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0. PRELIMINARIES 

A measurable space (5, ЩЗ)) is standard if there is a complete, separable, 
metrisable topology on S generating the (j-field J*(5) аз its Borel structure. Equi-
valently, (5, ^(S)) is isomorphic with a Borel subset of the real Hne R under its 
relative Borel structure. A non-void collection J^ of sets in J^(5) is a a-ideal if it is 
closed under the taking of countable unions and if В^Ш{3) and N eJ implies 
В r\ N e J. We insist that S $J>. If m is a probabiHty measure on J'(S), then J{m) 
is the (T-ideal of all m-nuU sets in ^{S). A- subset X с S is J-dense if S с ^{S) 
and В ci S\X impHes В e J. L e t / b e a Borel-isomorphism between sets B^ and В2 
in J*(S'). Then T = graph (/) is an J-thread if there is no set iV G J^ such that Г с 
с (AT X S) u (S X iV). 

Let /I denote Lebesgue measure on the real line. An uncountable subset X of R 
is a Sierpinski set if X n N is countable for each Borel set N with AN = 0. An 
uncountable X a R is я Lusin set if X n N is countable for each Borel set of first 
category in R. For more information about such singular sets, consult the surveys 
[2] or [8]. 

A subset X of a standard space S has the Blackwell property if whenever/: X -^ R 
is a one-one real function measurable with respect to the relative Borel structure 
J '(Z) = {B nX: Б б J'(iS)}, then / is a Borel-isomorphism of X onto its image 
f{X). An exposition treating of this topic is [1]. In some ways, the Blackwell property 
functions as a measurable version of compactness. Every analytic set is Blackwell, 
but not every co-analytic set is. For these and other basic facts, see [1]. There have 
been a number of recent investigations along these Hues: [3], [5], [6], [7], [10]. 

Using the continuum hypothesis (CH), Jasinski [7] has demonstrated the existence 
of Sierpinski and Lusin sets with and without the Blackwell property. In [10], his 
ideas were extended to a general class of singular sets, and it was shown that, roughly 
speaking, only relatively "large" Sierpinski and Lusin sets are Blackwell. To wit, we 
have the following 

Lemma 1. Let ^ be a a-ideal in the standard structure ^{S) and suppose that X 
is an J-dense subset of S. If X has the Blackwell property, then X x X meets 
every J-thread in S x S. 

320 



Indication. This follows from propositions 1 and 2 in [10]. 
We shall use this fact to construct (CH) Lusin and Sierpinski sets, each of whose 

uncountable subsets are not Blackwell. Assuming MA + (not-CH), such sets cannot 
exist. 

1. MAIN RESULTS 

For our construction of a highly non-Blackwell set, we shall employ a familiar 
result of Steinhaus shghtly recast. 

Let ^1 Г2 Г3 ... be an enumeration of the non-zero rationals in the interval ( — 1, 1). 
Define subsets R„ of the square (0, 1) x (0, 1) by 

К = {(^, y)- У = X -h r,,} 

and put R = R^Kj R2U .,. , 

Lemma 2. Let A be a linear Borel set. 
1) / / A is of positive Lebesgue measure, then for some n, the set [A x A) n R,^ 

has positive linear measure. 
2) If A is of second category in R, then for some n, the projection of (A x A) n R„ 

on either axis is of second category in R. 

Proof. A classical theorem of Steinhaus [11] says that if A has positive Lebesgue 
measure, then the difference set A — A = {a — a': a, a' G A] contains an open 
interval about 0. So (Л x Л) n i^ is non-empty and must in fact have positive linear 
measure. 

For the case where Л is of second category, replace the theorem of Steinhaus by its 
category analogue, due to Pettis [4; p. 87]. Q.E.D. 

Proposition 1 (CH): There is an uncountable subset Y of R, no uncountable 
subset of which is Blackwell. One may choose Y to be a Sierpinski set or a Lusin set. 

Construction. We build a Sierpinski set with the desired property. The method 
for Lusin sets is entirely analogous and is therefore omitted. List in transfinite 
series NQN^ ... N^... a < с aU Hnear Borel sets of measure zero and put M^ = 
= и {Np'o ß й oc] for each a < c. Choose y^ from the set (0, l ) \ M o . 

Suppose now that for a < c, the set Y^ = {ур: ß < a] has been defined in such 
a way that j ^ G (O, 1) \ Mß for each ß and so that no two elements of Y^ are equivalent 
(in the sense that their difference is rational). Choose y^ to be any member of 
(0, 1) \ M^ not equivalent to any point in 7«. 

Finally, define Y = {y^: a < c}. Clearly, Fis a Sierpinski set. Suppose now that X 
is an uncountable subset of Y. Then X has positive outer measure. Let S => Z be 
a Borel set with AS = À^X. (In the case of Lusin sets, use [4; p. 25] to find a Borel 
set S => X such that all Borel sets contained in S\X are of first category in R). 
Define m == ÀJÀS as a probability measure on the Borel subsets of -S. 
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Now using lemma 2, we find n so that T = (S x S) n R,, has positive linear measure. 
Then X is ^(m)-dense in S, but X x X does not intersect the ^(w)-thread T, From 
lemma 1, we see that X cannot have the Blackwell property. Q.E.D. 

Under Martin's Axiom, every linear set of cardinality less than с has outer measure 
zero and is of first category in R [9]. Using the same construction as above, one may 
demonstrate 

Proposition 2 (MA). There is a subset Y of R of cardinality с such that no subset 
of Y of cardinality с is Blackwell. 

However, there are limitations on the extent to which proposition 1 can ignore CH. 
If MA + (not-CH), then every uncountable set contains an uncountable Blackwell 
set: 

Proposition 3 (MA): If X is a linear set of power less than c, then X has the 
Blackwell property. 

Indication. See [ l ; p. 26]. 
We leave off with some unsettled business. Let Z be a linear subset whose com

plement R\X is totally imperfect (i.e. X is J^-dense, where У is the ö'-ideal of 
countable sets). A characterisation of such sets with the Blackweil property is known 
[10], but 

Question. Does X necessarily contain a Blackwell set? 
The author can answer in the affirmative only if MA is assumed. 
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