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CLOSURE OPERATORS ON THE LATTICE 
OF RADICAL CLASSES OF LATTICE ORDERED GROUPS 

JÁN JAKUBÍK, Košice 

(Received September 11, 1985) 

The notion of radical class of lattice ordered groups was introduced in [7]; cf. 
also [8], [1], [9], [4], [10]. In this note there will be investigated a question proposed 
by M. Darnel [4] concerning permutability of certain closure operators on the 
lattice of radical classes of lattice ordered groups. 

1. PRELIMINARIES 

We recall the basic notions and some notation. 
Let ^ be the class of all lattice ordered groups. When considering a subclassJfof ^ 

we always assume that the zero group {0} belongs to X and that X is closed with 
respect to isomorphisms. 

A subclass R of ^ is said to be a radical class [7] if it is closed with respect to 
convex 1-subgroups and with respect to joins of convex 1-subgroups. It is known that 
every variety of lattice ordered groups is a radical class [6]. 

Let 01 be the collection of all radical classes; 0lv$> partially ordered by inclusion. 
Then 01 is a "complete lattice" in the sense that if 0lx is a subcoUection of M, then 
sup mx and i n f ^ do exist in 01. (Cf. [7].) 

1.1. Theorem. (Cf. [4], Thm. 5.1.) For any radical class R, there exist unique 
minimal radical classes Rs and Rh, closed with respect to l-subgroups and l-homo-
morphic images, respectively, that contain R. Moreover, the collection of s-closed 
and h-closed radical classesform complete lattices under inclusion. 

It is clear that the mappings JR ~> Rs and R ~> Rh are closure operators on the 
lattice 01. 

In [4] it is remarked that in a surprising number of cases (though not all), Rhs 

and Rsh are varieties and that this indicates that the s-closure and the h-closure might 
be strongly linked in some way. Next, the question is raised in [4], whether or not 
the relation 
(1) Rsh = R h s 

is valid for each radical class R. 
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Let us denote by 0tt the collection of all radical classes 01 for which the relation 
(1) fails to hold. In this paper it will be shown that the collection St^ is rather large. 
Namely, the following result will be established: 

1.2. Theorem. There exists an injective mapping of the class of all cardinals 
into the collection 0tx. 

2. A CONSTRUCTION 

In this section a linearly ordered group G will be constructed which will be applied 
below in proving Theorem 1.2. 

If G± is any linearly ordered group, then each subgroup of Gt is linearly ordered 
by the induced linear order. 

The additive group of all reals (all rational numbers) with the natural linear order 
wiU be denoted by R0 (or by R'0, respectively). 

For each i e R'0 let A( = R0. Next, let A° be the lexicographic product 

А° = ГАг (ieR'o) 

(cf. [5]). The elements of A0 will be written in the form a = <..., ah ...> (і є R'0). 
The support S(a) of the element a is defined by 

S(a) = { і є Я £ : а , Ф 0 } . 
Let A be the subgroup of A0 consisting of all elements of A0 with finite support. 

Let B = R'0. For a є A and b є B we denote 

ab= < . . . ,a ; , . . .> ( i6JRi) , 

where a\ — Я;_ь for each і є jR .̂ 
Let B0 be the set of all pairs (fo, a) with b є B and a є A. For (bh at) є B0 (i = 1, 2) 

we put (bu at) S (b2, cii) if either bx < b2, or bx = b2 and ax ^ a2- We define 
the operation + on B0 by putting 

(bu a±) + (b2, a2) = (bt + b2, a\2 + a2) . 

Then B0 turns out to be a linearly ordered group. Let 

A01 = { ( Ь , а ) є Б о : Ь = 0 } . 

The following assertion follows immediately from the definition ofB 0 . 

2.1. Lemma. A01 is an l-ideal ofB0. If K is an l-ideal in B0 with {0} Ф К Ф B0, 
then K = A01. 

Let a be а cardinal, a > K0. Let / a be the first ordinal with card Ia = a and let J a 

be а linearly ordered set dual to Ja. For each j є Ja let Cy = R0. Put 

C0 = rCy. ( j 6 j , ) . 

Let C be the subgroup of C0 consisting of all elements of C0 having a finite support. 
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Put 
G0 = С о В0 , 

where о denotes the operation of lexicographic product. The elements of G0 can be 
written as triples g = (c, b, a) with c є C, b є B and a є A. Denote 

f{g) = Yfli + Yfij (ieR'0,jeJa). 
Put 
(2) G = {g є G0 :f(g) is an integer} . 
Then G is a subgroup of G0; thus G is a linearly ordered group. 

Let Jt be a subset of Ja such that either J^ = 0 or J^ is an ideal of the linearly 
ordered set Ja. Denote 

G*(Ji) = {g = {c, b, a) є G : Cj = 0 for each j e Ja \ J j , 
G2 = {g = (c, b, a) є G : c = 0 and ft = 0} . 

From 2.1 we obtain: 

2.2. Lemma. 2toift ^4^i) ani^ ^ 2 a r e l-ideals of G. IfK is an l-ideal of G with 
{0} ф К Ф G, řňew either K = G\J^ for some JjL or K = G . 

Also, in view of the definition of G we have: 

2.3. Lemma. Leř J^ be a convex subgroup of G. Then some of the following 
conditions is satisfied: 

(i) Kt = GX(J^ for some Jx. 
(ii) Kt is a convex subgroup of G2. 
Lemma 2.3 implies: 
2.4. Lemma. Leř G' òe a linearly ordered group. Suppose that there exist sub

groups G\ (ієі) of G' such that 
(i) G = U.e/Gi, 

(ii) for each G- there exists a convex subgroup of G which is isomorphic to G-. 
Then G' is isomorphic to a convex subgroup of G. 
Let R be the radical class oflattice ordered groups generated by the linearly ordered 

group G. 
From 2.4 and Theorem 3.4, [8] we infer: 

2.5. Lemma. The radical class R is the class of all lattice ordered groups which 
can be expressed (up to isomorphism) as direct sums ofsome convex subgroups of G. 

Now we shall construct a linearly ordered group H2 belonging to Rsh. 
Denote 

H = {g = (c, b9 a) є G : b = 0} . 
Then H is a subgroup of G, whence H e Rs. Let / be an ideal of the linearly ordered 
set R'0 such that / Ф R'0. Put 

# i = {o = (c> °i a) є 9 • c = 0 and at = 0 for each і є R'0 \I} . 
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Ht is an 1-ideal ofthe linearly ordered group Я. In view of(2) we obtain: 

2.6. Lemma. The linearly ordered group H2 = H\H1 is isomorphic to the 
linearly ordered group 

C = TAi (ieR'0\I). 

For any subclass X of ^ we denote by 
SubX — the class of all l-subgroups of lattice ordered groups belonging to X; 
Hom X — the class ofall homomorphic images oflattice ordered groups belonging 

t o X . 
Let 7 b e the class of all linearly ordered groups K having the property that K is 

isomorphic to some convex subgroup of G. From the construction of G and from 2.6 
we obtain 

2.7. Lemma. The linearly ordered group H2 does not belong to the class 
Sub Hom 7. 

Clearly # 2 є Rsh. Moreover, H2 contains a strong unit (cf. [5]). 

3. THE RADICAL CLASS Rhs 

3.1. Lemma. Let Km (meM) be lattice ordered groups and let K = ^теМКт. 
LetK0 be an l-ideal ofK andfor each m є M letK0m be the projection ofK0 into Km. 
Then the lattice ordered group KJK0 is isomorphic to the direct sum Y,meM KmjK0m. 

The p r o o f i s easy. 
From 3.1 and 2.5 we obtain: 

3.2. Lemma. The class Hom R is the class of all lattice ordered groups which 
can be expressed (up to isomorphism) as direct sums of linearly ordered groups 
belonging to Hom Y. 

For any lattice ordered group L we denote by c(L) the system of all convex l-sub
groups ofL; the system c(L) is partially ordered by inclusion. In fact, c(L) is a complete 
lattice. The lattice operations in c(L) will be denoted by V e and Дс . (The operation Д с 

coincides with the set-theoretic intersection.) 
Let H2 be as in Section 2. 

3.3. Lemma. Let Km (meM) be linearly ordered groups belongingto c(H2) 
such that VmeM ̂ m = H2. Then there is m є M such that Km = H2. 

For any X Я @ we denote by Xr the radical class generated by X. From 3.2 and 
Proposition 5.5, [4] it follows: 

3.4. Lemma. Rh = (Hom Y\. 
Now since Hom Yis a class oflinearly ordered groups, (Hom Y)r can be obtained 

by means of Thm. 3.4 in [8]; from this theorem, from 3.3 and 2.7 we infer: 

3.5.Lemma. The linearly ordered group H2 does not belong to the radical class Rh. 
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3.6. Lemma. Let Dt (і eI) be lattice ordered groups. Suppose that K is an l-sub-
group of the direct sum Y,iei &i suc^ that (i) K is a linearly ordered group, and (ii) 
K has a strong unit. Then there exists ieI such that the projection k ~> kt is an 
isomorphism ofK into Dt. 

Proof. Let e be a strong unit in K. Put Jx = {i eI : ex ф 0}. The set i\ is finite. 
For each k e K there exists a positive integer n such that — ne g k Š ne. Hence 
if і фІІ9 then ki = 0. Therefore K is an l-subgroup of £D f (i eI^. 

There exists a minimal subset I2 ofJ^ having the property that the mapping 

(3) fc^<...,fc,,...> ( ієІ 2) 
is an isomorphism. Assume that cardJ2 ^ 2. Choose i2 eI2. Then the mapping 

fc-fci2 
is a homomorphism of K into DI2, but it fails to be an isomorphism. Thus there is 
0 < fc' є K such that 
(4) fc;2 = o . 
Put J3 = J2 \ {i2}. The mapping 
(5) fc^<...,fc,,...> ( ie / 3 ) 
is a homomorphism of K into ^£>г (і є/3), but (in view of the minimality of /2) 
the mapping (5) fails to be an isomorphism. Hence there is 0 < k" є K such that 
(6) k"i = 0 for each і є /3 . 
We distinguish two cases. 

a) к" ^ k'. Then from (4) we infer that k![2 = 0, hence feJ' = 0 for each i eI2; 
in view of (3) we arrive at a contradiction. 

b) k' < k". Then according to (6) we have fc- = 0 for each ř є /3 and hence 
kj = 0 for each jeI2. This contradicts the fact that the mapping (3) is an iso
morphism. Therefore card/2 = 1? which completes the proof. 

Put Q = Rh. Let Qi be the class of all l-subgroups of elements of Q and let Ql = 
= (Qi)r- Define g2, ß2 , ß3 , бз , . . . analogously. Then we have (cf. [4], Section 5) 
(7) Q* = VQt (i = l ,2 , . . . ) . 
Denote ß 0 = ß. 

Let us denote by Rd the class of all lattice ordered groups having the property 
that each upper bounded disjoint subset is finite. 

In view of Thm. 3.4, [8] we have Я s Rd. Then from 3.4 we obtain Rh s Rd. 
Finally, from [4], Lemma 5.4 and from (7) we get that the following lemma is valid: 

3.7. Lemma. Qs <= Rd. 

3.8. Lemma. Let K'eRd. Let K and Kt (ieI) be elements of c(K') such that 
K = V%iKi. Suppose that K has a strong unit. Then there exists a finite subset 
{Kj]JeJ of c(K) such that (i) for each j є J there exists i eI with Kj e c(Xř), and 
(ii)K = ZJeJKj. 
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Proof. Let e be a strong unit ofK. Then there exists a finite subset It of/ and for 
each ieIx there exists 0 < е^К^ such that e = £ І Є / і ev Then we have £ = 
= V*=i! ̂ i - F o r e a c h iGli let X; be the convex 1-subgroup ofX t. generated by the 
element et. The relation 

(8) к = vu *; 
is valid and for each i є J l 5 eř is a strong unit in K\. 

Let і є / j . Then each disjoint subset оїК\ is finite. Hence according to [2] (cf. 
also [5], Chap. V, Section 6) Kt can be expressed as a direct sum of a finite number 
of lattice ordered groups K'it such that each K'it is a nontrivial lexico extension, i.e., 
Ku = CKfi>, K"t + ^ir-

Let us consider two such l-groups Xj l ř l and Kj2>f2. Both ofthem belong to c(K). 
In view of [3], Propos. 2.9 we have two possibilities: 

(i) Kf
htl is comparable with K'ht2, 

№K'iltlnK'htl = {0). 
Hence we can choose a finite number of these l-subgroups K'it which will be denoted 
as Kj (j є J; J finite) such that (cf. (8)) 

K = V%jK'j 

and the system {Kj}jeJ is disjoint. This implies that K = Y;jejKj-

3.9. Lemma. H2 does not belong to Qs. 
Proof. By way of contradiction, assume that H2 belongs to Qs. Hence in view 

of(7) and Lemma 3.3 there exists a positive integer i such that H2 є Qr Let i be the 
least positive integer having this property. 

Suppose that i = 1. According to 3.3 and Lemma 5.4 in [4] we must have H2 є Q[. 
Hence there is K є Q0 = Q such that H2 is isomorphic to an 1-subgroup H2 of K; 
without loss of generality we can suppose that H2 = H2. Let K1 be the convex 
subgroup of K generated by the element e. Clearly K1 e Q. 

According to 3.2 and 3.4 the radical class Q is generated by a class of linearly 
ordered groups. Thus in view ofPropos. 3.4, £8j K± is a direct sum oflinearly ordered 
groups Di (ieI). Moreover, H2 is an 1-subgroup o f E ^ . Each Dt belongs to Q. 
From 3.6 we conclude that there is i eI such that H2 is isomorphic to Dr Therefore 
H2 belongs to Q, which is a contradiction (cf. 3.5). 

Now suppose that i > 1. Then according to 3.3 and Lemma 5.4 in [4] we have 
H2 є Q[. Thus there exists K є Qi-t such that H2 є Sub {K}. We may suppose that 
H2 is an 1-subgroup of K. Let Kt be the convex 1-subgroup of K generated by the 
element e. Because g i _ 1 is a radical class, we have Kt є Qř__1. At the same time, 
H2 is an 1-subgroup ofK1. 

There exist KieQ[_1 (ieI) such that Kl = VieIKh KiSc(Ki) for each ieL 
We apply 3.7 and 3.8; let Kj (j є j) be as in 3.8. Then all Kj belong to ß i - i -as well. 
According to 3.8 and 3.6 there exists j e J such that H2 is isomorphic to an 1-sub
group oíKj. At the same time, there exists Щ e Qt-2 such that Kj is an 1-subgroup 
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of Kj. Hence H2 is isomorphic to an l-subgroup of K'j and therefore H2 є Qj_ l 5 

which is a contradiction with respect to the minimality of i. 
Since 6 s = Rhs> from 3.9 and from the relation H2 є Rsh we obtain: 

3.10. Proposition. Rsh Ф #*s. 

In view of the construction introduced in Section 2, the linearly ordered group G 
and the radical class jR were defined by means of a cardinal a, a > X0. Let us now 
write G(a) and Я(а) instead of G and # . 

By using Lemma 5.4 in [4] we can easily verify that if а and ß are cardinals with 

K0 < а < ß, then G(ß) does not belong to R(oi). As a corollary we obtain: 

3.11. Proposition. Let oc and ß be cardinals, K0 < а < ß. Then JR(a) ф R(ß)-

Let C be the class of all cardinals greater than X0. In view of 3.11 there exists an 

injective mapping ofthe class C into the class Mi (cf. Section 1 for the notation); 

from this we infer that Theorem 1.1 is valid. 
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