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1. Introduction. Back in early stages of the general topology M. Frèchet [3] 
introduced dimensional types of topological spaces. If a space X is homeomorphic 
with some subspace of a space Y, then X has a smaller or equal dimensional type 
than Y, in symbols dX ^ dY. Dimensional types of metric separable spaces were 
investigated by S. Banach [1], K. Kuratowski [4], [6], W. Sierpiňski [6], [9] and 
others. One can find some information about this in Sierpinski's General Topology 
[10] p. 130 or in Kuratowski's Topology I [5] p. 112 and 433. 

We generalize dimensional types in the following manner. If a space X is the image 
of some subspace of a space 7under a closed mapping, then X has a smaller or equal 
closed-map type than Y, in symbols ctX ^ ctY. If ctX ^ ctY and doesn't hold 
ctYS ctX, then X has a smaller closed-map type than Y, in symbols ctX < ctY. 
Ifthere doesn't hold ctX ^ ctYov ctY ^ ctX, then spaces X and 7are imcomparable. 

Obviously dX <£ dY impHes ctX S ctY. The inverse implication is not true. It is 
a well-known fact that the Cantor set C can be mapped continuously onto a non-void 
closed interval / . So ctC fg ctJ, ctJ g ctC and dC S dJ, but dJ S dC doesn't hold. 

In this paper we investigate closed-map types of first countable spaces, exactly 
hereditarily normal and hereditarily separable ones. Nice non-metrizable examples 
are the Songenfrey line and its uncountable subspaces. Theorem 1 is a main tool for 
proving other results. Other theorems are applications of Theorem 1 and in few 
cases their proofs are similar to those of S. Banach [1], K. Kuratowski [4], [6] 
and W. Sierpiňski [6], [9] on dimensional types. 

All undefined notations are as in Engelking's General Topology [2]. The cardinality 
of a set X is denoted by \x\. The cardinal number assigned to the set ofreal numbers 
is denoted by c and is called continuum. By c+ we denote the least cardinal number 
greater than c. If \X\ = Л, then Iх denotes the cardinality of the family of all subsets 
of X. By / | s M we denote the restriction of a function / to the set M. A mapping 
means a continuous function. A mapping/: X ~» 7 is a closed mapping ifit is closed 
as a function from X onto f(X). If X is a topological space and A c X, then Ä 
denotes the closure of A. 

2. The main theorem. The proof of the below lemma is straightforward, so we 
omit it. 
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Lemma 1. Suppose X and Y are first countable spaces with X a T^space. 
A mappingf: X ~> Yis closed iffeach sequence [xn: n — 1, 2, ...} cz X, such that 
lim/(x„) = y and у ф f(x^for all n, has a limit point inf~1(y). • 

Lemma 2. Let X and Y befirst countable Hausdorjf spaces. Iff: A ^>f(A) cz Y 
and g: B ^> g(B) c Y are closed mappings, D a A cz Б cz X, D cz B cz Б с X, 
/ h D = g^D, tef(A)ng(B) and / _ 1 ( 0 Z5 a n°where dense, relative Б, subset, 
thenr\t) = g~\t). 

Proof . Suppose tef(A) n g(B) and / 1(t) is a nowhere dense, relative D, subset. 
Assume to the contrary that beg~1(t)\f~1(t). There exists a sequence E = 
= {a1,a2,...} cz D x / " ^ r ) s u c h t h a t l i m ^ = o,sincespacesXandYareHausdorfT 
b ф A and the set E is closed relative A. Whence the set f{E) is closed relative f(A) 
and t$f(E). On the other hand te~gfëj, since f(E) = g(E), limg(an) = g(b) = t 
and tef(A). So we have tef(A)nf(Ej = f(E), a contradiction. Thus we have 
g~\i) cz / _ 1 ( ř ) . The inclus ion/" 1 ^) c: g~\f) o n e c a n P r o v e i n a similar way. П 

Let X and Ybe topological spaces and / : A ^> Y be a function. A function h:B ~> Y 
is a X, Y-expansion o f / i f h ^A = f, A c B cz Ä cz X and t ef(A) implies/"*(i) = 
= h'^{t). Any X, Y-expansion of / is a closed X, Y-expansion of / if it is a closed 
mapping. 

Lemma 3. Suppose X is a first countable hereditarily normal space, and Y is 
afirst countable regular space. IfA is a dense subset ofX andf: A ~> Yis a closed 
mapping, then there exists the maximal X, Y-expansion off. 

Proof. Take F(x) = f(x) for x є A and F(x) = h(x) whenever x є h~l(t), t $f(A) 
and h is a closed X, Y-expansion of/. The function F is well defined because of 
Lemma 2. 

Suppose to the contrary that F is not continuous. Thus there has to exist a sequence 
xt9 x2,... such that lim xn = b and the sequence F(x^, F(x2), ... isn't convergent 
to F(b). Since the space Yis regular we can assume that there is an open neighbour­
hood FFofthe point F(b) such that F(x„) ф Wfor all n, ifneed be we can take a suitable 
subsequence. Let hn be a closed X, Y-expansion of / such that hn(xn) exists and let 
x™ є K\Y\ W) n A be such that lim x™ = xn. Take E = {x™: n, m = 1, 2, . . . } . 
Since b є E there exists a sequence {yu y2, ...} cz E such that lim yn = b. Let h be 
a closedX, Y-expansion of/such that h{b) exists. We have h(y^ = f{y,) = F(yn) ф W 
and lim h(yn) = h(b) = F(b) є PFbecause o.f u is continuous, a contradiction. Thus 
the function F is continuous. 

Suppose F~1(b) ф 0, lima,, = fr and F(yn) = яп ф ò for all и. Assume to the 
contrary that the sequence yl9 y2,... has no limit points in F~1(Y), if a limit point 
of this sequence exists, then it has to belong to F _ 1 (b) because of F is continuous, 
but this doesn't contrary the fact that F is a closed mapping. Sets F _ 1 (b) and 
{j>i> У2> •••} a r e disjoint and closed relative F~1(Y). Since X is hereditarily normal 
there exists an open set V such that F"*(b) <= V and [yl9 y2,...} n F = 0. Let fo 
be a closed X, Y-expansion o f / such that й - 1(6) is non-empty and let у™ є Л \ V 
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be such that lim y™ = yn. The set D = {y™: n, m = 1, 2,. . .} has no limit points 
in the set F~x(b). On the other hand b є h(D) and therefore there exists a sequence 
{<2i, <І2, •••} <= h(D) = F(D) such that lim qn = b. Let pn є Р_1(<?„) n D for all n. 
Since Lemma 1 the set {pi9p2,---} Œ D n a s a limit point in ft-1(b) = F"*(ft) 
because of ft is a closed mapping, a contradiction. Thus F is a closed mapping. • 

Theorem 1. Suppose X is a first countable hereditarily normal and hereditarily 
separable space, Yis, a regular space and \Y\ £j c. There exists afamily S satisfying 
thefollowing: 

(i) S consists of closed mappings from X into Y, 

00 |s| й c, 
(iii) for each B c X andfor each closed mapping h: B ~* h(B) c Ythere exists 

feS and a countable set E c h(B) such thatf^B\h~1(É) = ^ Р"Б\^ _ 1 (Е) and 
f-*(t) = h~\t)for each teh(B)\E. 

Proof. Let P be a countable subset ofX and let / : P ^> Ybe a continuous function. 
Ifthere exists a closed mapping h: A ^ 7such that P a A c P c X and h ^P = / , 
then let F be the maximal closed X, 7^xpansion of h ^ _ 1 ( ^ ( P ) ) , it exists because 
of Lemma 3. Let us fix a particular F for a function/. Let S be the family of all such 
mappings F. Obviously the family S has the cardinality of at most continuum, i.e. 
И ^ с. 

Suppose Б с X a n d / : Б ^f[B) с 7 i s a closed mapping. Let P с Б be a dense 
in Б and countable subset. Take F є S, which is assigned t o / | x P , and let E = f(P)> 
Thus we have / | Ч Б \ / _ 1 ( £ ) = F^B\f~\É) and if tef(B)\E, then F _ 1(ř) = 
= / _ 1 ( ř ) because of Lemma 2. • 

3. A generalization of Kuratowski's theorem [4]. 

Lemma 4. ([5] p. 425). IfX is an infinite set of the cardinality X and S is afamily 
of the cardinality of at most X offunctionsfrom subsets ofX onto subsets of the 
cardinality X of X, then there exists a family F of the cardinality 2A of subsets 
ofX such that conditions Y, Z e F and Y Ф Z imply | /(Z) \ Y\ = X,for eachfunction 

feS. D 

Theorem2./n any hereditarily separable, hereditarily normal andfirst countable 
space of the cardinality continuum there is a family of2c subspaces whose closed-
map types are imcomparable. 

Proof. Let S be the family of closed mappings obtained by virtue of Theorem 1 
in the case X = Y, where X is as in hypotheses. I f / є S, then le t /# be some fixed 
one-to-one function such that/(/*(x)) = x, for each x ef(X). Take the family S% = 
= {/* ' /e S and | /(X)| = c} and make use of Lemma 4. The family F of subspaces 
ofX, which we obtain, is that we required. Indeed, let A, B e F, A Ф Б and D c A. 
Suppose to the contrary that h: D ~> Б is a closed mapping onto Б. Let P c D 
be a countable set such that D cz P and let / є S be the closed mapping assigned 

315 



to h f P . We have \f*(B)\A\ = c and f*(B)\A cif*(B)\D, a contradiction, 
because the set f*(B) \ D is countable. • 

Theorem 2 is a generalization of the similar result on dimensional types, see 
K. Kuratowski [4] and [5] p. 433. 

4. A generalization of Banach's result [lJ. The below lemma is a modification of 
Banach's Lemme from [1]. One can prove it by making some changes in the proof 
of Banach's Lemme. 

Lemma 5. Suppose X is an infinite cardinal number and z < X. Let E he a set 
of the cardinality X and let S be a family offunctions from subsets of E onto 
subsets ofE. If \S\ ^ X and | / _ 1 ( 0 | = vfor eachfeS and teE, then there exists 
afamily {# a : a < X] ofsubsets ofE such that thefollowing holds: 

(i) {Ha: a < X) is a partition ofE, 
(ii) if y < X, then |U{#a: a < У) \ < K 

(iii) iffe S, then there is y < X such thatf(Ha) c Hafor each a > y. • 

A space X is unperfect ifits compact subspaces are countable, e.g. a metric space 
is unperfect ifit lacks any copy ofthe Cantor set. We will need the following Michael's 
result [8]. I fX is a paracompact space, Yis a first countable space a n d / : X ^ Yis 
a closed mapping, then the boundary o f / _ 1 ( ř ) is compact for each t є Y. 

Theorem 3.IfX is an unperfect, hereditarily separable, hereditarily paracompact 
andfirst countable space with \X\ = c and Yis a regular andfirst countablespace 
with \Y\ S c, then there exists afamily {Aa\ a < c) such that thefollowing holds: 

(i) for each a < c, there is Aa c X such that \Aa\ = c, 
(ii) for each B cz Y, if there are distinct a, ß < c with ctB ^ ctA and ctB ^ ctA, 

then \B\ < c. 

Proof. Let S be а family of closed mappings as in Theorem 1. I f / є S, then let 
Z = U { / ~ 4 0 : teYsLndf-^t) is nowhere dense r e l a t i ve / "^7 )} . Take /* = / | 4 Z 
and S* = {f*:fe S). Now we make use of Lemma 5. Let us observe that /~ 1 ( ř ) 
is always countable because of Michael's result [8]. We obtain a family {# a : a < c} 
as in Lemma 5. Let {Pa: a < c} be а family ofpairwise disjoint subsets of {a: a < c} 
such that |Pa | = c for each a < c. Sets Aa = П { ^ : ß є ^Л а г е t r i a t w e required. • 

Theorem 3 is а generalization of the result on dimensional types obtained in S. 
Banach [1]. 

5. Metric cases. It is well-known facts that any metric separable space is embed-
dable in the Hilbert cube Q and that any metric compact space is the image of the 
Cantor set C under a closed mapping, among others Q is the image of C under some 
closed mapping. Therefore any metric separable space is the image of some subspace 
of C under a closed mapping. Thus if we consider the closed-map type of a space X, 
then an interesting case is, when X lacks any copy ofthe Cantor set, i.e. X is unperfect. 
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Lemma 6. Suppose X is a metric separable space. If there is a closed mapping f 
from X onto the Cantor set C, then X contains some copy of C. 

Proof. Let A c C be a copy of the Cantor set such that if t є A, then / - 1 ( 0 is 
a nowhere dense subset of X, whence / _ 1 ( ř ) is compact by virtue of Vaïnsteïn's 
Lemma [2] p. 356. The set f~1(A) being an uncountable compact metric space, 
because of Lubben's result [2] p. 236, contains some copy ofthe Cantor set. • 

From the above lemma we obtain immediately the following. 

Theorem 4. / / a metric separable space X is unperfect, then its closed-map type 
is smaller than the closed-map type of the Cantor set C, i.e. ctX < ctC. • 

Ifwe use Theorem 1 and make appropriate changes in proofs in [6], then we obtain 
the following: 

Theorem 5. / / X is a metric separable space and the closed-map type of X is 
smaller than the closed-map type of the Cantor set C, then there exists a metric 
space Ysuch that ctX < ctY< ctC. • 

Theorem 6. There exists a family {Aa: a < c+} of metric separable spaces such 
that oi < ß < c+ implies ctA^ < ctAß. • 

We don't know for which metric separable space X one can assume that the 
family as in Theorem 6 is contained in X. Can it be any metric separable space X 
with \X\ = c? 

Theorem 7. Suppose X is a metric separable space with \x\ = c. There exists 
a family {Aa: ot < c] of subspaces ofX such that \АХ\ = cfor each a < c and if 
ctB ^ ctA^, ctB S ctAß and a Ф ß, then \B\ < с. 

Proof. We will need the following Lansev's result [7]. I fX is a metric space and 
/ : X ~> 7is a closed mapping, then 7 = 70 u Yt u 72 u ... , whe re / _ 1 ( j ) is compact 
for each у є 70 and Yn are discrete for all n. I fX is, additionally, separable, then YQ 

is a metrizable and separable subspace, cf. the Hanai-Morita-Stone theorem [2] 
p. 356, and ^){Yn: n = 1, 2, . . .} is a coutable subspace. 

We can assume that X is an unperfect space, if need be we can take a suitable 
subspace. By virtue of Theorem 3 there exists a family {Aa: a < c} of subspace ofX 
such that \Aa\ = c and ifBis a subspace ofthe Hilbert cube, ctB ^ ctAa, ctB rg ctAß 

and a ф ß, then |ß | < c. This family is that we required. Suppose to the contrary 
that there are a Ф ß and a space B such that |J3| = c, ctB g ctAa and ctB g ctAß. 
Thus there are H с Ал, G c Aß and closed mappings h: H ^ B = h(H), g: G -+ B = 
= g(G). Let B* = {yeB: h~x{y) and g~i(y) are compact}. The space B% is 
metrizable, separable and |jB*| = c because of Lašnev result, a contradiction, since B* 
is embeddable in the Hilbert cube, ctB* ^ ctA^ and ctB* ^ ctAß. • 

In next two theorems we assume that the cardinal number c is regular. We don't 
know ifthis assumption can be omitted. 
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Theorem 8. IfX is a metric separable space with \X\ = c, then there is afamily 

{B^: a < c} of subspaces ofX such that a < ß implies ctBa < ctBß. 

Proof. Let {A^: oc < c} be a family as in Theorem 7. Take Ba = U{Aß: ß й ос). 
If a < ß < c, then ctBa <; ctBß since Ba cz Bß. We will show that ctBß S ctBa 

doesn't hold. Suppose to the contrary that there are H cz Ba and a closed mapping 

h'. H -^ Aß = h(H) a Bß. We have \Aß n h(Ay)\ < c for each y <* a. Whence 

|i4^| = | U { ^ n й(і4у): y f§ a}| < с, а contradiction, because of c is regular. • 

Theorem 9. IfX is a metric separable space with \X\ = c, then there exists afamily 
(Ба : а < Я} ofsubspaces ofX such that ifoc < ß, then ctBß < ctBx. 

Proof. Let {Ax: а < c} be a family as in Theorem 7. Take Ba = C\{Aß: a g ß < X]. 

If а < j8 < A, then c i ^ <̂  ctBa because of Bß cz Ba. We will show that ctBa ^ ctBß 

doesn't hold. Suppose to the contrary that there are H cz Bß and a closed mapping 

h: H ^> Aa = h(H) cz Ba. We have \Aa n h(Ay)\ < c for each y such that ß ^ y < A. 

Whence \Aa\ = |U{Ae n A(̂ 4y): ß z= 7 < ^ } | < c, a contradiction. • 
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