Czechoslovak Mathematical Journal

Bohdan Zelinka

Tolerances on graph algebras

Czechoslovak Mathematical Journal, Vol. 37 (1987), No. 2, 313-317

Persistent URL: http://dml.cz/dmlcz/102157

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

TOLERANCES ON GRAPH ALGEBRAS

Bohdan Zelinka, Liberec

(Received November 1, 1985)

A tolerance on an algebra [5] is defined similarly as a congruence, only the requirement of transitivity is omitted. Here we shall study tolerances on graph algebras which were introduced by G. F. McNulty and C. R. Shallon ([2], [4]), and described by R. Pöschel [3]. Before defining these algebras we introduce the necessary terminology and notation of the graph theory.

All graphs mentioned in this paper are directed. We admit loops, but not multiple edges. An edge going from a vertex x to a vertex y is denoted by $x y$. The vertex set of the graph G is denoted by $V(G)$, its edge set by $E(G)$. Further (following Berge [1]), we denote $\Gamma(x)=\{y \in V(G) \mid x y \in E(G)\}, \Gamma^{-1}(x)=\{y \in V(G) \mid y x \in E(G)\}$.

A quasicomponent of a graph G is a maximal (with respect to inclusion) strongly connected subgraph of G. The family of all quasicomponents of G will be denoted by $\mathscr{2}(G)$. The family $\mathscr{Z}(G)$ can be partially ordered by the relation \leqq such that $Q_{1} \leqq Q_{2}$ for $\left.Q_{1} \in \mathscr{Z}(G), Q_{2} \in \mathscr{2} G\right)$ means that there exists a directed path in G from a vertex of Q_{1} into a vertex of Q_{2}.

To a graph G the graph algebra $\mathfrak{H}(G)$ of type $\langle 2,1\rangle$ is assigned. The support of $\mathfrak{A}(G)$ is the set $V(G) \cup\{\infty\}$, where ∞ is an element not belonging to $V(G)$. The element ∞ is considered as a nullary operation on $\mathfrak{M}(G)$. Further, $\mathfrak{H}(G)$ has a binary operation denoted by a dot. It is defined in such a way that for any two elements x, y of $V(G) \cup\{\infty\}$ the element $x . y$ is equal to x if and only if $x y \in E(G)$, and is equal to ∞ otherwise. (In particular, $x . \infty=\infty . x=\infty$ for each $x \in V(G) \cup\{\infty\}$.)

Hence the graph algebra is a groupoid with one nullary operation added. A tolerance on the graph algebra $\mathfrak{N}(G)$ is a reflexive and symmetric binary relation T on the set $V(G) \cup\{\infty\}$ with the property that $\left(x_{1}, x_{2}\right) \in T$ and $\left(y_{1}, y_{2}\right) \in T$ imply $\left(x_{1}, y_{1}\right.$, $\left.x_{2} \cdot y_{2}\right) \in T$ for any four elements $x_{1}, x_{2}, y_{1}, y_{2}$ of $V(G) \cup\{\infty\}$.

All tolerances on $\mathfrak{H}(G)$ form a lattice with respect to the set inclusion; we denote this lattice by $L T(\mathscr{A}(G))$. If a tolerance on $\mathfrak{H}(G)$ is transitive, it is a congruence on $\mathfrak{H}(G)$. By the symbol Δ we shall denote the equality relation on $V(G) \cup\{\infty\}$, i.e. the set of all pairs (x, x) for $x \in V(G) \cup\{\infty\}$. As any tolerance T on $\mathfrak{Q}^{\prime}(G)$ is a reflexive relation, we always have $\Delta \subseteq T$.

If R is a binary relation on $V(G) \cup\{\infty\}$, then we denote

$$
V_{0}(R)=\{x \in V(G) \mid(x, \infty) \in R\} .
$$

Proposition 1. Let $T \in L T(\mathfrak{H}(G))$. Then there exists a subfamily $\mathscr{Q}_{0}(T)$ of $\mathscr{Q}(G)$ with the properties that $Q_{1} \in \mathscr{Q}_{0}(T), Q_{2} \in \mathscr{2}(G), Q_{2} \leqq Q_{1}$ imply $Q_{2} \in \mathscr{Q}_{0}(T)$ and $V_{0}(T)=\underset{Q \in 2_{0}(T)}{\bigcup} V(Q)$.
Proof. If $V_{0}(T)=\emptyset$, then we may put $\mathscr{Q}_{0}(T)=\emptyset$ and the assertion holds. Now let $V_{0}(T) \neq \emptyset$ and $a \in V_{0}(T)$. Let $Q(a)$ be the quasicomponent of G which contains a; let $Q \in \mathscr{Q ^ { \prime }}(G), Q \leqq Q(a)$, let $b \in Q$. Then there exists a directed path from b into a. Let $b=x_{0}, x_{1}, \ldots, x_{k}=a$ be the vertices of this path and let $x_{i-1} x_{i} \in E(G)$ for $i=$ $=1, \ldots, k$. As $a \in V\left(T_{0}\right)$, we have $(a, \infty)=\left(x_{k}, \infty\right) \in T$. Suppose that $\left(x_{i}, \infty\right) \in T$ for some i; then $\left(x_{i-1}, x_{i-1}\right) \in T,\left(x_{i}, \infty\right) \in T \operatorname{imply}\left(x_{i-1} . x_{i}, x_{i-1} . \infty\right)=\left(x_{i-1}, \infty\right) \in$ $\in T$. Thus, by induction, $\left(x_{i}, \infty\right) \in T$ for each $i=0,1, \ldots, k$ and also $(b, \infty) \in T$ and $b \in V_{0}(T)$. Thus with each of its vertices the set $V_{0}(T)$ contains the whole vertex set of the quasicomponent which contains this vertex, and the vertex sets of all quasicomponents which precede this quasicomponent in the ordering \leqq. This implies the assertion.

Proposition 2. Let $T \in L T(\mathfrak{N (}(G))$, let $x \in V^{\prime}(G)-V_{0}(T), y \in V^{\prime}(G)-V_{0}(T),(x, y) \in$ $\in T$. Then $\left.\Gamma(x)=\Gamma(y), \Gamma^{-1}(x)-V_{0}{ }^{\prime} T\right)=\Gamma^{-1}(y)-V_{0}(T)$.

Proof. Suppose the contrary. If $\Gamma(x) \neq \Gamma(y)$, then either $\Gamma(x)-\Gamma(y) \neq \emptyset$, or $\Gamma(y)-\Gamma(x) \neq \emptyset$. If $\Gamma(x)-\Gamma(y) \neq \emptyset$, let $z \in \Gamma(x)-\Gamma(y)$. Then we have $x z \in E(G)$, $y z \in E(G), x . z=x, y \cdot z=\infty$. From $(x, y) \in T,(z, z) \in T$ we have $(x . z, y \cdot z)=$ $=(x, \infty) \in T$ and thus $x \in V_{0}(T)$, which is a contradiction. If $\Gamma(y)-\Gamma(x) \neq \emptyset$, we analogously obtain $y \in V_{0}(T)$, again a contradiction. Now suppose $\Gamma^{-1}(x)-$ $-V_{0}(T) \neq \Gamma^{-1}(y)-V_{0}(T)$. If $\left(\Gamma^{-1}(x)-V_{0}(T)\right)-\left(\Gamma^{-1}(y)-V_{0}(T)\right)=\Gamma^{-1}(x)-$ $-\left(\Gamma^{-1}(y) \cup V_{0}(T)\right) \neq \emptyset$, let u be an element of this set. We have $u x \in E(G), u y \in$ $\in E(G), u \cdot x=u, u \cdot y=\infty$. From $(u, u) \in T,(x, y) \in T$ we have $(u \cdot x, u \cdot y)=$ $=(u, \infty) \in T$, which is a contradiction with the assumption that $u \in \Gamma^{-1}(x)-V_{0}(T)$. Analogously in the other case.

Proposition 3. Let $T \in L T(\mathfrak{H}(G))$, let $x \in V(G)-V_{0}(T), y \in V_{0}(T),(x, y) \in T$. Then $\Gamma(x) \subseteq \Gamma(y), \Gamma^{-1}(x) \subseteq V_{0}(T)$.

Proof. Suppose that $\Gamma(x)$ is not a subset of $\Gamma(y)$, i.e. that there exists $z \in \Gamma(x)-$ $-\Gamma(y)$. Then $x \cdot z=x, y \cdot z=\infty$. $\operatorname{From}(x, y) \in T,(z, z) \in T$ we have $(x . z, y \cdot z)=$ $=(x, \infty) \in T$, which is a contradiction. If $\Gamma^{-1}(x)$ is not a subset of $V_{v}(T)$, there exists $u \in \Gamma^{-1}(x)-V_{0}(T)$. Then $u \notin \Gamma^{-1}(y)$, because $y \in V_{0}(T)$ evidently implies $\Gamma^{-1}(y) \subseteq$ $\subseteq V_{0}(T)$. We have $u \cdot x=u, u \cdot y=\infty$ and from $(u, u) \in T,(x, y) \in T$ we have $(u, x, u, y)=(u, \infty) \in T$ and $u \in V_{0}(T)$, which is a contradiction.

The last two propositions lead us to the definition of certain relations on $V(G)$. For a given relation R on $V(G) \cup\{\infty\}$ we define

$$
\begin{gathered}
S(R)=\left\{(x, y) \in\left(V(G)-V_{0}(R)\right) \times\left(V(G)-V_{0}(R)\right) \mid \Gamma(x)=\Gamma(y),\right. \\
\left.\Gamma^{-1}(x)-V_{0}(R)=\Gamma^{-1}(y)-V_{0}(R)\right\},
\end{gathered}
$$

$$
\begin{aligned}
S^{\prime}(R) & =\left\{(x, y) \in V_{0}(R) \times\left(V(G)-V_{0}(R)\right) \mid \Gamma(y) \subseteq \Gamma(x), \Gamma^{-1}(y) \subseteq V_{0}(R)\right\} \cup \\
& \cup\left\{(x, y) \in\left(V(G)-V_{0}(R)\right) \times V_{0}(R) \mid \Gamma(x) \subseteq \Gamma(y), \Gamma^{-1}(x) \subseteq V_{0}(R)\right\} .
\end{aligned}
$$

Further, let

$$
S=\left\{(x, y) \mid \Gamma^{\prime}(x)=\Gamma^{\prime}(y), \Gamma^{-1}(x)=\Gamma^{-1}(y)\right\} .
$$

In the following theorem we shall characterize all tolerances on a graph algebra.
Theorem 1. Let G be a directed graph, let $\mathfrak{Y}(G)$ be the graph algebra on G, let T be a reflexive and symmetrtc binary relation on $V(G) \cup\{\infty\}$. The relation T is a tolerance on $\mathfrak{H}(G)$ if and only if $T=\Delta \cup T_{0} \cup T_{1} \cup T_{2} \cup T_{3}$, where $T_{0}, T_{1}, T_{2}, T_{3}$ are binary relations on $V(G) \cup\{\infty\}$ described as follows:
$T_{0}=\left(V_{0}(T) \times\{\infty\}\right) \cup\left(\{\infty\} \cup V_{0}(T)\right) ;$
T_{1} is an arbitrary symmetric relation on $V_{0}(T)$;
T_{2} is an arbitrary symmetric relation contained in $S^{\prime}(T)$;
T_{3} is an arbitrary symmetric relation contained in $S(T)$.
Proof. The necessity of the condition follows from Propositions 1, 2, 3. We shall prove its sufficiency. The relation T is a tolerance on $\mathfrak{M}(G)$, if $\left(x_{1}, x_{2}\right) \in T,\left(y_{1}, y_{2}\right) \in T$ imply $\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in T$ for arbitrary elements $x_{1}, x_{2}, y_{1}, y_{2}$ of $V(G) \cup\{\infty\}$. Thus let $\left(x_{1}, x_{2}\right) \in T,\left(y_{1}, y_{2}\right) \in T$. There are four possibilities for the pair $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$; it is equal to $\left(x_{1}, x_{2}\right)$ or to $\left(x_{1}, \infty\right)$ or to $\left(\infty, x_{2}\right)$ or to (∞, ∞). In the first and the last cases always $\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in T$. Thus we shall study only the cases $\left(x_{1}, y_{1}\right.$, $\left.x_{2} \cdot y_{2}\right)=\left(x_{1}, \infty\right)$ and $\left(x_{1} \cdot y_{1}, x_{2}, y_{2}\right)=\left(\infty, x_{2}\right)$.

First, let $\left(x_{1}, x_{2}\right) \in \Delta$, i.e. $x_{1}=x_{2}$. If $x_{1} \in V_{0}(T) \cup\{\infty\}$, then $\left(x_{1}, \infty\right) \in T,\left(\infty, x_{2}\right) \in$ $\in T$, thus always $\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}\right) \in T$. If $x_{1} \in V(G)-V_{0}(T)$ and $x_{1} \cdot y_{1}=x_{1}$, then also $y_{1} \in V^{\prime}(G)-V_{0}(T)$; otherwise x_{1} would be in $V_{0}(T)$. If $x_{1} \cdot y_{1}=x_{1}, x_{1} \cdot y_{2}=$ $=\infty$, then $\left.y_{1} \in V(G)-V_{0}^{\prime} T\right)$ and thus $\left(y_{1}, y_{2}\right) \in T_{2} \cup T_{3}$. In both these cases $x_{1} \in \Gamma^{-1}\left(y_{1}\right)$ implies $x_{1} \in \Gamma^{-1}\left(y_{2}\right)$ (Propositions 2, 3) and thus $x_{1} \cdot y_{2}=x_{2} \cdot y_{2}=$ $=x_{2}$; the case $\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}\right)=\left(x_{1}, \infty\right)$ cannot occur. Analogously, the case $\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}\right)=\left(\infty, x_{2}\right)$ cannot occur, either.

Now, let $\left(x_{1}, x_{2}\right) \in T_{0} \cup T_{1}$. Then $\left(x_{1}, \infty\right) \in T,\left(\infty, x_{2}\right) \in T$ and thus $\left(x_{1} \cdot y_{1}\right.$, $\left.x_{2}, y_{2}\right) \in T$ for any $\left(y_{1}, y_{2}\right) \in T$.

Further, let $\left(x_{1}, x_{2}\right) \in T_{2}$. Then one of the elements x_{1}, x_{2} is in $V_{0}(T)$; without loss of generality suppose that $x_{2} \in V_{0}(T)$ and hence $x_{1} \in V(G)-V_{0}(T)$. Then $\left(\infty, x_{2}\right) \in T$ and it remains to consider the pair $\left(x_{1}, \infty\right)$. If $x_{1} \cdot y_{1}=x_{1}$, then $y_{1} \in$ $\in \Gamma\left(x_{1}\right)$ and, as $T_{2} \subseteq S^{\prime}(T)$, we have $\Gamma_{(}^{\prime}\left(x_{1}\right) \subseteq \Gamma\left(x_{2}\right)$ and $\left.y_{1} \in \Gamma_{(}^{\prime} x_{2}\right)$, which implies $x_{2} y_{1} \in E(G), x_{2} \cdot y_{1}=x_{2}$. If $y_{2} \in V_{0}(T)$, then $\left(y_{1}, y_{2}\right) \in T_{2}$ and $\Gamma^{-1}\left(y_{1}\right) \subseteq V_{0}(T)$, which is a contradiction with $\left.x_{1} \in V_{(}^{\prime} G\right)-V_{0}^{\prime}(T), x_{1}, y_{1}=x_{1}$. If $\left.y_{2} \in V_{(}^{\prime} G\right)-V_{0}(T)$ then, by virtue of the evident relation $\left.y_{1} \in V_{(}^{\prime} G\right)-V_{0}(T)$, we have $\left(y_{1}, y_{2}\right) \in T_{3} \subseteq$ $\subseteq S(T)$. As $x_{1} \in \Gamma^{-1}\left(y_{1}\right)$, we also have $x_{1} \in \Gamma^{-1}\left(y_{2}\right)$ and thus $y_{2} \in \Gamma_{(}\left(x_{1}\right) \subseteq \Gamma_{(}\left(x_{2}\right)$ and $x_{2} \cdot y_{2}=x_{2}$. Hence the case $\left(x_{1} \cdot x_{2}, y_{1} \cdot y_{2}\right)=\left(x_{1}, \infty\right)$ is impossible.

Finally, let $\left(x_{1}, x_{2}\right) \in T_{3}$. If $x_{1}=x_{1} \cdot y_{1}$, then $y_{1} \in V(G)-V_{0}(T),\left(y_{1}, y_{2}\right) \in$ $\in T_{2} \cup T_{3}$. We have $y_{1} \in \Gamma\left(x_{1}\right)$ and, as $T_{3} \subseteq S(T)$, also $y_{1} \in \Gamma\left(x_{2}\right)$ and $x_{2} \in \Gamma^{-1}\left(y_{1}\right)$.

As $\Gamma^{-1}\left(y_{1}\right)$ contains a vertex of $V^{\prime}(G)-V_{0}(T)$, we have $\left(y_{1}, y_{2}\right) \notin T_{2}$ and thus $\left(y_{1}, y_{2}\right) \in T_{3}$. As $x_{2} \in \Gamma^{-1}\left(y_{1}\right)$, also $x_{2} \in \Gamma^{-1}\left(y_{2}\right)$ and $x_{2} \cdot y_{2}=x_{2}$. Analogously, if we suppose $x_{2} \cdot y_{2}=x_{2}$, we prove $x_{1} \cdot y_{1}=x_{1}$. The proof is complete.

Corollary 1. Let T be a tolerance on $\mathfrak{H}(G)$ such that $(x, \infty) \in T$ implies $x=\infty$. Then T is a subset of S.

Corollary 2. Let G be a strongly connected graph, let T be a reflexive and symmetric binary relation on $V(G) \cup\{\infty\}$. The relation T is a tolerance on $\mathfrak{H}^{\prime}(G)$ if and only if one of the following conditions holds:
(a) $(x, \infty) \in T$ for each $x \in V(G)$;
(b) $(x, \infty) \notin T$ for any $x \in V(G)$ and $T \subseteq S$.

Theorem 2. The lattice $L T(\mathbb{H}(G))$ is a sublattice of the lattice of all binary relations on $V(G) \cup\{\infty\}$.

Proof. Let T_{1}, T_{2} be two elements of $\left.L T_{(}^{\prime} \mathfrak{H}(G)\right)$. Then evidently $T_{1} \cap T_{2} \in$ $\in L T^{\prime}(\mathscr{H}(G))$; this holds for tolerances on every algebra. As T_{1}, T_{2} fulfil the conditions of Theorem 1, evidently so does $T_{1} \cup T_{2}$ and thus $\left.T_{1} \cup T_{2} \in L T \mathfrak{Q}(G)\right)$. Hence the meet of T_{1} and T_{2} in $L T\left(\mathfrak{H}^{\prime} G\right)$) is $T_{1} \cap T_{2}$ and their join is $T_{1} \cup T_{2}$, which implies the assertion.

Now we turn to congruences, i.e. transitive tolerances. The lattice of all congruences on $\mathfrak{A r}(G)$ will be denoted by $\operatorname{Con}(\mathfrak{A}(G))$.

Theorem 3. Let G be a directed graph, let $\mathfrak{A}(G)$ be the graph algebra on G, let C be an equivalence relation on $V(G) \cup\{\infty\}$. The relation C is a congruence on $\mathfrak{H}(G)$ if and only if one of its equivalence classes is $\left.V_{0}{ }^{\prime} C\right) \cup\{\infty\}$ and any other of them is a subset of an equivalence class of $\left.S_{(}^{\prime} C\right)$.

Proof. If C fulfils the described conditions, then it fulfils the conditions of Theorem 1 and $C \in L T(\mathfrak{A}(G))$; as it is an equivalence, $C \in \operatorname{Con}(\mathfrak{H}(G))$. Conversely, suppose that $C \in \operatorname{Con}(\mathscr{H}(G))$. As $(x, \infty) \in C$ for each $x \in V_{0}(C) \cup\{\infty\}$ and C is transitive, we have $(x, y) \in C$ for any two elements x, y of $V_{0}(C) \cup\{\infty\}$. If $x \in V_{0}(C) \cup\{\infty\}$, $(x, y) \in C$, then $y \in V_{0}(C) \cup\{\infty\}$, because of transitivity. Thus $V_{0}(C) \cup\{\infty\}$ is one equivalence class of C. If $(x, y) \in C$ and at least one of the elements x, y is in $V(G)-V_{0}(C)$, then, according to Theorem $\left.1,(x, y) \in S_{1}^{\prime} C\right)$ and the assertion is proved.

Corollary 3. Let C be a congruence on $\mathfrak{A l}(G)$ such that $(x, \infty) \in C$ implies $x=\infty$. Then C is a refinement of S.

Corollary 4. Let G be a strongly connected graph, let C be an equivalence relation on $V(G) \cup\{\infty\}$. The relation C is a congruence on $\left.\mathfrak{S}_{(}^{\prime} G\right)$ if and only if C is either the universal relation on $V(G) \cup\{\infty\}$, or a refinement of S.

Theorem 4. The lattice $\operatorname{Con}(\mathfrak{H}(G))$ is a sublattice of the lattice of all equivalence relations on $V(G) \cup\{\infty\}$.

Proof is analogous to the proof of Theorem 2.

References

[1] Berge, C.: Théorie des graphes et ses applications. Dunod Paris 1958.
[2] McNulty, G. F. - Shallon, C. R.: Inherently nonfinitely based finite algebras. Lecture Notes Math. 1004 (1983), 206-231.
[3] Pöschel, R.: Graph varieties. Preprint, Institut der Mathematik, Akad. Wiss. DDR, Berlin 1985.
[4] Shallon, C. R.: Nonfinitely based finite algebras derived from lattices. Ph.D. Dissertation, University of California, Los Angeles 1979.
[5] Zelinka, B.: Tolerance in algebraic structures. Czech. Math. J. 20 (1970), 179-183.

Author's address: 46117 Liberec 1, Studentská 1292, Czechoslovakia (katedra tváření a plastủ VŠST).

