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In [1], P. J. Bushell has proved the following theorem.

Theorem 0. Let T be a real non-singular n x n matrix and k 2 1 a fixed integer.
Then there exists a unique real positive definite matrix A such that T*A*T = A.

In this paper we extend this theorem in two directions. Firstly, we consider a more
general equation than T*A*T = A and, secondly, we work in a C*-algebra. To
realize this program we derive some fundamental properties of the Hilbert projective
pseudometric defined on the cone of invertible positive elements of a C*-algebra.
This is done in the first eleven lemmas which are also of independent interest.

Let A be a (nonzero) unital C*-algebra (with unit e), Inv(4) the (multiplicative)
group of all invertible elements of A, 4, the (real) linear subspace of A consisting
of all Hermitian elements of A, A, = {a e A,: o(a) = 0} (the set of all positive
elemenst of A; here o{a) is the spectrum of a and ¢(a) = 0 means t = 0 for each
t € o(a)), A% and A% the interior and the boundary of A, in 4,, respectively. For
ae A with o(a) = R, set m(a) = min o(a) and M(a) = max ¢(a); in this case,
m(a) £ M(a) and the spectral radius r(a) = max {M(a), —m(a)}. For a,be A
write a < b iff b—aeAd,.

It is well known that:

(i) A4 is a (real) closed convex cone in A4, with 4, = 4, — A, and 4, N
N (—A4,) = 0; hence 4, is a partially ordered real linear space (but not a vector
lattice if A is not commutative);

(i) if a € 4, then
m(a) = max {teR: te < a},

M(a) = min {teR:a £ te};

(iii) if a € 4, then |a| = r(a) (= max {M(a), —m(a)});

(iv) if a,b,ce A and a £ b, then c*ac £ c*bc; if, in addition, ae A,, then
la] < |b]| (that is, the norm is monotone);

(v) if a e A, then a e Inv(4) iff m(a) > 0;

(vi) if 0 < a £ b and a € Inv(4), then beInv(4)and 0 < b~ < a™;

(vi)) if0<a < band0 < p < 1, then 0 < a” < b".
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Note also that:
(viii) if a,be 4, and a < b, then m(a) < m(b) and M(a) < M(b) (this follows
from m(a)e < a < b < M(b) e and (ii));
(ix) if a € 4, and t € R, then m(ta) = min {t m(a), t M(a)} and M(ta) =
= max {t m(a), t M(a)};
(x) if a, be 4, then |m(a) — m(b)| < |la — b| and [M(a) — M(b)| < [la — b|
(this follows from (viii) and —[la — b]e + b < a £ |a — b|| e + b);
(xi) if a eInv(4) and be A, then o(ab) = o(ba) (this follows from ab — Ae =
= a(ba — le)a™', Le C);
(xii) if a e Inv(4) " (4, U(—A,)), then m(a™') = M(a)~* and M(a™") = m(a)™".
Most of the above assertions may be found in [2].
For a € A, and r 2 0, let B,(a, r) be the closed r-ball in A4, centered at a.

Lemma 1. (1) Let ae A,. Then By(a, m(a)) = A, and dist(a, A%) = m(a),
where dist is the distance function.

(2) A% ={aeA,:m(a) >0} = A4, nInv(A4) and 4% = {ae A,:m(a) = 0} =
= A, \Inv(4).

Proof. By (v), we have {a € A,: m(a) > 0} = A, nInv(4) and {ae A,: m(a) =
=0} = 4, \Inv(4).

If a,be A, then a + b = (m(a) — ||b]|) e. This shows that B,(a, m(a)) = A,
and dist (a, A%) = m(a) for each aeA,, and {ae A,: m(a) > 0} < AS. Since
a — (m(a) + r)e¢ A, for each ae A, and r > 0 (because m(a — (m(a) + r)e) =
= —r < 0), we also have dist (a, A% ) < m(a). This completes the proof of (1).

Now let ae AS. Then By(a,r) = A% for some r > 0; since a — re e By(a, ),
we have m(a) = m(a — re + re) = m(a — re) + r 2 r > 0 which completes the
proof of the first equality in (2). The second equality in (2) follows from the first one
and the equality 4% = A4, \ A%.

Let a,be AS. Then m(a) M(b)™* b < m(a)e < a < M(a) e < M(a) m(b)™* b.
This and A, n (—A4,) = 0 make it possible to define

m(a/b) = sup {t€ (0, ©): tb < a} €(0, o),
M(a[b) = inf {t€(0, w0):a < b} €(0, c0),
and
d(a, b) = log (M(a/b) m(a|b)™*).
Lemma 2. Let a, b, ce AS. Then
(1) m(a/b) = max {te (0, 0): tb < a}, m(ale) = m(a),
M(a[b) = min {t€ (0, ®0): a < tb}, M(afe) = M(a) ;
(2) M(a/b) m(b/a) = 1, d(a, b) = d(b, a);
(3) M(aa) = m(aja) = 1, d(a, a) = 0;
(4) if 1, 5€(0, 0), then
m(ta[sb) = ts~'m(a/b),
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M(tasb) = ts~*M(a/b),
d(ta, sb) = d(a, b);
(5) m(a/b) < M(a/b), d(a, b) = 0;
(6) m(ajc) = m(a|b) m(b/c),
M(a/c) < M(a/b) M(b/c),
d(a,c¢) < d(a, b) + d(b, c);
(7) m(a) M(b)~* < m(a/b) < min {m(a) m(b)~*, M(a) M(b)™'},
M(a) m(b)~* = M(a/b) = max {m(a) m(b)~", M(a) M(b)~'};
(8) d(a, b) = 0 iff a = tb for some t € (0, o0);
(9) if pe(0, 1], then a?e A% and
m(a®[b?) = m(a/b)?,
M(a?[b?) < M(a/b)?,
d(a®, b") < pd(a, b).
(10) d is a pseudometric on A% (called the Hilbert projective pseudometric on A%).
Proof. (1) follows from the closedness of 4. (2)—(6) and the first inequality in
each row of (7) are trivial. The remaining inequalities in (7) follow by applying the
property (viii) to m(a/b) b < a < M(a/b) b. Similarly, (vii) implies (9). (8) is a con-
sequence of (3), (4) and A, N (—A,) = 0. Finally, (10) follows from (2), (3), (5)
and (6).

Lemma 3. (1) If a, b € A%, then
1 — Ja = b|mb)™* £1+ min{m(a — b)m(b)™*, m(a — b) M(b)™*} <
< m(a/b) < M(a/b) <
<1+ max {M(a — b)m(b)™", M(a — b)M(b)™'} <1 + [la — b m(b)™*.
(2) If a,be A, and |a — b| < m(b), then
d(a, b) < log ((m(b) + [a — b)) (m(b) — [la — b[)7") <
< 2] — o] (m(2) — Ja — )"

(3) The identity mapping id: (A%, ||-||) - (4%, d) is Lipschitz continuous on
each ball B,(c, r) with c € AS and r < m(c).

Proof. (1) The fourth inequality follows from
a=a-b+b=<M@a-be+b=
< (1 + max {M(a — b) m(b)~!, M(a — b) M(b)"*})b.
The second inequality follows similarly and the other ones are trivial.
(2) is a direct consequence of (1) and the inequality log (1 + ) < t, t€ [0, o0).
(3) Let ce A%, re(0, m(c)) and s e (0, m(c) — r). Take any a, b € B,(c, r) with

|a — b|| £ s; it is clear that a, be A%. By (x), m(c) — r < m(b), [la — b| £ s <
< m(c) — r < m(b) and we may apply (2) to obtain

d(a. ) < 2a — b] (m(b) — Ja = bI)™* < 2(m(c) = r — )" a = b .
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We have shown that a,beBy(c,r) and |a — b| < s imply d(a, b) < 2(m(c) —
—r—s)"']a-b|
Now take a, b € By(c, r) arbitrarily. Let n be any integer such that [a — b|| < ns,
and define a;=a +in"*(b—a) (i=0,1,...,n). Then |a; — a;.,| <s and
hence
d(ai9ai+1) = 2('"(6) -r - s)_l ”ai - ai+1" =
=2n"'(m(c)—r—s)"']a—b| forall i=0,1,...,n—1,

and consequently,

n—-1

40,5) S Y dla a1s,) < 2m(e) 7 — )" a — .
n=0

As s € (0, m(c) — r) was arbitrary, we have
d(a,b) £ 2(m(c) — r)™" |la - b| forall a,beByc,r).
Lemma 4. Let a, be AS. Then:
(1) M(a — b) < min {max {(M(a/b) — 1) M(b), (M(a[b) — 1) m(b)},
max {(1 ~ m(8ja)) ma), (1 — m(b[a)) M(a)}} =
{1 ot i oy = 1
(M(a5) — 1) m(b) if M(afb) <1
(2) m(a — b) 2 max {min {(m(a/b) ~ 1) m(b), (m(afb) — 1) M(b)} ,
min {(1 — M(5/a)) M(a), (1 — M(b/a) m(a)}} =
{(1 — M(bfa)) m(a) if m(alb) =1,
(mafb) — 1) M(5) if mlalb) <1
(3) la — b = max {(1 — m(b/a)) M(a), (1 — m(a/b)) M(b)} <
< |M(a) — M(b)| +
+ max {M(b) — M(a) m(b/a), M(a) — M(b) m(a/b)} <
< |M(a) — M(b)| +
+ max {M(a) (M(ba) — m(b|a)), M(b) (M(a[b) — m(a[b))} <
< |M(a) — M(b)| + max {M(a), M(b)} (exp (d(a, b)) — 1).
Proof. Froma — b < (M(a/b) — 1) band a — b < (1 — m(b/a)) a one has
Mla — 5) < max {(M(aft) — 1) M(b), (M(af5) — 1) m(b)

and
M(a — b) < max {(1 — m(b/a)) m(a), (1 — m(b[a)) M(a)}
which gives the inequality in (1). If M(a/b) = 1 (or M(a/b) < 1), then m(b/a) =
= M(a/b)~" £ 1 (m(b/a) 2 1, respectively) and, by Lemma 2, (7), the right hand
side of the inequality in (1) equals
min {(M(a/b) — 1) M(b), (1 — m(b/a)) M(a)} =
= (1 — m(b[a)) . min {M(b) m(b/a)™", M(a)} = (1 — m(b/a)) M(a)
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- (or, respectively min {(M(a/b) — 1) m(b), (1 — m(b/a)) m(a)} =
= (M(a/b) — 1) . max {m(b), m(a) M(a/b)~'} = (M(a/b) — 1) m(b)).
(2) Follows similarly (or also from (1) by using m(a — b) = —M(b — a)).
Since [la — b| = max {M(a — b), —m(a — b)}, we have by (1) and (2),
2) a - b] = max {(1 — m(bJa)) M(a), (M(b/a) - 1) m(a)} =
- = (1 — m(b/a)) M(a) if m(a/b) = 1;
b) o — b] < max {(1 — m(3Ja)) M(a), (1 — m(aft)) M(B)}
if m(a/b) <1 £ M(a/b);
) [la — bl < max (M(afb) — 1) m(b), (1 — m(af5) M(B)} =
= (1 — m(a/b)) M(b) if M(a/b) < 1.
This proves the first inequality in (3). Since
max {(1 — m(b/a)) M(a), (1 — m(a[b)) M(b)} =
= max {M(a) — M(b) + M(b) — M(a) m(b/a),
M(b) — M(a) + M(a) — M(b) m(a/b)} <
< max {M(a) — M(b), M(b) — M(a)} +
+ max {M(b) — M(a) m(ba), M(a) — M(b) m(a/b)} ,
we have the second inequality in (3). As, by Lemma 2, (7), M(b) < M(b/a) M(a) and
M(a) < M(a/b) M(b), we have the third inequality in (3). Again by Lemma 2, (7),

M(a) (M(b[a) — m(b|a)) = M(a) m(b]a) (exp (d(a, b)) — 1) <
< M(b) (exp (d(a, b)) — 1),
and similarly

M(b) (M(a[b) — m(a[b)) = M(a) (exp (d(a, b)) — 1),
which gives the fourth inequality in (3).

Lemma 5. Let c € A. Then the following are equivalent:
(1) c*ace A% for all ae A3; )
(2) m(c*c) > 0;
(3) c*ce AS;
(4) ¢ = uh, where he AS and u € A is an isometry (i.e. u*u = e).

Proof. (1) = (3). As e A%, we have c*c = c*ec € AS.

(2) and (3) are equivalent by Lemma 1.

(2) = (1). Let ae A%. Then a = m(a) e, where by Lemma 1 m(a) > 0. By (iv),
c*ac = m(a) c*c, and hence, by (viii) and (ix), m(c*ac) = m(a) m(c*c) > 0. By
Lemma 1 we conclude that c*ac € A49.

(4) = (2). We have c*c = hu*uh = h? and hence m(c*c) = m(h)* > 0.

(2) = (4). Set h = (c*c)"/*. Then m(h) = m(c*c)"/?> > 0 and hence he A%. Set
u = ch™'. Then u*u = h™'c*ch™ = h™'h*h™ ' = e.
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Lemma 6. Let a, b e AS and c e A with c*c € AS (i.e. m(c*c) > 0). Then

M(c*ac/c*bc) £ M(a[b),

m(c*ac/c*bc) = m(a[b),

d(c*ac, c*bc) < d(a, b).

Proof. Since m(a/b) b < a < M(a[b) b, we have by (iv) m(a[b) c*bc < c*ac <
< M(a/b) c*bc, which gives the first two inequalities in the lemma. The third one
follows from the preceding inequalities.

Lemma 7. Let ¢ € A. Then the following are equivalent:
(1) c*ace AS and M(c*ac[c*bc) = M(a/b) for all a,be A%;
(2) c*ace AS and m(c*ac[c*bc) = m(a|b) for all a,be A% ;
(3) c*ace AS and d(c*ac, c*bc) = d(a, b) for all a,be A%;
(4) c eInv(A). ' ‘

Proof. (1) and (2) are equivalent by Lemma 2, (2). Hence each of (1) and (2)
implies (3). From the definition of the Hilbert projective pseudometric and Lemma 6
it is also easy to see that (3) implies both (1) and (2).

(4) = (1). Let ceInv(4) and a, be A%. By Lemma 1, c*c, (c™})*c 'ed, n
A Inv(4) = A%. Now by Lemma 6 we have

M(c*ac[c*bc) < M(a[b) =
= M((c™*)* (c*ac) ¢, (¢™*)* (c*bc) ¢ ™) < M(c*ac/c*bc)
and hence M(c*ac/c*bc) = M(a[b).
(2) = (4). Wehave c*c = c*ec € A} so that m(c*c) > 0. Further, by Lemma 2, (7),
m(cc*) = m(cc*[e) = m(c*cc*c[c*ec) = m(c*c)*[M(c*c) > 0.
We have proved that both c*c and cc* are invertible and hence ¢ € Inv(4).

Lemma 8. Let ae A% and be A,. Then o(ab) = o(ba) = R, M(ab) = M(ba) <
< max {m(a) M(b), M(a) M(b)} and m(ab) = m(ba) = min {m(a) m(b), M(a) m(b)}

Proof. Set ¢ = a'/%. As ce A% and cbc € 4,, we have by (xi), a(ab) = a(ba) =
= o(cbc) < R,
(a) m(ab) = m(ba) = m(cbc),
and
(b) M(ab) = M(ba) = M(cbc).

By (iv), m(b) e < b < M(b) e implies

m(b) a = m(b) c*c < c*be < M(b) c*c = M(b)a .
By (ix) and (viii) we have ,
min{m(b)m(a), m(b)M(a)} = m(m(b)a) < m(c*bc) = m(cbc)
and similarly
max {M(b) m(a), M(b) M(a)} = M(cbc).

This together with (a) and (b) gives the inequalities in the lemma.
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Corollary 1. Let a,be AS. Then o(b~'a) = o(ab™') = (0, ), M(a/b) =
= M(b™'a) = M(ab~"), m(a/b) = m(b™'a) = m(ab™?).

Proof. By Lemma 8 (or by (xi)) we have o(b™'a) = o(ab™') = o(b™*2ab™1/?)
< (0, ). By Lemma 7, M(a/b) = M(b™*2ab~"/2[p~1/2pp~ %) =
= M(b~"2ab™'?) = M(b~'a) = M(ab™"). The assertion concerning m(a/b) fol-
lows similarly (or from that for M(b/a)).

Set E={aedS:|a]| =1} (={aeA%:M(a)=1}). By Lemma 2, (E,d) is
a metric space.

Lemma 9. (1) The identity mapping id: (E, ||-|) — (E, d) is Lipschitz continuous
on each ball E n By(c, r) with c € E and r < m(c);

(2) the identity mapping id: (E, d) — (E, ||+|) is Lipschitz continuous, |a — b|| £
< d(a, b) for a, beE;

(3) if A = C, then the identity mapping id: (E, |-|) > (E, d) is not uniformly
continuous and the (best) Lipschitz constant of its inverse equals one.

Proof. (1) is a special case of Lemma 3, (3).

(2) Let a,be E. By Lemma 2, (7), m(a/b) <1 < M(a/b) and m(bja) 1 <
< M(b/a). Note also that 1 — ¢ < log (¢™?") for t€(0, 1]. Thus, by Lemma 4,(3),
we have

[a — b < max {1 — m(b/a), 1 — m(a/b)} <
max {log (m(b/a)™*), log (m(a/b)™ ")} <
max {log (M(b[a) m(b/a)~"), log (M(a/b) m(a/b)™*)} = d(a, b).

(3) Assume that 4 # C. Since A = A, — A, +i(4, — A,), we have 4, +
+ [0, ) e, AS * (0, ) e and hence E + {e}. Take any a € E with a + e. Then
m(a) < 1. For simplicity, we shall write here m for m(a). For te(—o0, m) set
b, = a — te. Since m(b) = m — t >0, we have b,e AS and a, = ||b] ' b,eE
for all t € (— oo, m). One easily computes (for example, by the spectral mapping
theorem and Corollary 1) that

la: —a| =(1 —=m)(1 —s)" (1 =) (t — 5)

d(a,, a;) =log (1 + (1 = m) (1 =)™ (m = )7" (t = 5))
fors £t < m.
Let ¢ > 0 be given. Set
r=min {(1 — m)™, ((3 — m)(exp(e) — 1))} .
Take any he(0,(1 — m)r) and set t = m — h*> and s = m — h — h®. Then
la,—af| <@ =m)y ' (t—s)=1-m)""h, h<1,

IIA 1A

and

but
dlasa)=log(l+(1—-m)(1—=m+h+hr)"'h')=

log(l+(1—m)(B-—m)y ' h)y=log(l+B-m 'r)yze.

528



This shows that the mapping id: (E, ||-|]) - (E, d) is not uniformly continuous.
Since M(a") = 1 and m(a’) = m', we have a'€ E and d(a‘,e) = —t.logm for
all 1€ (0, ). As [a* — e = 1 — m', we have

lim [[a* — e] d(a’,e)™' =1
-0,

and hence, by (2), the (best) Lipschitz constant of the mapping id: (E, d) - (E, |*])
equals one.

Remark. Lemma 9 implies that the topologies of (E, ||+|) and (E, d) coincide,
but the corresponding uniformities do not (if A * C). Therefore we may speak about
the topological space E.

One may easily see that the topological space E is arcwise connected. Indeed, for
given a, be E and 1€ [0, 1], set f(t) = ||(1 — t)a + tb]"* (1 — 1) a + tb). Then f
is a continuous arc in E joining a to b.

Let us also show that (E, d) is metrically convex. Since d(a, b) = d(b~'/?ab™'/2, ¢)
for each a, be A%, it is sufficient to show that for each ae E and te [0, 1] there
exists ¢ e E with d(a, ¢) = (1 — ) d(a, e) and d(c, e) = td(a, e). But this is easy,
set ¢ = a'. In general, for given a and t, this point ¢ is not determined uniquely
provided t € (0, 1). (For example, if o(a) contains at least three points, then there
exist infinitely many such points ¢ even in E n C*(a), where C*(a) is the unital
C*-subalgebra of A generated by a.)

On the other hand, the metric space (E, ||+[)) is not generally metrically convex.
(For example, consider 4 = C(X), where X is a compact space with at least two
isolated points.) Nevertheless, for each a € E, the point (a + €)/2 is a midpoint
in (E, ||+||) between a and e.

Lemma 10. The metric space (E, d) is complete.

Proof. Let {a,} be a Cauchy sequence in (E, d). By Lemma 9, (2), the sequence
{a,} is also Cauchy in (E, |-]) and hence it converges in the norm to some a € 4.,
with ||a| = 1. By Lemma 2, (7), we have

m(a,) = m(a,/a,) m(a,) =
= m(a,) M(a,/a,) . exp (—d(a, a,)) = m(a,) . exp (—d(ay, a,))
for all k, n. This and the Cauchy property of the sequence {a,} in (E, d) implies that
the sequence {m(a,)} is bounded away from zero. By (x), m(a) = lim m(a,) and hence
m(a) > 0. Thus, the element a lies in E. By Lemma 9, (1), we conclude that a;, — a
in (E, d).

Let G: AS — A and p: A% — (0, c0). We say that G is 1) increasing if a, b e A,
a < b implies Ga < Gb; 2) p-homogeneous if G(ta) = ?@Ga for all a € A% and
1€ (0, ).

Lemma 11. Let p, f: AS - (0, o) and G: AS — AS. be given. Define T: A% - A%
and S: E — E by
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Ta = f(a) Ga, ae A%,
Sa = |Ta| ™ Ta (= |Ga]|~* Ga), a€E.
Further, for ae AS define f,: (0, o) — (0, ) by f,(f) = f(ta) . #@~1, te (0, o0).
Finally, assume that G is increasing and p-homogeneous. Then:
(1) p(ta) = p(a) for ae A%, te(0, );
(2) M(Ga/Gb) = f(a)~* f(b) M(Ta/Tb) < min {M(a/b)*™, M(a/b)*®},
m(Ga[Gb) = f(a)~* f(b) m(Ta|Tb) = max {m(a/b)*®, m(a/b)*®},
d(Ga, Gb) = d(Ta, Tb) < min {p(a), p(b)} d(a, b) for all a,be A%;
(3) M(Salsb) = [Ga|* |Gb] M(Galb) <
< [ ~* {651 min (M(afo), n(a/py ),
m(Sa/Sb) = ||Ga| ™! |Gb| m(Ga/Gb) =
> [Gal~* [Gb] max {m{a/o)®, m(afty®),
d(Sa, Sb) < min {p(a), p(b)} d(a, b) for all a, be E;
(@) 6a — Go] < [Gb] max (1 + Jo — b] m(5y-® 1
1= (1~ a — b] m(b)1p®)
for a,be A3 with |a — b| < m(b);
(5) G: A% > A% and p: A5 — (0, ) are continuous;
(6) if u is a fixed point of S and te (0, o), then x = tu is a fixed point of T iff
£l = “Gu“_l;
(7) if S has a fixed point and f,(0, o) = (0, c0) for each ae A%, then T has
a fixed point;
(8) if x is a fixed point of T, then u = ||x]|~* x is a fixed point of S;
(9) if S has at most one fixed point and f,(t) = f(a) for each ac A% and te (0, )
with t % 1, then T has at mest one fixed point;
(10) if S has a unique fixed point, f,(0, o) = (0, ) and f,(t) + f(a) for each
ae AS and te(0, o) with t % 1, then T has a unique fixed point.
Proof. (1) Let ae A% and t€(0, ). Then G(ta) = P@Ga = @G(t"'ta) =
= P@7PU9G(1g) and thus p(a) = p(ta).
(2) Let a,be AS. By the assumption on G, the inequalities m(alb)b < a £
< M(a/b) b imply m(a/b)*®Gb = G(m(a/b) b) < Ga < G(M(a[b) b) =
= M(a/by*®Gb. Similarly, the inequalities m(b/a) a < b < M(b/a) a imply
m(b/a)’®Ga < Gb £ M(b/a)’Ga. These inequalities and Lemma 2 give the result
of (2).
(3) is a consequence of (2).
(4) Let a, be A% and ||a — b|| < m(b). Using Lemma 3, (1) and the properties
of G we obtain

(1 = Jla — b m(b)"'y® Gb < Ga < (1 — |la — b m(b)~1y® Gb,

that is
—(1 - (1 - ]]a — b[| m(b)“‘)"”) Gb £ Ga—Gb £

S (1 + [|a - ] m(b)"1)P® — 1) Gb.
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Using (iii), (viii) and (ix) we obtain the result.
(5) The continuity of G is a direct consequence of (4). Let a, b € A% and t € (0, ),
t % 1. Then [|G(ta)| = *®|Gal|, |G(tb)| = *®|Gb| and hence

p(a) — p(b) = (log 1)~* log (|G(ta)]| |Gb] [G(eB)|~* [ Ga] ") .

This and the continuity of G imply that p is also continuous.

(6) Let u be a fixed point of S, te(0, ) and x = tu. Then Tx = f(x) Fx =
= f(tu) . *®Gu = f(tu) . *@||Gu|| Su = £,(1) . t|Gu| Su = f,(t) . t|Gu| u =
= f.(t) |Gu| x. Hence x is a fixed point of T'iff f,() | Gu| = 1.

(7) is an immediate consequence of (6).

(8) Let x be a fixed point of T and set u = |[x]|™* x. Then u € E and Su =
= |Tu| ' Tu=|Tx| ' Tx = |x| *x = u

(9) Let x, y € A3 be fixed points of T. Then both |[x||~* x and ||y ™" y are fixed
points of S and hence ||x| ™' x = |[y]| 7' y. Set = |y|| |x]~*. Then

tx =y =Ty=f(x)""f(tx). POTx = 1 f(x) "' fut) x
and hence f,(t) = f(x). By assumption, ¢ = 1 and x = y. Therefore T has at most
one fixed point.

(10) is a consequence of (7) and (9).
Now we are prepared to prove the following abstract fixed point theorem.

Theorem 1. Let p, f: AS — (0, o) and G: AS — AS, be given. Define T: A% — A%
by Ta = f(a) Ga, ae A%, and, for each ae A3, define f,:(0, ) — (0, ) by
1) = f(ta) . @71, t (0, o0). Assume that G is increasing and p-homogeneous
with sup p(4%) < 1. Suppose that f,(0, o) = (0, o) for each a € AS. Then T has
a fixed point. If, in addition, f,(t) + f(a) for each ae A% and te(0, ) with
t & 1, then T has a unique fixed point.

Proof. Define S: E - E as in Lemma 11. By Lemma 11, (3), the mapping
S:(E,d) - (E,d) is an L-contraction, where L= sup p(4%) < 1. Since (E, d) is
complete by Lemma 10, we may apply the Banach contraction principle to obtain
a unique fixed point of S. Now the theorem follows from Lemma 11.

A direct consequence of Theorem 1 is the main existence result of this paper.

Theorem 2. Let po, py, ..., p,€(0,1] with p = popy ... p, < 1, c;€ AS with
cic;e A% (i = 1, ..., n) be given. Let f: A5 — (0, o) be such that for each a € A5
and s (0, w0) there exists te (0, ) satisfying f(ta)t*~* = s. Then there exists
x € AS such that

F(x) - (en(en™ oo (cFxPoe)Pr oy )P )P = x .

If, in addition, f(ta) ** % f(a) for all ae AS and te(0, ) with t % 1, then
such x is unique.

Proof. By Lemmas 2 and 6 we may define a mapping G: 45 — A% by

Ga = (cy(ea—y ... (cFaPc, )Pt ... co )" e, a€AS.
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The mapping G is clearly p-homogeneous and, by (iv) and (vii), also increasing.
Now it remains to apply Theorem 1.

Corollary 2. Let H be a complex or real Hilbert space, L(H) the algebra of all
bounded linear operators on H, C,e L(H) with C{C;eL(H)} (i=1,...,n),
Pos P15 -+ Py € (0, 1] with p = popy ... p, < 1, and let f be a positive function on
L(H). such that for each Te L(H) and s € (0, o) there exists t € (0, ) satisfying
f(tT) . t*=* = 5. Then there exists an operator X € L(H)". such that

FX) . (CHCEy .. (CEXPC) .. Cu) = CY = X .

If, in addition, f(tT). """ + f(T) for each Te L(H)%. and t€ (0, ) with t * 1,
then such operator X is unique.

Proof. If H is a complex Hilbert space, then the corollary is a special case of
Theorem 2.

Assume that H is a real Hilbert space and let H® be its complexification. For
Te L(H), let T°(= T + iT) be the complexification of T. Set A = L(H¢) and D =
= {T°: Te L(H)3, | T| = 1}. One easily sees that (L(H).. ) is a closed subset of A4,
(L(H)SY = 45 and D < E. Since M(T¢/S°) = M(T|S) and m(T¢/S%) = m(T]S),
we have d(T¢, S°) = d(T, S) for all T, S € L(H)".. By the “real” variant of Lemma 10,
the metric space (D, d) is complete and hence closed in (E, d). Now it is sufficient
to note that the complexification of the mapping, defined by the left hand side of
the equation in the statement of the corollary, maps (L(H)% )" into itself, and that
any fixed point of this mapping is of the form X° for some X € L(H)°+.

It is clear that Bushell’s theorem (see Theorem 0) is a special case of this corollary
because the equation T*A*T = A may be transformed into the equation B =

= (T~1)* B> (T™Y).
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