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A SIMPLE PROOF OF VINOGRADOV'S THEOREM 
ON THE ORDERABILITY OF THE FREE PRODUCT OF o-GROUPS 

GABOR REVESZ, Lawrence 
(Received October 29, 1985) 

Let H and G be groups and let A: be a field of characteristics not equal to 2. Denote 
by ТГ2(А:[Я X G]) the group of 2 x 2 upper triangular, invertible matrices over the 
group algebra /с[Я x G] of the direct product Я x G of Я and G. We prove: 

Theorem A. The homomorphism of the free product H * G into Тг2([Я x G]), 
induced by 

^ "^ ( О /z " ) (^ ^ ^ ) ''''^ ^ "^ (o ^ ) ^^ ^ ^^ ' 
is an embedding. 

This embedding is then used to give a simple proof of 

Theorem B. ([2], [3], [4]) The free product of o-groups is an o-group. 

Essentially, what we show is that the construction on со x o) upper triangular 
matrices used by Johnson in [2] in proving Vinogradov's theorem, can be adapted 
in the context of 2 x 2 matrices. Once Theorem A is established, Theorem В follows 
by simply restricting Johnson's ordering of infinite matrices to an ordering of the 
corresponding top-left-corner 2 x 2 ones. 

1. Proof of Theorem A. Denote the homomorphism in question by a. In proving 
that a is injective we may assume that both Я and G contain non-torsion elements. 
For if Я с Я ' and G с G\ then a':H' *& -> Тг2{к[Н' x G']) extends a and 
hence if a' is injective, so is a. We claim that ker a = L Suppose to the contrary 
that 1 Ф a G ker a. Every element of Я * G \ 1 can be written as an alternating 
product of elements of Я and G. By taking a suitable conjugate of a is necessary, 
we may assume that 

^ = K+iQnK'-'QiKQiK 
where /î  ф 1 and gi Ф I. Further we may choose a so that и, which we shall call 
the length of a, is minimal. The minimality of n now impUes that h^+i Ф ЙГ^- For 
otherwise 

h'^g^h^ah^^gl^h 
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is also in ker a and is of length n — 1 for any 1 Ф /i 6 Я. A straightforward induction 
on n shows that 

^1 / («) 
\0 K+iK..- h^g^.,. 

where „_i 
/(«) = 1 - T.K+iK-" hgrgr-i "-go + 

r = 0 
n-1 

+10^ I- • •• go "n+1^/1 • • • '^ long n-1 •' • gi 
r = 0 

{ho = 1 and ^0 = 1 ^̂ "̂  introduced merely to simplify presentation). This is in fact 
true for any alternating product of Я * G bordered by elements of Я \ 1 . Since 
a e ker a, the (2,2) entry of a'^ is 1 and hence the first and the last summands of / (a) 
cancel out. Moreover, since the remaining summands are ± basis elements of the 
/c-space k[H x G], they pairwise coincide. In particular, for each r between 0 and 
n-1 

= hs+iK...hogs+igs'-'Qo for some O ^ s ^ n - l . 

Now let he H\ {l, h^^} and g e G\{1, g^^} and consider 

a' = {1г~Чг^^) g~\h^h„+:i) gX ••' g2h2{gi9)(hih) ; 

clearly, a ' e ker a and is of length n -{- 1. Write h[ = h^h, g\ = g^g; h\ = hi and 
gl = gi for all 2 S i й n; /z^+i = hX+^^ g'^^^ = g~^ and K+2 = (^i^)~^ = 
= {h[)~^. Now for each 2 ^ r ^ n we have 

h'^...h\ = h,... h^h and g[. ... g\ = g,... g^g ; 

in particular: g'„...g[ = gn---gi9 = Q- Furthermore, h'^+X ...h[ = h^+^h^... 
... h^h = h^h = h[ and /î^+2^n+i ---К = 1, д'п^^д'п •••é^i = 1- By assumption Я 
has a non-torsion element so we can pick h so that h^ ... h[ ф h[ for all 2 ^ г ^ n 
(the non-torsion element of G is needed to make sure that there exists an element 
outside {1, gî^})' The fact that a' e ker a implies that 

0 =f{a') = -h[ + h[g[ - . . . - /i;+i ..Л[д'„...д[ + /z; + i ...h[g'n+i •••Qi • 

By what has been said it is clear that for some 2 ^ г ^ /i + 1 

h[g[ = /?; . . . h[g',_^ ...ö^i ; 

the choice of h ensures that r = n + 1. But then g[ = ö̂ iö̂  ~ g» •-• Qi ~ Q whence 
^1 = 1, a contradiction. 

2. Proof of Theorem B. Let Я and G be o-groups, by Theorem A, Я * G embeds 
in Тг2(/с[Я X G]) and the image of Я * G is clearly contained in 

/ 1 k{H X G ] \ 
\^0 H X G J 
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It will suffice to verify that if к is an ordered field then T can be ordered. So let к 
be an ordered field and let ^ be one of the lexic orders on Я x G induced by the 
orderings of H and G. Write ^ for the lexicographic order on k[^H x G] induced 
by S (cf. [1; p. 108]). The order on Г can now be defined setting 

1 / U ^ l if J%>1 or 
0 % ; = 1% = 1 and / ^ 0 

In order to prove that ^ ' is preserved by multiplication one has to use the fact that 
all elements of Я x G are positive with respect to ^ . (As it turns out, every ordering 
with this property gives rise to an ordering to T.) The resulting order, in fact, extends 
the orders on Я and G we started with. 
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