qg—r+1 We put i =0 for
i=1,...,9 + 1 and

(4.3) B, =BU*'"P for p=10,.,q+1.

We can easily verify B0 = g% for s, > s, and B; < Bi-1 < B; + 2k
(j=0,..49). .

Theorem 4.1. Let g > 0 be an integer. Suppose (1.7), (4.1), fe HEYY (I, V*) (or

fe HYIL L,)), ug € L,(Q) and (1.14) for l,=p,—2k (p =0,..., q) where f3, are
from (4.3). If u is a weak solution of (1.2)—(1.5), then

dfu
tq+ygt_p_ ELZ(Ia Wzﬁﬁoc) fOT all p= Oa e q and Y > 1/2 .

In particular, when a, =2k(q — p) and 1, = 2k(q — p) (p=0,...,q), then
(B, = 2k(a — p + 1))

a+y 371 2k(a=p+1)

¢ o € L,(I, W; ) forall p=o,.. . q.

,loc

If Fe C®(Q) and a;;e C*(Q), then ue C*(Q).
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Proof. We rewrite (3.2) in the form
p—1

(4.4)  a(t; Sfu;, v) = — (8 uy, v) — Z (p)é” Ta(t;; 8fuss - p ) + (O0F;, v)

j=0

for all ve 9(Q) and p + 1 < i < n. Here we make use of the a priori estimates
(3.1) and the procedure used in the proof of Theorem 3.2. Successively, for p =
=0,...,q we apply Theorem 1.1. The structure of the numbers B corresponds
to the following fact. Having a priori estimates for 6;*'u; in a space Wj ,,., we come
back to (4.4) with p =j, j — 1,...,0 and apply Theorem 1.1 again. At every step
we obtain the regularity of 8ju;, 5/ 'u,, ... which is not smaller than the regularity
obtained before, since the right-hand side in (4.4) is possibly more regular in x.
Indeed, consider (4 4) for p = 0; the second term on the right-hand side vanishes.
We have u; e W}, (BS" = 2k). Then (4.4) for p = 1 and u; e W%, yields

S e WY where B{" = min (B, BV, o)) + 2k

loc

since Sa(ty; u;—y,0) = (2i-q, ) (Greens formula and (1.10)) where z;_; € L, .
Using the a priori estimate d,u; € WS'.., we apply again (4.4) with p = 0 since ,u;
on the right-hand side is now more regular. Then we have

e W | where B2 = min (B, o) + 2k = 5" .

2,loc »
In the next step we obtain
g WES. B0 = min (B9, B0, B, 00) + 2%,
Sy; € Whiar B = min (B”, B, oy) + 2k and
u; e wh? B3 = min (B, «) + 2k .

2,loc

Thus, successively we obtain f, = ﬂﬁ,""’“’ for p=0,...,9 + 1 and the a priori
estimates
Tdu2(1)|)?

_ (@)
(@5) oe ol s Sat [ [

C

dt <
2q+1

&

foralln = ng, p =0, ..., q and t € {g, T) similarly as in the proof of Theorem 3.2.
Hence, by the same argument, we deduce the required result. The C*(Q)-regularity of
the solution is a consequence of the previous results and of the imbedding theorems
in the Sobolev spaces W3(Q). Thus, Theorem 4.1 is proved.

Remark 4.1. In the case a;j(x, t) = a;;(x), the formulas for f, in Theorem 4.1
are simple because of (4.4) where the second member on the right-hand side vanishes.
Then we have f,,, = 0, B, = 2k and

B, = min (B,41,%,) + 2k for p=0,...,q—1.

Remark 4.2. Theorem 4.1 holds true also in the case when o, 2 0(p < 0, ..., q)
are real numbers, since Theorem 1.1 is valid also for real I = 0 (see [7]).

Remark 4.3. In the case o, = 2k(q — p) (p = 0, ..., q), our result in Theorem 4.1
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coincides with that of [7] (I, Theorem 5.3 for k = 2mgq) restricted to the interior
of the domain Q.

Remark 4.4. By the same argument as in Theorem 3.3 we can specify the structure
of the constants C(2'), C in the a priori estimates (4.5). In fact, we can obtain

(m<C@wMV+idmem)

dv

Then the assertion of Theorem 4.1 can be rewritten in the form

d?Pu d’F
< 1<Q>(|uo|2 +% )
Ly(1,W3i)

de dt’
5. APPLICATION OF REGULARITY RESULTS TO THE CONVERGENCE
OF ROTHE’S METHOD

P R iiad

B
LT, W2 ploc)

The regularity results obtained in Sections 3 and 4 yield stronger results on the
convergence of Rothe’s method.

Theorem S.1. Let the assumptions of Theorem 3.1 be satisfied. If V(Q H is com-
pact, then UP) — dPu[dt” in C((a, >, H) for p=0,...,q and

T
p |12
§c<l+z v - L g - ) for p=0,.q
n  j=o j=0 At |, e, 15,10

In particular, o,(p) — 0 for n — .

Proof. Let us denote a®(t; u, v) = (d”/dt?) a(t; u, v) and a,(t; u, v) = a(t;; u, v)
for t,_y <t<t, i=1,...,n, a(0;u,v)=a(0;u,v) for all u,veV and p =
=0, ..., g. Due to the assumptions of Theorem 3.1, we have

(5.1) 167 a(t; u, v) — a®(t3u, v)] < Chlju] [o] @:@:9

forallp=0,...,9 — 1, u,ve Vand n 2 n,. We rewrite (4.4) in the form

(5.2)
(—dUﬁ”(‘) ) + s T, ) = (770, =% (1) o ads T~ (0= Do
dt j=o\P
for all v e V. Hence we conclude (the variable ¢ is omitted
% IU;p) — U,(’f’)ll + a,,(t; U'('p) — U,(np)’ ULP) — U'(:r)) < (U,(,”H) — U'('f’“), U® —
— TP + (U — D)) = a,(t; TP, TP — TP) +
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p—1
+ a,,,(t; Ufnp), ng) _ U,(,f’)) Z (p) 51? ig (t U(J) U,(,f), ﬁ’(lp) _ U,(,f’)) +

j=1

1
-

P
+

m

<) 627 a,(t; UD, TP — UP) — a®9(t; UD, TP — TD)| +

J

m >

+ (f(p)(t) (p)(t)’ U'('p) U,(,f’) .

We integrate it over (&, t). Using the estimates

"'MH gm

( )la(p J)(t U(J) U(p) U,(,{’)) 5:» ia (t ow U(p) U,(,,”))| +

T
() — TP(0)| < 2+ Do) L, j U+ D(s) ds < C(e).
n &

la,(t; v, w) — a,(t; v, w)| £ C (l + l) v
no m

forallj =0,...,q, n = ny, te(e, T) (see (3.1)), and (5.1), we obtain

[T20)] = <)

(53) 020 - v + [ 1000 - TP o =

éa@@W@ UG + +—+zjuw> — TP ds +

gl .

+ CIJ’ [UP(s) — UD(s)]* ds .
In virtue of Gronwall’s Lemma, we may put C; = 0. The a priori estimates (2.12)
and the compactness of the imbedding V' H imply

00 = LW ae o [ g - L s+

p
U - %tg in C(Ke,T),H) forall p=0,....q

(see the proof of Theorem 3.1). Thus, taking the limit as m — oo in (5.3), successively
for p =0, ..., q, we obtain the required result. In the case p = O the term with the
summation in (5.3) vanishes. The convergence

q
2

i=o

. d/ 'f
) _
-5

-0

La((2,T),V*)

is a consequence of Lemma 1.1.

In the following theorem we prove the convergence of Rothe’s method (in the
interior of Q) in more regular functional spaces. For simplicity, we shall assume
a(t; u,v) = a(u,v) for all u,ve V.

Theorem 5.2. Let the assumptions of Theorem 4.1 be satisfied and let a;f(x,t) =
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= a;(x) for all |i|, |j| £ k. Then the estimates

4 | _ py,l2 dP,
0=, o0 -G s 5+ % (e - )
p=0 Y, t?
F» — &°F * ) + Z Fo) & )
dr? ||, At? || ooy

are true where Y, = L,(Se, T), W3n,.), Z, = Ly(<s, T), W), v, = min {y,,,,0,} +
+ 2k for p=0,...,q — 1 and y, = k. In particular, ¢, — 0 with n — oo.

Proof. Taking the limit as n — oo in (5.2) (where the last term vanishes), we

deduce
pt1 p. P
d u(t)’v ta du(t),v _ dF(t),v
drptt dr? de?
for all ve 2(Q), tel and p =0, ...,q — 1. In the case p = g, this identity holds
for a.e. t € I. Then, subtracting it from (5.2), we conclude

a(Uf,”)(t) - ‘ldi:‘—’) : v) - (Uff’“’(t) - d:lt__‘“ft) v) ; (F,(,”)(t) _ 35@,0>

dr?

for all ve 2(Q), p=0,...,q — L. Thus UP(¢) — d?u(?)[de® (¢ is fixed) is a weak
solution of the linear elliptic equation. In virtue of Theorem 1.1 and the a priori
estimates (4.4) (B, — k <y, < B, — see Remark 4.1) we successively obtain

(5.4) oo - ¢ ‘:St) vin C(Q’)( Tw)t) — dd':(’) g
oo - Sl e - S )
2toc wee
where §, = y, — 2k. Since J, < y,., we have

(p=0,...,q — 1). Thus, the right-hand side in (5.4) is an element of L,({¢, T))
because of (4.5) and Theorem 4.1. Let us integrate (5.4) over (¢, T). In virtue of

Theorem 5.1, successively for p = g — 1, ..., 0, from (5.4) we obtain the required
result.
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