Czechoslovak Mathematical Journal

Werner Kratz

Asymptotic behaviour of Riccati's differential equation associated with self-adjoint scalar equations of even order

Czechoslovak Mathematical Journal, Vol. 38 (1988), No. 2, 351-365

Persistent URL: http://dml.cz/dmlcz/102230

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ASYMPTOTIC BEHAVIOUR OF RICCATI'S DIFFERENTIAL EQUATION ASSOCIATED WITH SELF-ADJOINT SCALAR EQUATIONS OF EVEN ORDER

W. Kratz, Ulm

(Received January 3, 1987)

1. INTRODUCTION

In this paper we study the behaviour of Hermitian matrix-solutions $Q(x)=Q(x ; \lambda)$ of the Hermitian Riccati matrix equation

$$
Q^{\prime}+A^{T} Q+Q A+Q B Q-C+\lambda C_{0}^{*}=0
$$

when the parameter $\lambda \rightarrow-\infty$ in case that the (n, n)-matrices A, B, C and C_{0}^{*} are of a special form (as described in section 2, formula (2)). More precisely: a matrix $Q(x)$, which solves the Riccati equation above, is of the form $Q(x)=V(x) U^{-1}(x)$ where $U(x), V(x)$ solve the corresponding Hamiltonian system

$$
U^{\prime}=A U+B V, \quad V^{\prime}=\left(C-\lambda C_{0}^{*}\right) U-A^{T} V .
$$

The matrices A, B, C, C_{0}^{*} are given by formula (2) such that this Hamiltonian system corresponds to a self-adjoint scalar differential equation of even order $2 n$, i.e.

$$
\begin{equation*}
L(y)=\sum_{v=0}^{n}(-1)^{v}\left(r_{v} y^{(v)}\right)^{(v)}=\lambda r y \tag{0}
\end{equation*}
$$

with realvalued functions $r_{v} \in C(\mathbb{R}), r \in C(\mathbb{R}), r(x)>0$ and $r_{n}(x)>0$ on \mathbb{R}. For fixed $x_{0} \in \mathbb{R}$ we consider solutions $Q=V U^{-1}$ of the Riccati equation, for which U, V satisfy (with respect to λ fixed) initial conditions at x_{0}, such that U, V form a so-called conjoined basis of the Hamiltonian system (see [6]). Our main result (Theorem 1) describes the asymptotic behaviour of $Q(x ; \lambda)=V(x ; \lambda) U^{-1}(x ; \lambda)$ as $\lambda \rightarrow-\infty$ for all $x \neq x_{0}$ (note that $Q\left(x_{0} ; \lambda\right)$ is not defined if the fixed initial value $U\left(x_{0}\right)$ is a singular matrix).

This matrix $Q(x ; \lambda)$ occurs in the treatment of variational problems (where (0) is the corresponding Euler equation) via Picone's identity (see [10,6]); and an essential aid of that treatment is the asymptotic behaviour of $Q(x ; \lambda)$ as $x \rightarrow x_{0}$ or $\lambda \rightarrow \lambda_{0}$ (this is discussed in $[5,6]$), and also as $\lambda \rightarrow-\infty$ with x fixed. It is shown in [6, Theorem 11] that $Q(x ; \lambda) \rightarrow \infty$ as $\lambda \rightarrow-\infty, x>x_{0}$, and this crude result is improved in this paper by deriving the precise asymptotic behaviour. Actually the asymptotic behaviour of solutions of (0) is treated extensively in the literature (see
e.g. $[1,4,7,12]$ for the case $\lambda \rightarrow-\infty$ or [3] for the case $x \rightarrow \infty, \lambda$ fixed). But these results do not lead to the results below (Theorems 1 and 3) on $Q(x ; \lambda)$. Moreover, the methods in $[4,7,12]$ need stronger smoothness conditions on the coefficients $r_{v}(x), r(x)$; essentially r and $r_{n} \in C_{n}(\mathbb{R})$ is needed (then the equation (0) may be transformed such that $r=r_{n} \equiv 1$).

The setup of this paper is as follows. In § 2 we introduce the necessary notation and assumptions, and the main result (Theorem 1) is stated. In § 3 precise estimates for $Q(x ; \lambda)$ (Theorem 2) are derived in case that (0) is an equation with constant coefficients $r_{v}(v=0, \ldots, n), r$. These estimates combined with inequalities for the Riccati equation $[6,9]$ lead to our main results (Theorems 1 and 3) in §4. In the last \S Theorem 3 is applied to derive estimates of solutions of (0) (Prop. 3 and 4). On the one hand these estimates do not imply the asymptotic results from [4 or 7], but on the other hand one does not obtain uniform estimates for solutions of (0) with fixed initial values (as in Prop. 3) from those known results.

2. NOTATION, ASSUMPTIONS, AND MAIN RESULT

We consider Hamiltonian systems of ordinary differential equations, which correspond to self-adjoint scalar equations of even order, i.e.

$$
\begin{equation*}
u^{\prime}=A u+B v, \quad v^{\prime}=\left(C-\lambda C_{0}^{*}\right) u-A^{T} v \tag{1}
\end{equation*}
$$

where the (n, n)-matrices A, B, C, C_{0}^{*} are of the special form

$$
\begin{gather*}
A=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & 1 \\
0 & 0 & \ldots & 0
\end{array}\right), \quad B=\frac{1}{r_{n}(x)} B_{0}, \quad B_{0}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\ldots & \ldots & . \\
0 & \ldots & 1
\end{array}\right), \tag{2}\\
C=\left(\begin{array}{ccc}
r_{0}(x ; & \lambda) & 0 \\
\ddots & \ddots & \\
0 & r_{n-1}(x ; \lambda)
\end{array}\right), \quad C_{0}^{*}=r(x) C_{0}, \quad C_{0}=\left(\begin{array}{lll}
1 & \ldots & 0 \\
\ldots & \ldots & . \\
0 & \ldots & 0
\end{array}\right),
\end{gather*}
$$

and where λ is a real parameter. We assume thoughout this paper that the realvalued functions $r(x), r_{n}(x), r_{v}(x ; \lambda)$ satisfy

$$
\begin{gather*}
r(x), r_{n}(x) \in C(\mathbb{R}), \quad r_{v}(x ; \lambda) \in C\left(\mathbb{R}^{2}\right), \tag{3}\\
v=0, \ldots, n-1 \quad \text { and } \quad r(x), r_{n}(x)>0 \quad \text { on } \mathbb{R} .
\end{gather*}
$$

Observe, that a function $y: \mathbb{R} \rightarrow \mathbb{R}$ solves the scalar equation

$$
\begin{equation*}
L(y)=\sum_{v=0}^{n}(-1)^{v}\left(r_{v} y^{(v)}\right)^{(v)}=\lambda r y \tag{4}
\end{equation*}
$$

on \mathbb{P}, if and only if the vectors $u=\left(u_{k}(x)\right), v=\left(v_{k}(x)\right)$ given by

$$
\begin{equation*}
u_{k}=y^{(k)}, \quad v_{k}=\sum_{v=k+1}^{n}(-1)^{v-k-1}\left(r_{v} y^{(v)}\right)^{(v-k-1)}, \quad k=0, \ldots, n-1 \tag{5}
\end{equation*}
$$

are well-defined on \mathbb{R} and solve the differential system (1) [6, 8]. Moreover, we assume throughout that the (n, n)-matrices $U=U(x ; \lambda), V=V(x ; \lambda)$ are the solution of the following initial value problem

$$
\begin{gather*}
U^{\prime}=A U+B V, \quad V^{\prime}=\left(C-\lambda C_{0}^{*}\right) U-A^{T} V, \tag{6}\\
U\left(x_{0}\right)=U_{0}, \quad V\left(x_{0}\right)=V_{0},
\end{gather*}
$$

where $x_{0} \in \mathbb{R}$ is fixed, and where the (complex) (n, n)-matrices U_{0}, V_{0} satisfy

$$
\begin{equation*}
\operatorname{rank}\left(\bar{U}_{0}^{T}, \bar{V}_{0}^{T}\right)=n, \quad \bar{U}_{0}^{T} V_{0}=\bar{V}_{0}^{T} U_{0} . \tag{7}
\end{equation*}
$$

Then, by [6], the matrices U, V are a so-called 'conjoined basis' of the Hamiltonian system (1); we have $\bar{U}^{T} V \equiv \bar{V}^{T} U$ on \mathbb{R}^{2}; the focal points of U (i.e. those $x \in \mathbb{R}$, for which $U(x ; \lambda)$ is singular when $\lambda \in \mathbb{R}$ is fixed) are isolated; and then the Hermitian matrix $Q(x ; \lambda):=V(x ; \lambda) U^{-1}(x ; \lambda)$ solves the Hermitian Riccati matrix equation [6]

$$
\begin{equation*}
Q^{\prime}+A^{T} Q+Q A+Q B Q-C+\lambda C_{0}^{*}=0 \tag{8}
\end{equation*}
$$

whenever it exists (i.e. for all $x \in \mathbb{R}$, for which $U(x ; \lambda)$ is regular).
For the formulation of our main result we need some further notation. Let

$$
\begin{gather*}
\varrho_{0}:=\sqrt[2 n]{ }-\lambda, \quad \delta(x):=\sqrt[2 n]{ }\left(r(x) / r_{n}(x)\right), \quad \varrho(x ; \lambda):=\varrho_{0} \delta(x), \tag{9}\\
\text { if } \lambda<0, \quad x \in \mathbb{R} .
\end{gather*}
$$

Moreover, let

$$
\begin{equation*}
\varepsilon_{k}:=\exp \left\{i \pi\left(\frac{k}{n}-\frac{n-1}{2 n}\right)\right\}, \quad k=0, \ldots, 2 n-1 \quad\left(\text { observe } \varepsilon_{k}^{2 n}=(-1)^{n-1}\right) \tag{10}
\end{equation*}
$$

$$
\Phi^{0}:=\left(\begin{array}{lll}
1 & \cdots & 1 \\
\varepsilon_{0} & & \varepsilon_{2 n-1} \\
\ldots & \cdots & \cdots \\
\varepsilon_{0}^{2 n-1} & \ldots & \varepsilon_{2 n-1}^{2 n-1}
\end{array}\right)_{(2 n, 2 n)}=\left(\begin{array}{ll}
\Phi_{11}^{0} & \Phi_{12}^{0} \\
\Phi_{21}^{0} & \Phi_{22}^{0}
\end{array}\right)\left(\text { with }(n, n) \text {-matrices } \Phi_{k l}^{0}\right)
$$

and finally we introduce the (n, n)-matrices

$$
\begin{gather*}
G_{i}:=E^{0} \Phi_{2 i}^{0} \Phi_{1 i}^{0-1} \text { for } i=1,2 \text { with } E^{0}=\left(\begin{array}{c}
0 \ldots(-1)^{n-1} \\
\ldots \ldots \ldots . \\
1 \ldots
\end{array}\right), \tag{12}\\
D_{\alpha}:=\operatorname{diag}\left(1, \alpha, \ldots, \alpha^{n-1}\right), \quad \tilde{D}_{\alpha}:=\operatorname{diag}\left(\alpha^{n-1}, \ldots, \alpha, 1\right) \text { for } \alpha \in \mathbb{C}, \tag{13}
\end{gather*}
$$

where diag denotes diagonal matrices. Observe that Φ^{0} is a (regular) Vandermonde matrix and that the matrix G_{1} is real, symmetric, and positive definite by [$6 ;$ p. 140]. This implies that the matrix G_{2} is also real and symmetric, but negative definite, since $G_{2}=-D_{-1} G_{1} D_{-1}$, which follows from a simple calculation.

Now, our basic result is given by
Theorem 1. If $\left|r_{v}(x ; \lambda)\right| \leqq R \varrho_{0}^{2(n-v-1)}$ for $v=0, \ldots, n-1, x \in \mathbb{R}, \varrho_{0} \geqq 1$, and some $R>0$, then $\lim _{\lambda \rightarrow-\infty}\left(1 / \varrho_{0}\right) \widetilde{D}_{1 / \ell_{0} 0} Q(x ; \lambda) \widetilde{D}_{1 / \ell_{0}}=r_{n}(x) \delta(x) \widetilde{D}_{\delta(x)} G \widetilde{D}_{\delta(x)}$ for all $x \neq x_{0}$, where $G=G_{1}$ in case $x>x_{0}$ and $G=G_{2}$ in case $x<0$.
(Of course, $Q(x ; \lambda)$ exists, i.e. $U(x ; \lambda)$ is regular, for $x \neq x_{0}$ if λ is sufficiently small, i.e. $\lambda \leqq \lambda_{0}=\lambda_{0}(x)$. Note, moreover, that $Q\left(x_{0} ; \lambda\right)$ is not defined if the fixed initial value U_{0} is a singular matrix.)

Finally we mention, that $\|\cdot\|$ always denotes the Euclidean norm of a vector resp. the induced matrix norm (spectral norm) of a matrix. For quadratic matrices Q_{1}, Q_{2} we write $Q_{1}<Q_{2}\left(\operatorname{resp} . Q_{1} \leqq Q_{2}\right)$ if Q_{1} and Q_{2} are Hermitian matrices and if $Q_{2}-Q_{1}$ is positive definite (resp. nonnegative definite); and Q^{T} (resp. \bar{Q}) denotes the transpose (resp. complex conjugate) of a matrix $Q ; I$ denotes the identity matrix.

3. CONSTANT COEFFICIENTS

In this section we assume that the differential equation (4) has constant coefficients, i.e.

$$
\begin{gathered}
r_{v}(x ; \lambda) \equiv r_{v}(\lambda) \in \mathbb{R}, \quad v=0, \ldots, n-1, \quad r_{n}(x) \equiv r_{n} \\
r(x) \equiv r \quad \text { on } \quad \mathbb{R} \quad \text { with } \quad r>0, \quad r_{n}>0 .
\end{gathered}
$$

Thus, by (9), $\varrho(x ; \lambda) \equiv \varrho(\lambda)=\varrho=\sqrt[2 n]{ }\left(-\lambda r / r_{n}\right)$. We shall derive estimates of the matrix

$$
\widetilde{Q}(x ; \lambda)=\frac{1}{r_{n} \varrho} \tilde{D}_{1 / e} Q(x ; \lambda) \widetilde{D}_{1 / e} \quad \text { with } \quad Q(x ; \lambda)=V(x ; \lambda) U^{-1}(x ; \lambda)
$$

(Note the corresponding definition of $Q(x ; \lambda)$ and (13) of section 2.)
Theorem 2. Suppose that R, α are positive constants such that $\left|r_{v}(\lambda)\right| \leqq$ $\leqq R r_{n} \varrho^{2(n-v-1)}, v=0, \ldots, n-1$ for $\varrho \geqq 1,\left(1 / r_{n}\right) \bar{U}_{0}^{T} V_{0} \geqq-\alpha \bar{U}_{0}^{T} U_{0}$. Then, for any $0<c<1$, there exist positive constants $K=K(n, R, \alpha, c), K_{1}=K_{1}(n, R)$ (depending on n, R, α, c resp. n, R only) such that the following holds: $Q(x ; \lambda)$ exists for all $x>x_{0}, \varrho \geqq K$, and

$$
\begin{gathered}
\left\|\widetilde{Q}(x ; \lambda)-G_{1}\right\| \leqq K_{1} \varrho^{-2} \quad \text { for all } \varrho \geqq K \\
x \geqq x_{0}+x_{1}(\varrho) \text { with } \quad x_{1}(\varrho)=\left(c \sin \frac{\pi}{2 n}\right)^{-1} \frac{\log \varrho}{\varrho}>0 .
\end{gathered}
$$

If the inequality above on U_{0}, V_{0} holds for $-V_{0}$ instead of V_{0}, then the assertions hold for $x<x_{0}$ resp. $x \leqq x_{0}-x_{1}(\varrho)$ with G_{2} instead of G_{1}.

Proof. We prove the result for $x>x_{0}$, since the case $x<x_{0}$ may be obtained from $x>x_{0}$ substituting x by $-x$, and then the matrices U, V, and G_{1} must be replaced by $D_{-1} U,-D_{-1} V$ (according to (5)), resp. $G_{2}=-D_{-1} G_{1} D_{-1}$.

First, it follows from [6; Prop. 4 with $\tilde{r}_{v}=-R r_{n} \varrho^{2(n-v-1)}, v=0, \ldots, n-1$, $\tilde{r}=r, \tilde{r}_{n}=r_{n}, \tilde{\lambda}=\lambda<0$, and $\left.\widetilde{U}\left(x_{0}\right)=I, \tilde{V}\left(x_{0}\right)=-\alpha r_{n} I\right]$ (using our assumptions on $\left.r_{v}(\lambda), U_{0} V_{0}\right)$ that $Q(x ; \lambda)$ exists on $\left(x_{0}, x_{0}+\delta\right]$ for all $\varrho \geqq 1$ (i.e. $\left.\lambda \leqq-r_{n} / r<0\right)$ with a positive constant $\delta=\delta(n, R, \alpha)$, so that $Q(x ; \lambda)$ exists on $\left(x_{0}, x_{0}+x_{1}(\varrho)\right]$
for $\varrho \geqq K$. Here, and in the following K resp. K_{1} denote different, positive constants, which depend on n, R, α, c resp. n, R only.

Now, the characteristic polynomial of the equation (4) (with constant coefficients) is given by $P(t)=(-1)^{n} r_{n} \varrho^{2 n} P_{1}(t / \varrho)$, where

$$
P_{1}(t)=t^{2 n}-\varrho^{-2} \sum_{v=0}^{n-1}\left(-\varrho^{2}\right)^{v+1-n} \frac{r_{v}}{r_{n}} t^{2 v}+(-1)^{n}
$$

Therefore $P(t)$ has the zeros $\tilde{\varrho}_{k}=\varrho \delta_{k}$, where the δ_{k} are the zeros of $P_{1}(t)$.
It follows from [11; 66 pp.$]$ (using the assumption on the $r_{v}(\lambda)$) that (observe (10))

$$
\begin{equation*}
\left|\delta_{k}-\varepsilon_{k}\right| \leqq K_{1} \varrho^{-2} \quad \text { if } \quad \varrho \geqq K_{1} \quad \text { for } \quad k=0, \ldots, 2 n-1 \tag{14}
\end{equation*}
$$

This implies, in particular, that the δ_{k} (and then also the ϱ_{k}) are distinct for $\varrho \geqq K_{1}$, so that the functions $\exp \left(\varrho_{k} x\right), k=0, \ldots .2 n-1$ form a fundamental system of (4). Then the matrix

$$
W(x)=W(x ; \lambda)=\left(\begin{array}{cc}
1 & 0 \\
F & E
\end{array}\right)\left(\begin{array}{cc}
D_{\varrho} & 0 \\
0 & \varrho^{n} D_{\varrho}
\end{array}\right) \Phi\left(\begin{array}{cc}
D_{1}(x) & 0 \\
0 & D_{2}(x)
\end{array}\right)
$$

is a fundamental matrix of the corresponding Hamiltonian system (1). This is obtained from the transformation formulas (5), when the following notation is used:

$$
F=\left(\begin{array}{ccc}
0 & r_{1} & * \\
\vdots & \ddots & * \\
\vdots & \ddots & \\
0 & \ldots & r_{n-1}
\end{array}\right), \quad E=r_{n}\left(E^{0}+E^{*}\right) \text { with } E^{*}=\left(\begin{array}{ccc}
* & 0 & 0 \\
. & \cdot & \\
0 & \ldots & 0 \\
0 & \ldots & 0
\end{array}\right)
$$

$\left(E^{0}, D_{e}\right.$ as in (12), (13)),

$$
\Phi=\left(\begin{array}{lll}
1 & \ldots & 1 \\
\delta_{0} & \ldots & \delta_{2 n-1} \\
\ldots & \ldots & \cdots \\
\delta_{0}^{2 n-1} & \ldots & \delta_{2 n-1}^{2 n-1}
\end{array}\right),
$$

$$
D_{1}\left(x+x_{0}\right)=\operatorname{diag}\left(e^{\tilde{\tilde{\sigma}_{0} x}}, \ldots, \mathrm{e}^{\tilde{\tilde{n}}_{n}-1 x}\right), \quad D_{2}\left(x+x_{0}\right)=\operatorname{diag}\left(\mathrm{e}^{\tilde{\mathrm{e}}_{n} x}, \ldots, \mathrm{e}^{\tilde{\Xi}_{2 n-1} x}\right) .
$$

Note, that $\left|f_{i j}\right| \leqq r_{n} K_{1},\left|\mathrm{e}_{i j}^{*}\right| \leqq K_{1}$ (for $1 \leqq i<j \leqq n, 1 \leqq i \leqq n-1-j \leqq n-2$ resp.) It follows that the solution U, V of our initial value problem (6) is given by

$$
\begin{equation*}
\binom{U(x)}{V(x)}= \tag{15}
\end{equation*}
$$

$=\left(\begin{array}{ll}I & 0 \\ F & E\end{array}\right)\left(\begin{array}{ll}D_{e} & 0 \\ 0 & \varrho^{i} D_{e}\end{array}\right) \Phi\left(\begin{array}{ll}D_{1}(x) & 0 \\ 0 & D_{2}(x)\end{array}\right) \Phi^{-1}\left(\begin{array}{ll}D_{1 / e} & 0 \\ 0 & \varrho^{-n} D_{1 / \varrho}\end{array}\right)\binom{U_{0}}{E^{-1} V_{0}-E^{-1} F U_{0}}$,
i.e.

$$
\begin{aligned}
& U(x)=D_{\varrho} \Phi_{11} D_{1}(x) A_{1}+D_{\varrho} \Phi_{12} D_{2}(x) A_{2}, \\
& V(x)=F U(x)+\varrho^{n} E D_{e}\left(\Phi_{21} D_{1}(x) A_{1}+\Phi_{22} D_{2}(x) A_{2}\right),
\end{aligned}
$$

where
and $\quad A_{i}=\varrho^{-n} \tilde{\Phi}_{i 2} D_{1 / \ell} E^{-1}\left(V_{0}+S_{i} U_{0}\right), \quad S_{i}=\varrho^{n} E D_{e} \tilde{\Phi}_{i 2}^{-1} \tilde{\Phi}_{11} D_{1 / \ell}-F, \quad i=1,2$,

$$
\Phi=\left(\begin{array}{ll}
\Phi_{11} & \Phi_{12} \\
\Phi_{21} & \Phi_{22}
\end{array}\right), \quad \Phi^{-1}=\left(\begin{array}{ll}
\tilde{\Phi}_{11} & \tilde{\Phi}_{12} \\
\tilde{\Phi}_{21} & \tilde{\Phi}_{22}
\end{array}\right) .
$$

Since $\Phi^{0}{\overline{\Phi^{0}}}^{\boldsymbol{T}}=2 n I$ (i.e. $\Phi^{0^{-1}}=(1 / 2 n) \overline{\Phi^{0} \boldsymbol{T}}$), which follows from (10), (11) by direct calculation, we obtain from (14)

$$
\begin{equation*}
\left\|\Phi_{k l}-\Phi_{k l}^{0}\right\| \leqq K_{1} \varrho^{-2}, \quad\left\|\tilde{\Phi}_{k l}-\frac{1}{2 n} \overline{\Phi_{l k}^{0}}\right\| \leqq K_{1} \varrho^{-2} \quad \text { for } \quad \varrho \geqq K_{1} . \tag{16}
\end{equation*}
$$

Our definitions imply that $E=r_{n}\left(E^{0}+E^{*}\right), D_{1 / \varrho} \widetilde{D}_{1 / \varrho}=\varrho^{-n+1} I$, and $\widetilde{D}_{1 / \varrho} E^{0} D_{\varrho}=$ $=E^{0}$. These formulas, and the formulas above for $U(x), V(x)$ imply the following representation of $\widetilde{Q}(x ; \lambda)$:

$$
\widetilde{Q}(x ; \lambda)=\frac{1}{r_{n} \varrho} \widetilde{D}_{1 / e} F \tilde{D}_{1 / e}+\left(E^{0}+\tilde{D}_{1 / e} E^{*} D_{e}\right)\left(I+\varepsilon_{2}(x)\right) \Phi_{21} \Phi_{11}^{-1}\left(I+\varepsilon_{1}(x)\right)^{-1}
$$

with $\varepsilon_{i}(x)=\Phi_{i 2} D_{2}(x) A_{2} A_{1}^{-1} D_{1}^{-1}(x) \Phi_{i 1}^{-1}, i=1,2$, if the matrices A_{1} and $I+\varepsilon_{1}(x)$ are regular (which implies that $U(x)$ is regular too, since the $\Phi_{i j}$ are regular for $\varrho \geqq K_{1}$ by (16) and (10), (11)). We have that $\operatorname{Re} \varepsilon_{k}=-\operatorname{Re} \varepsilon_{n+k} \geqq \sin (\pi / 2 n)>0$ for $k=$ $=0, \ldots, n-1$ by (10), and we obtain from (14), (16), and the definition of F and E^{*} the following estimates: $\left\|D_{1}^{-1}(x)\right\| \leqq 1 / \varrho,\left\|D_{2}(x)\right\| \leqq 1 / \varrho,\left\|\tilde{D}_{1 / e} E^{*} D_{\varrho}\right\| \leqq K_{1} \varrho^{-2}$, $\left\|\left(1 / r_{n}\right) \widetilde{D}_{1 / \varrho} F \widetilde{D}_{1 / \varrho}\right\| \leqq K_{1} \varrho^{-1}$ and $\left\|E^{0} \Phi_{21} \Phi_{11}^{-1}-G_{1}\right\| \leqq K_{1} \varrho^{-2}$ for all $x \geqq x_{0}+$ $+x_{1}(\varrho), \varrho \geqq K$. These estimates and the formula for $\widetilde{Q}(x ; \lambda)$ above imply the assertions of Theorem 2 for $x>x_{0}$ (observe that we have already shown that $Q(x ; \lambda)$ exists on $\left.\left(x_{0}, x_{0}+x_{1}(\varrho)\right]\right)$, if we prove the following:

$$
\begin{equation*}
A_{1} \text { is regular, and }\left\|A_{2} A_{1}^{-1}\right\| \leqq K_{1} \quad \text { for } \quad \varrho \geqq K, \tag{17}
\end{equation*}
$$

since this implies $\left\|\varepsilon_{i}(x)\right\| \leqq K_{1} \varrho^{-2}$ for $x \geqq x_{0}+x_{1}(\varrho), \varrho \geqq K$, from which the regularity of $I+\varepsilon_{1}(x)$ follows, in particular. Thus, it remains to prove (17). First, we show that the matrices $S_{i}=S_{i}(\varrho), i=1,2$ are Hermitian for $\varrho \geqq K_{1}$. Therefore, we consider the matrix solutions U_{i}, V_{i} of (1) which satisfy the initial conditions $U_{1}\left(x_{0}\right)=V_{2}\left(x_{0}\right)=0, V_{1}\left(x_{0}\right)=-U_{2}\left(x_{0}\right)=I$. Then U_{i}, V_{i} are 'normalized conjoined bases' of (1), so that $U_{2}(x) U_{1}^{T}(x)$ is symmetric (and real) for $x \in \mathbb{R}$ by $[6$; Def. 2, (7^{\prime}), (8)]. Our representation (15) of the solution U, V applied to U_{i}, V_{i}, $i=1,2$ yields:

$$
\begin{gathered}
\left(E D_{\varrho} \tilde{\Phi}_{12}^{-1} D_{1}^{-1}(x) \Phi_{11}^{-1} D_{1 / \varrho}\right) U_{2}(x) U_{1}^{T}(x)\left(\overline{E D_{e} \tilde{\Phi}_{12}^{-1} D_{1}^{-1}(x) \Phi_{11}^{-1} D_{1 / \varrho}}\right)^{T}= \\
=\left(-S_{1}-E D_{\varrho} D_{1}^{-1}(x) \Phi_{11}^{-1} \Phi_{12} D_{2}(x) \tilde{\Phi}_{22} D_{1 / e} E^{-1} S_{2}\right) \times \\
\times\left(I+E D_{e} \tilde{\Phi}_{12}^{-1} D_{1}^{-1}(x) \Phi_{11}^{-1} \Phi_{12} D_{2}(x) \widetilde{\Phi}_{22} D_{1, \varrho} E^{-1}\right)^{T} \rightarrow-S_{1}(\varrho) \text { as } x \rightarrow \infty,
\end{gathered}
$$

since $-\operatorname{Re} \varepsilon_{k}=\operatorname{Re} \varepsilon_{n+k}<0$ for $k=0, \ldots, n-1$ and $\varrho \geqq K_{1}$. Since the lefthand side of the limit is for all x a Hermitian matrix, we obtain that S_{1} is Hermitian; and a similar argument (let $x \rightarrow-\infty$) shows that S_{2} is Hermitian, too. Next, we have

$$
\tilde{S}_{i}=\frac{1}{r_{n} \varrho} \widetilde{D}_{1 / e} S_{i} \tilde{D}_{1 / e}=\left(E^{0}+\widetilde{D}_{1 / \varrho} E^{*} D_{e}\right) \tilde{\Phi}_{i 2}^{-1} \widetilde{\Phi}_{11}-\frac{1}{r_{n} \varrho} \widetilde{D}_{1 / e} F \widetilde{D}_{1 / e},
$$

which implies by (16) and (12) that

$$
\begin{equation*}
\left\|\tilde{S}_{i}-G_{i}^{-1}\right\| \leqq K_{1} \varrho^{-2} \quad \text { for } \quad \varrho \geqq K_{1}, \quad i=1,2 . \tag{18}
\end{equation*}
$$

Hence, $\left(1 / r_{n}\right) S_{1}>\alpha I$ for $\varrho \geqq K$, so that the matrix

$$
V_{0}+S_{1} U_{0}=r_{n}\left(\left\{\frac{1}{r_{n}} V_{0}-\alpha U_{0}\right\}+\left\{\frac{1}{r_{n}} S_{1}-\alpha I\right\} U_{0}\right)
$$

is regular by $[6$; Prop A 1], since

$$
{\overline{\left(\frac{1}{r_{n}} V_{0}-\alpha U_{0}\right)}}^{T} U_{0} \geqq 0
$$

by our assumption. This implies that A_{1} is regular for $\varrho \geqq K$ (observe that the cited Prop. A 1 remains true for complex, Hermitian matrices instead of real, symmetric matrices). Now, we obtain for $\varrho \geqq K$ that

$$
\begin{gathered}
A_{2} A_{1}^{-1}=\widetilde{\Phi}_{22}\left(\widetilde{D}_{1 / e} E^{*} D_{e}+E^{0}\right)^{-1} . \\
\left(\tilde{V}_{0}+\varrho \tilde{S}_{2} \widetilde{U}_{0}\right)\left(\tilde{V}_{0}+\varrho \tilde{S}_{1} \tilde{U}_{0}\right)^{-1}\left(\tilde{D}_{1 / e} E^{*} D_{e}+E^{0}\right) \tilde{\Phi}_{12}^{-1}
\end{gathered}
$$

with

$$
\tilde{V}_{0}=\frac{1}{r_{n}} \widetilde{D}_{1 / e} V_{0} \widetilde{D}_{1 / e}, \quad \tilde{U}_{0}=\widetilde{D}_{e} U_{0} \widetilde{D}_{1 / e}
$$

Next, we have $\left(\tilde{V}_{0}+\varrho \tilde{S}_{2} \tilde{U}_{0}\right)\left(\tilde{V}_{0}+\varrho \tilde{S}_{1} \tilde{U}_{0}\right)^{-1}=I+\varrho\left(\tilde{S}_{2}-\tilde{S}_{1}\right) Q$, where the matrix $Q=\tilde{U}_{0}\left(\tilde{V}_{0}+\varrho \tilde{U}_{0}\right)^{-1}$ is Hermitian, since $\bar{U}^{T} \tilde{V}_{0}=\bar{V}^{T} \tilde{U}_{0}$ by (7). Moreover,

$$
\begin{gathered}
\left.Q \geqq 0 \text { (i.e. } \overline{\left(\tilde{V}_{0}+\varrho \widetilde{S}_{1} \tilde{U}_{0}\right)^{T}} \tilde{U}_{0} \geqq 0\right), \quad Q \leqq \frac{1}{\varrho} \tilde{S}_{1}^{-1} \\
\left(\text { i.e. } \overline{\left(\tilde{V}_{0}+\varrho \tilde{S}_{1} \tilde{U}_{0}\right)^{T}} \tilde{U}_{0} \geqq \frac{1}{\varrho} \overline{\left(\tilde{V}_{0}+\varrho \tilde{S}_{1} \tilde{U}_{0}\right)^{T}} \tilde{S}_{1}^{-1}\left(\widetilde{V}_{0}+\tilde{S}_{1} \tilde{U}_{0}\right)\right)
\end{gathered}
$$

for $\varrho \geqq K$ (use (18) and the assumption $\left(1 / r_{n}\right) \bar{U}_{0}^{T} V_{0} \geqq-\alpha \bar{U}_{0}^{T} U_{a}$). These inequalities show that $\left\|A_{2} A_{1}^{-1}\right\| \leqq K_{1}$ for $\varrho \geqq K$, which completes the proof.

The proof above shows, that one may also obtain an inequality similar to Theorem 2 for values of x nearer x_{0} (this follows simply from estimates of $\left\|D_{2}(x)\right\|,\left\|D_{1}^{-1}(x)\right\|$ using (14)), namely:

Coroliary 1. Under the assumptions of Theorem 2 there exist positive constants $K=K(n, R, \alpha, c), K_{1}=K_{1}(n, R)$ such that

$$
\left\|\widetilde{Q}(x ; \lambda)-G_{1}\right\| \leqq K_{1} \mathrm{e}^{-\gamma} \text { for all } \gamma \geqq 1, \varrho \geqq \max \left\{K, \mathrm{e}^{\gamma / 2}\right\},
$$

and $x \geqq x_{0}+x_{1}^{*}(\varrho)$ with $x_{1}^{*}(\varrho)=(c \sin (\pi / 2 n))^{-1} \gamma / \varrho$, for any $0<c<1$; and if the inequality of the assumption of Theorem 2 holds for $-V_{0}$ instead of V_{0}, then the assertion holds for $x \leqq x_{0}-x_{1}^{*}(\varrho)$ with G_{2} instead of G_{1}.

Next, we estimate $\widetilde{Q}(x ; \lambda)$ for $\left|x-x_{0}\right| \leqq x_{1}^{*}(\varrho)$ as $\varrho \rightarrow \infty$ (i.e. $\lambda \rightarrow-\infty$), if U_{0} is regular, i.e. if $Q\left(x_{0} ; \lambda\right)=V_{0} U_{0}^{-1}$ exists.

Proposition 1. Suppose that U_{0} is regular, and that R, α are positive constants with

$$
\left|r_{v}(\lambda)\right| \leqq R r_{n} \varrho^{2(n-v-1)}, \quad v=0, \ldots, n-1 \quad \text { for } \varrho \geqq 1, \quad \text { and }\left\|\frac{1}{r_{n}} V_{0} U_{0}^{-1}\right\| \leqq \alpha
$$

Then, for any $c>0$, there exist positive constants $K=K(n, R, \alpha, c), K_{1}=K_{1}(n, c)$, such that $Q(x ; \lambda)$ exists and

$$
\|\tilde{Q}(x ; \lambda)\| \leqq K_{1} \quad \text { for all } \quad \varrho \geqq K, \quad\left|x-x_{0}\right| \leqq c \mid \varrho .
$$

Proof. Since

$$
\left\|\frac{1}{r_{n}} V_{0} U_{0}^{-1}\right\| \leqq \alpha
$$

is equivalent with

$$
-\alpha \bar{U}_{0}^{T} U_{0} \leqq \frac{1}{r_{n}} \bar{U}_{0}^{T} V_{0} \leqq \alpha \bar{U}_{0}^{T} U_{0},
$$

the existence of $Q(x ; \lambda)$ on \mathbb{R} for $\varrho \geqq K$ follows from Theorem 2 . Now, we consider the matrix $Q^{*}(x)=\widetilde{Q}\left(x_{0}+x / \varrho ; \lambda\right)$ for $\varrho \geqq K, x \in \mathbb{R}$. Because

$$
\widetilde{D}_{\varrho} A \widetilde{D}_{1 / \ell}=\varrho A, \quad r_{n} \widetilde{D}_{e} B \widetilde{D}_{\varrho}=B_{0}, \quad \frac{1}{r_{n} \varrho} \widetilde{D}_{1 / \varrho} \lambda C_{0}^{*} \widetilde{D}_{1 / \ell}=-\varrho C_{0},
$$

and $\left\|C^{*}(\varrho)\right\| \leqq R \varrho^{-2}$ with

$$
C^{*}(\varrho)=\frac{1}{r_{n} \varrho^{2}} \widetilde{D}_{1 / \varrho} C \widetilde{D}_{1 / \varrho}
$$

by (2), (13), and (9), it follows from (8) nad (6) that $Q^{*}(x)$ is the solution of the following initial value problem:

$$
Q^{* \prime}+A^{T} Q^{*}+Q^{*} A+Q^{*} B_{0} Q^{*}-C_{0}-C^{*}(\varrho)=0, \quad Q^{*}(0)=Q_{0}^{*}(\varrho)
$$

with

$$
Q_{0}^{*}(\varrho)=\frac{1}{r_{n} \varrho} \widetilde{D}_{1 / e} V_{0} U_{0}^{-1} \widetilde{D}_{1 / e} .
$$

Since $\left\|C^{*}(\varrho)\right\| \leqq R \varrho^{-2} \rightarrow 0$, and $\left\|Q_{0}^{*}(\varrho)\right\| \leqq \alpha \varrho^{-1} \rightarrow 0$ as $\varrho \rightarrow \infty$, the results on the continuous dependence of solutions of initial value on parameters and initial values (compare e.g. [2; 22 pp.$]$) imply that $\lim _{\varrho \rightarrow \infty} \sup _{|x| \leqq c}\left\|Q^{*}(x ; \varrho)-Q_{0}(x)\right\|=0$ (in particular $\left\|Q^{*}(x ; \varrho)-Q_{0}(x)\right\| \leqq 1$ for $|x| \leqq c, \varrho \begin{array}{c}\varrho \rightarrow \infty|x| \leqq c \\ \varrho\end{array} K(n, R, \alpha, c)$ and any $\left.c>0\right)$, where $Q_{0}(x)$ is the solution of the initial value problem

$$
Q_{0}^{\prime}+A^{T} Q_{0}+Q_{0} A+Q_{0} B_{0} Q_{0}-C_{0}=0, \quad Q_{0}(0)=0
$$

Note that $Q_{0}(x)$ must exist on $[-c, c]$ for any $c>0$, thus on \mathbb{R}, which is also included in the results mentioned above [2; 22 pp .]. It follows that

$$
\left\|Q^{*}(x ; \varrho)\right\| \leqq 1+\sup _{|x| \leqq c}\left\|Q_{0}(x)\right\|=K_{1}(n, c) \text { for } \varrho \geqq K, \quad|x| \leqq c,
$$

hence $\|\widetilde{Q}(x ; \lambda)\|=\left\|Q^{*}\left(\varrho\left(x-x_{0}\right), \lambda\right)\right\| \leqq K_{1}(n, c)$ for $\varrho \geqq k,\left|x-x_{0}\right| \leqq c / \varrho$, which is our assertion.

Remark. It follows from results on Hermitian systems with constant coefficients (compare e.g. [9; p. 161]) that any Hermitian solution of $Q^{\prime}+A^{T} Q+Q A+$ $+Q B_{0} Q-C_{0}=0$ on $(-\infty, \infty)$ satisfies $G_{2} \leqq Q(x) \leqq G_{1}$ for $x \in \mathbb{R}$. Moreover, the particular solution $Q_{0}(x)$ with $Q_{0}(0)=0$ satisfies $\lim _{x \rightarrow \infty} Q_{0}(x)=G_{1}, \lim _{x \rightarrow-\infty} Q_{0}(x)=$ $=G_{2}$, and the following algebraic equations hold:

$$
A^{T} G_{i}+G_{i} A+G_{i} B_{0} G_{i}-C_{0}=0, \quad i=1,2 .
$$

Of course, these results may be verified directly in our special situation by a rather tedious caclulation.

A direct consequence of Cor. 1 (with $\gamma=1, c=\frac{1}{2}$) and this Prop. 1 (with $c=$ $=\left(\frac{1}{2} \sin (\pi / 2 n)\right)^{-1}$ is the

Corollary 2. Under the assumptions of Proposition 1 there exist positive constants $K=K(n, R, \alpha), K_{1}=K_{1}(n, R)$ such that

$$
\|\widetilde{Q}(x ; \lambda)\| \leqq K_{1} \quad \text { for all } \quad \varrho \geqq K, \quad x \in \mathbb{R} .
$$

4. VARIABLE COEFFICIENTS

In this section we consider the behaviour of $V(x ; \lambda) U^{-1}(x ; \lambda)$ as $\lambda \rightarrow-\infty$ on a compact interval $\left[x_{0}-a, x_{0}+a\right]$. Therefore, we fix $a>0$ and introduce the following further notation:

$$
\begin{gather*}
0<r_{*} \leqq r(x) \leqq r^{*}, \quad 0<r_{n *} \leqq r_{n}(x) \leqq r_{n}^{*} \text { for }\left|x-x_{0}\right| \leqq a \tag{19}\\
\text { with suitable positive constants } r_{*}, \ldots, r_{n}^{*}
\end{gather*}
$$

Observe that these constants exist by (3). Moreover, we need the common modulus of continuity of $r(x)$ and $r_{n}(x)$, namely:

$$
\begin{gather*}
\omega(h)=\max \left\{\left(|r(x)-r(y)|+\left|r_{n}(x)-r_{n}(y)\right|\right):|x-y| \leqq h,\right. \tag{20}\\
\\
\left.\left|x-x_{0}\right| \leqq a, \quad\left|y-x_{0}\right| \leqq a\right\} \text { for } h \leqq 0 .
\end{gather*}
$$

We shall derive estimates of the matrix (compare section 3)

$$
\begin{equation*}
\widetilde{Q}(x ; \lambda)=\frac{1}{r_{n}(x) \varrho(x ; \lambda)} \widetilde{D}_{1 / \varrho(x ; \lambda)} Q(x ; \lambda) \widetilde{D}_{1 / \varrho(x ; \lambda)} \tag{21}
\end{equation*}
$$

 Our main result in this section is

Theorem 3. Suppose that R, α are positive constants such that $\left|r_{v}(x ; \lambda)\right| \leqq$ $\leqq R \varrho_{0}^{2(n-v-1)}, \quad v=0, \ldots, n-1, \quad\left|x-x_{0}\right| \leqq a, \varrho_{0}=\sqrt[2 n]{ }-\lambda \geqq 1$, and $\bar{U}_{0}^{T} V_{0} \geqq$ $\geqq-\alpha \bar{U}_{0}^{T} U_{0}$. Then there exist positive constants K, K_{1} (depending on n, r_{*}, r^{*}, $r_{n *}, r_{n}^{*}, R, \alpha$ resp. $n, r_{*}, r^{*}, r_{n *}, r_{n}^{*}, R$ only) such that the following holds: $Q(x ; \lambda)$ exists for $x_{0}<x \leqq x_{0}+a, \lambda \leqq-K$, and

$$
\left\|\widetilde{Q}(x ; \lambda)-G_{1}\right\| \leqq \omega^{*}\left(\varrho_{0}\right):=K_{1}\left(\varrho_{0}^{-2}+\omega\left(\log \varrho_{0} / \varrho_{0}\right)\right) \text { for all } \lambda \leqq-K
$$

$$
\begin{gathered}
x_{0}+x_{1}(\lambda) \leqq x \leqq x_{0}+a \quad \text { with } \quad x_{1}(\lambda)=c \log \varrho_{0} / \varrho_{0} \\
c=\left(\frac{1}{2} \sin (\pi / 2 n) \min _{\left|x-x_{0}\right| \leqq a} \sqrt[2 n]{ }\left(r(x) / r_{n}(x)\right)\right)^{-1}>0
\end{gathered}
$$

If the inequality above on U_{0}, V_{0} holds with $-V_{0}$ instead of V_{0}, then the assertions hold for $x<x_{0}$ resp. $x \leqq x_{0}-x_{1}(\lambda)\left(x \geqq x_{0}-a\right)$ with G_{2} instead of G_{1}.
(Note that the constants K, K_{1} do not depend on a 'directly', but, of course, in general the quantities $r_{*}, r^{*}, r_{n *}, r_{n}^{*}, R$, and also $\omega(h)$ depened on a, i.e. the interval $\left[x_{0}-a, x_{0}+a\right]$.)

Proof. As in the proof of Theorem 2 we may restrict ourselves to the case $x>x_{0}$, First, we introduce the solution $U_{*}(x), V_{*}(x)$ of the initial value problem:

$$
\begin{gathered}
U_{*}^{\prime}=A U_{*}+B_{*} V_{*}, \quad V_{*}^{\prime}=\left(C_{*}-\lambda C_{0 *}\right) U_{*}-A^{T} V_{*}, \\
U^{*}\left(x_{0}\right)=U_{0}, V_{*}\left(x_{0}\right)=V_{0},
\end{gathered}
$$

where

$$
B_{*}=\frac{1}{r_{n *}} B_{0} \geqq B(x), \quad C_{*}=-R \tilde{D}_{\varrho_{0}}^{2} \leqq C(x), \quad \text { and } \quad C_{0 *}=r_{*} C_{0} \leqq C_{0}^{*}(x)
$$

for $\left|x-x_{0}\right| \leqq a$ by (19) and (2). This initial value problem has constant coefficients, and therefore we obtain the existence of $Q_{*}(x ; \lambda)=V_{*}(x ; \lambda) U_{*}^{-1}(x ; \lambda)$ on $\left(x_{0}, x_{0}+a\right]$ for $\lambda \leqq-K$ from Theorem 2 . Now, the inequalities $B_{*} \geqq B(x)$, $C_{*} \leqq C(x), C_{0 *} \leqq C_{0}^{*}(x)$ and the fact that $U\left(x_{0}\right)=U_{*}\left(x_{0}\right), V\left(x_{0}\right)=V_{*}\left(x_{0}\right)$ imply that $Q(x ; \lambda)$ exists with $Q(x ; \lambda) \geqq Q_{*}(x ; \lambda)$ for $x \in\left(x_{0}, x_{0}+a\right], \lambda \leqq-K$. This follows from [6, Prop. 4 and Theorem 7, which implies $\lim \left(\bar{U}^{T}(x) V_{*}(x) U_{*}^{-1}(x)\right.$. $\left.. U(x)-\bar{U}^{T}(x) V(x)\right)=0$]. Then Cor. 1 (applied to Q_{*}) and $G_{1}>0$ imply that

$$
\begin{equation*}
Q(x ; \lambda) \geqq Q_{*}(x ; \lambda)>0 \quad \text { for } \quad x_{0}+\frac{1}{4} x_{1}(\lambda) \leqq x \leqq x_{0}+a, \quad \lambda \leqq-K . \tag{22}
\end{equation*}
$$

Next, we fix any $x \in\left[x_{0}+x_{1}(\lambda), x_{0}+a\right]$ and introduce the following quantities (depending on x): $x^{*}=x-\frac{3}{4} x_{1}(\lambda) \geqq x_{0}+\frac{1}{4} x_{1}(\lambda)$, and

$$
r^{-}=\min _{\left[x^{*}, x\right]} r(t), \quad r^{+}=\max _{\left[x^{*}, x\right]} r(t), \quad r_{n}^{-}=\min _{\left[x^{*}, x\right]} r_{n}(t), \quad r_{n}^{+}=\max _{\left[x^{*}, x\right]} r_{n}(t),
$$

$\left.\varrho^{-}=\sqrt[2 n]{(}\left(-\lambda r^{-} / r_{n}^{-}\right), \varrho^{+}=\sqrt[2 n]{(}-\lambda r^{+} / r_{n}^{+}\right)$. We consider the solutions $U^{ \pm}(t), V^{ \pm}(t)$ of the initial value problem (with constant coefficients):

$$
\begin{gathered}
U^{ \pm \prime}=A U^{ \pm}+B^{ \pm} V^{ \pm}, \quad V^{ \pm \prime}=\left(C^{ \pm}-\lambda C_{0}^{ \pm}\right) U^{ \pm}-A^{T} V^{ \pm}, \\
U^{ \pm}\left(x^{*}\right)=U\left(x^{*} ; \lambda\right), \quad V^{ \pm}\left(x^{*}\right)=V\left(x^{*} ; \lambda\right),
\end{gathered}
$$

where $B^{ \pm}, C^{ \pm}, C_{0}^{ \pm}$are defined according to (2) with $r^{ \pm}, r_{n}^{ \pm}, r_{v}^{ \pm}= \pm R \varrho_{0}^{2(n-v-1)}$ $(v=0, \ldots, n-1)$ instead of r, r_{n}, r_{v} resp.. Then $B_{*} \geqq B^{-} \geqq B(t) \geqq B^{+}, C_{*} \leqq$ $\leqq C^{-} \leqq C(t) \leqq C^{+}$, and $C_{0 *} \leqq C_{0}^{-} \leqq C_{0}(t) \leqq C_{0}^{+}$on $\left[x^{*}, x\right], \quad Q_{*}\left(x^{*} ; \lambda\right) \leqq$ $\leqq Q^{ \pm}\left(x^{*} ; \lambda\right)=Q^{ \pm}\left(x^{*} ; \lambda\right)$. Hence, we may apply [6; Prop. 4] again, and we get: $Q^{ \pm}(t ; \lambda)=V^{ \pm}(t ; \lambda) U^{ \pm-1}(t ; \lambda)$ exists on $\left[x^{*}, x\right]$ with

$$
\begin{equation*}
Q_{*}(t ; \lambda) \leqq Q^{-}(t ; \lambda) \leqq Q(t ; \lambda) \leqq Q^{+}(t ; \lambda) \text { on }\left[x^{*}, x\right] \text { for } \lambda \leqq-K . \tag{23}
\end{equation*}
$$

Since $Q\left(x^{*} ; \lambda\right)=Q^{ \pm}\left(x^{*} ; \lambda\right)>0$ by (22), Theorem 2 with $\alpha=0$ (and $\left.c=\frac{3}{4}\right)$ can be applied to $Q^{ \pm}(t ; \lambda)$. (Note here, that the initial values $U\left(x^{*} ; \lambda\right), V\left(x^{*} ; \lambda\right)$ depend on λ, of course, but the constants in Theorem 2 do not depend on U_{0}, V_{0} but only on α, which may be 0 here since $\overline{U\left(x^{*} ; \lambda\right)^{T}} V\left(x^{*} ; \lambda\right) \geqq 0$.) Let $\widetilde{Q}^{ \pm}(t ; \lambda)=$ $=\left(1 / r_{n}^{ \pm} \varrho^{ \pm}\right) \widetilde{D}_{1 / \varrho^{ \pm}} Q^{ \pm}(t ; \lambda) \widetilde{D}_{1 / e^{ \pm}}$, then Theorem 2 yields:

$$
\begin{equation*}
\left\|\widetilde{Q}^{ \pm}(t ; \lambda)-G_{1}\right\| \leqq K_{1} \varrho_{0}^{-2} \quad \text { for } \quad x^{*}+x_{1}^{*} \leqq t \leqq x, \quad \lambda \leqq-K \tag{24}
\end{equation*}
$$

with $x_{1}^{*}=\left(\frac{3}{4} \sin (\pi / 2 n)\right)^{-1} \log \varrho^{ \pm} / \varrho^{ \pm}$. Observe that (24) holds for $t=x$, in particular, since $x^{*}+x_{1}^{*} \leqq x$ for $\lambda \leqq-K$, which follows from:

$$
x^{*}+x_{1}^{*}=x-\frac{3}{2}\left(\sin \frac{\pi}{2 n}\right)^{-1} \frac{\log \varrho_{0}}{\varrho_{0}} \frac{1}{c^{*}}+\frac{4}{3}\left(\sin \frac{\pi}{2 n}\right)^{-1} \frac{\log \left(c^{ \pm} \varrho_{0}\right)}{c^{ \pm} \varrho_{0}}
$$

with

$$
c^{*}=\min _{\left|t-x_{0}\right| \leqq a} \sqrt[2 n]{ }\left(r(t) / r_{n}(t)\right) \leqq c^{ \pm}=\sqrt[2 n]{\left(r^{ \pm} / r_{n}^{ \pm}\right) \leqq \sqrt[2 n]{ }\left(r^{*} / r_{n *}\right)}
$$

Now, (23) and (24) for $t=x$ yield for $\lambda \leqq-K$:

$$
\begin{aligned}
\widetilde{Q}(x ; \lambda) \leqq \frac{1}{r_{n} \varrho} & \widetilde{D}_{1 / \varrho} Q^{+}(x ; \lambda) \widetilde{D}_{1 / e}=\frac{r_{n}^{+} \varrho^{+}}{r_{n} \varrho} \widetilde{D}_{e^{+} / \varrho} \widetilde{Q}^{+}(x ; \lambda) \widetilde{D}_{\varrho^{+} / \varrho} \leqq \\
& \leqq \frac{r_{n}^{+} \varrho^{+}}{r_{n} \varrho} \widetilde{D}_{\varrho^{+} / \varrho}\left(G_{1}+K_{1} \varrho_{0}^{-2} I\right) \widetilde{D}_{\varrho^{+} / \varrho}
\end{aligned}
$$

and this is (with another $\left.K_{1}\right) \leqq G_{1}+\omega^{*}\left(\varrho_{0}\right) I$, since $\omega(h) \leqq 2\left(r^{*}+r_{n}^{*}\right)$ by (19), (20) and

$$
\frac{\varrho^{+}}{\varrho}=\frac{\varrho^{+}(x ; \lambda)}{\varrho(x ; \lambda)}={ }^{2 n} /\left(\frac{r^{+}}{r_{n}^{+}}(x) \frac{r_{n}}{r}(x)\right) \leqq 1+K_{1} \log \varrho_{0} / \varrho_{0}, \left.\frac{r_{n}^{+}}{r_{n}} \leqq 1+K_{1} \log \varrho_{0} \right\rvert\, \varrho_{0}
$$

(use that $x-x^{*} \leqq K_{1} \log \varrho_{0} / \varrho_{0}$, and that the modulus of continuity $\omega(h)$ has the obvious properties: $\omega(h) \leqq \omega\left(h^{\prime}\right)$ if $h \leqq h^{\prime}, \omega(n h) \leqq n \omega(h)$ for $n \in \mathbb{N}$, thus, $\omega(h) \leqq$ $\leqq \omega(c h) \leqq(c+1) \omega(h)$ for all $c \geqq 1, h \geqq 0)$.

Similarly, we obtain that $\widetilde{Q}(x ; \lambda) \geqq G_{1}-\omega^{*}\left(\varrho_{0}\right) I$, which completes the proof.
Remark. If we have additionally that $r_{n}(x), r(x) \in C_{1}(\mathbb{R})$, then we obtain (under the assumptions of Theorem 3) the estimate

$$
\left\|\widetilde{Q}(x ; \lambda)-G_{1}\right\| \leqq K_{1} \frac{\log \varrho_{0}}{\varrho_{0}} \text { for all } \lambda \leqq-K, \quad x_{0}+x_{1}(\lambda) \leqq x \leqq x_{0}+a
$$

with $x_{1}(\lambda)$ as in Theorem 3, but where the constant K_{1} may depend on $c_{1}:=\max \left\{\left|r_{n}^{\prime}(x)\right|+\left|r^{\prime}(x)\right|:\left|x-x_{0}\right| \leqq a\right\}<\infty$ also.

Proof of Theorem 1. Fix any $x \neq x_{0}$, choose $a \geqq\left|x-x_{0}\right|$, and choose a constant $\alpha>0$ (which is obviously always possible) such that the assumptions of Theorem 3 hold. Since $x_{1}(\lambda) \rightarrow 0$ as $\lambda \rightarrow-\infty$, we have that $\left|x-x_{0}\right| \geqq x_{1}(\lambda)$ for λ sufficiently small. Moreover, $\lim \omega\left(\log \varrho_{0} / \varrho_{0}\right)=0$ by the continuity of $r_{n}(x)$
and $r(x)$, and therefore the estimate of Theorem 3 implies the assertion of Theorem 1. If U_{0} is regular, the proof above and Cor. 2 yield the following

Corollary 3. Suppose that U_{0} is regular, and that R, α are positive constants such that

$$
\begin{gathered}
\left|r_{v}(x ; \lambda)\right| \leqq R \varrho_{0}^{2(n-v-1)}, \quad v=0, \ldots, n-1, \quad\left|x-x_{0}\right| \leqq a, \quad \varrho_{0} \leqq 1, \\
\\
\left\|V_{0} U_{0}^{-1}\right\| \leqq \alpha .
\end{gathered}
$$

Then there exist positive constants $K\left(n, r_{*}, r^{*}, r_{n *}, r_{n}^{*}, R, \alpha\right)$ and $K_{1}\left(n, r_{*}, r^{*}\right.$, $\left.r_{n *}, r_{n}^{*}, R\right)$ such that $\widetilde{Q}(x ; \lambda)$ exists on $\left[x_{0}-a, x_{0}+a\right]$ with $\|\widetilde{Q}(x ; \lambda)\| \leqq K_{1}$ for $x \in\left[x_{0}-a, x_{0}+a\right]$, if $\lambda \leqq-K$.

5. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THE CORRESPONDING SCALAR EQUATION

In this section we use the same notation as in the previous section, and we study the asymptotic behaviour of the particular conjoined bases $U_{i}, V_{i}, i=1,2$ of (1) with the initial conditions

$$
\begin{equation*}
U_{1}\left(x_{0}\right)=V_{2}\left(x_{0}\right)=0, \quad V_{1}\left(x_{0}\right)=-U_{2}\left(x_{0}\right)=I . \tag{25}
\end{equation*}
$$

This leads to asymptotic properties of any solution (u,v) of (1) resp. (4) with fixed initial conditions at x_{0}. First, we derive from Theorem 3 the

Corollary 4. With the same assumptions and notation as in Theorem 3 the following inequalities hold:

$$
\begin{aligned}
& \left\|\frac{1}{\varrho\left(x_{0} ; \lambda\right) r_{n}\left(x_{0}\right)} \tilde{D}_{1 / \varrho\left(x_{0} ; \lambda\right)} U_{1}^{-1}(x ; \lambda) U_{2}(x ; \lambda) \widetilde{D}_{1 / \varrho\left(x_{0} ; \lambda\right)}-G\right\| \leqq K_{1} \omega^{*}\left(\varrho_{0}\right) ; \\
& \left\|\frac{1}{\varrho\left(x_{0} ; \lambda\right) r_{n}\left(x_{0}\right)} \widetilde{D}_{1 / \ell\left(x_{0} ; \lambda\right)} V_{1}^{-1}(x ; \lambda) V_{2}(x ; \lambda) \widetilde{D}_{1 / \varrho\left(x_{0} ; \lambda\right)}-G\right\| \leqq K_{1} \omega^{*}\left(\varrho_{0}\right)
\end{aligned}
$$

for all $\lambda \leqq-K$ and $x_{1}(\lambda) \leqq\left|x-x_{0}\right| \leqq a$, where $G=G_{2}$ for $x>x_{0}$ and $G=G_{1}$ for $x<x_{0}$. Moreover,

$$
\left\|U_{2}^{-1}(x ; \lambda) U_{1}(x ; \lambda)\right\| \leqq K_{1} \varrho_{0}^{-1} \quad \text { for all } \quad 0 \leqq\left|x-x_{0}\right| \leqq a, \quad \lambda \leqq-K
$$

(Observe that the asymptotic behaviour does not depend on x, e.g. $\varrho(x ; \lambda)$, but only on x_{0} in contrast to Theorem 3 and (21).)

Proof. For any fixed $x \in\left[x_{0}-a, x_{0}+a\right]$ consider the particular conjoined bases $\tilde{U}_{i}(t)=\tilde{U}_{i}(t ; \lambda, x), \tilde{V}_{i}(t)=\widetilde{V}_{i}(t ; \lambda, x), i=1,2$ of (1) with the initial conditions $\tilde{U}_{1}(x)=\tilde{V}_{2}(x)=0, \tilde{U}_{2}(x)=\tilde{V}_{1}(x)=I$. Then, it follows from $\left[6 ;\left(7^{\prime}\right)\right.$ and the proof of Cor. 13] and (25) that

$$
\begin{gathered}
\widetilde{Q}_{1}\left(x_{0}\right)=U_{1}^{-1}(x) U_{2}(x) \text { and } \widetilde{Q}_{2}\left(x_{0}\right)=V_{1}^{-1}(x) V_{2}(x) \text { hold for } \\
\widetilde{Q}_{i}(t)=\tilde{V}_{i}(t) \tilde{U}_{i}^{-1}(t) .
\end{gathered}
$$

Hence, Theorem 3 applied to \widetilde{Q}_{i} (with x instead of x_{0}) yields the first two inequalities. The additional inequality follows from these inequalities and from the fact that

$$
U_{2}^{-1}\left(x_{0}\right) U_{1}\left(x_{0}\right)=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} x} U_{2}^{-1}(x) U_{1}(x) \leqq 0
$$

for all x (by [6; Prop. 3]).
Remark. For any solution $y=y(x ; \lambda)$ of (4) with fixed initial conditions $u\left(x_{0}\right)=$ $=u_{0}, v\left(x_{0}\right)=v_{0}$ we have by (25) that

$$
u(x)=U_{2}(x)\left(-u_{0}+U_{2}^{-1}(x) U_{1}(x) v_{0}\right), v(x)=V_{2}(x)\left(-u_{0}+V_{2}^{-1}(x) V_{1}(x) v_{0}\right) .
$$

Hence, in view of Theorem 3 and this Cor. 4 it suffices to discuss the asymptotic bebaviour of $U_{2}(x ; \lambda)$ if one wants to analyze $y(x ; \lambda)$. We shall restrict this discussion to the case $x \geqq x_{0}$.

First, we need some identities, which follow from (2), (10), (11), and (12) by a rather tedious calculation

$$
\begin{align*}
& \text { culation } \tag{26}\\
& \Phi_{11}^{0} \operatorname{diag}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right) \Phi_{11}^{0-1}=A+B_{0} G_{1}=\left(\begin{array}{llll}
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \cdots & . \\
0 & \ldots & 1 \\
\gamma_{0} & \ldots & \gamma_{n-1}
\end{array}\right)
\end{align*}
$$

and this Frobenius matrix has the characteristic polynomial $P_{0}(z)=z^{n}-\sum_{v=0}^{n-1} \gamma_{v} z^{v}=$ $=\left(z-\varepsilon_{0}\right) \ldots\left(z-\varepsilon_{n-1}\right)$, so that e.g.

$$
\begin{equation*}
\gamma_{n-1}=\sum_{v=0}^{n-1} \varepsilon_{v}=\frac{1}{\sin (\pi / 2 n)}, \quad \gamma_{k}=(-1)^{n-k-1} \prod_{v=0}^{n-1} \frac{\cos (v \pi / 2 n)}{\sin ((v+1) \pi / 2 n)}, \tag{27}
\end{equation*}
$$

and

$$
\begin{gather*}
0<\gamma_{*}:=\sin (\pi / 2 n)=\min _{k=0, \ldots, n-1} \operatorname{Re}\left(\varepsilon_{k}\right) \leqq \gamma_{n-1} / n \leqq \tag{28}\\
\leqq \max _{k=0, \ldots, n-1} \operatorname{Re}\left(\varepsilon_{k}\right)=: \gamma^{*}=\sin \left(\pi\left(\frac{1}{2 n}+\frac{[(n-1) / 2]}{n}\right)\right) .
\end{gather*}
$$

Moreover, these identities, (25) (use also the notation (9), (21)) imply that $U_{2}=$ $=U_{2}(x ; \lambda)$ satisfies the initial value problem

$$
\begin{equation*}
U_{2}^{\prime}=\left(A+B Q_{2}\right) U_{2}, \quad U_{2}\left(x_{0}\right)=-I, \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
A+B Q_{2}=\varrho \tilde{D}_{1 / \varrho}\left(A+B_{0} G_{1}+\Delta_{1}\right) \tilde{D}_{\varrho}, \quad \Delta_{1}=B_{0}\left(\widetilde{Q}_{2}(x ; \lambda)-G_{1}\right) . \tag{30}
\end{equation*}
$$

Proposition 3. With the same assumptions and notation as in Theorem 3 and Cor. 3 (but with $U_{0}=-I, V_{0}=0, \alpha=0$) we have

$$
\begin{aligned}
\operatorname{det} U_{2}(x ; \lambda) & =(-1)^{n} \exp \left\{\varrho_{0} \gamma_{n-1} \int_{x_{0}}^{x} \delta(t) \mathrm{d} t\right\} \alpha(x ; \lambda) \quad \text { for } \\
& x_{0} \leqq x \leqq x_{0}+a, \quad \lambda \leqq-K
\end{aligned}
$$

where

$$
1 / \beta(x ; \lambda) \leqq \alpha(x ; \lambda) \leqq \beta(x ; \lambda):=\exp \left\{\varrho_{0} \int_{x_{0}}^{x} \varepsilon(t ; \lambda) \mathrm{d} t\right\}
$$

$$
\begin{gathered}
\varepsilon(t ; \lambda) \equiv K_{1} \quad \text { for } \quad x_{0} \leqq t \leqq x_{1}(\lambda) \\
\varepsilon(t ; \lambda) \equiv K_{1} \omega^{*}\left(\varrho_{0}\right) \quad \text { for } \quad x_{1}(\lambda) \leqq t \leqq x_{0}+a .
\end{gathered}
$$

Proof. By Theorem 3, Cor. 3, and (30) we have $\left\|\Delta_{1}(t ; \lambda)\right\| \leqq \varepsilon(t ; \lambda)$. Hence, we obtain from (26), (29), and (30) that

$$
\begin{aligned}
& \operatorname{det} U_{2}(x ; \lambda)=(-1)^{n} \exp \left\{\int_{x_{0}}^{x} \operatorname{trace}\left(A+B Q_{2}\right)(t ; \lambda) \mathrm{d} t\right\}= \\
& \quad=(-1)^{n} \exp \left\{\varrho_{0} \gamma_{n-1} \int_{x_{0}}^{x} \delta(t) \mathrm{d} t\right\} \exp \left\{\int_{x_{0}}^{x} \varepsilon^{*}(t ; \lambda) \mathrm{d} t\right\}
\end{aligned}
$$

where

$$
\varepsilon^{*}(t ; \lambda)=\operatorname{trace}\left(\varrho \widetilde{D}_{1 / e} \Delta_{1} \tilde{D}_{e}\right), \text { thus }\left|\varepsilon^{*}(t ; \lambda)\right| \leqq \varrho_{0} \delta(t)\left\|\Delta_{1}(t ; \lambda)\right\|,
$$

and the factor $\delta(t)$ can be included in the constant K_{1}.
Remark. If we have additionally $r_{n}, r \in C_{1}(\mathbb{R})$, then

$$
\varrho_{0}^{-K_{1}\left(1+x-x_{0}\right)} \leqq \beta(x ; \lambda) \leqq \varrho_{0}^{K_{1}\left(1+x-x_{0}\right)} \quad \text { for } \quad x_{0} \leqq x \leqq x_{0}+a, \quad \lambda \leqq-K,
$$

where K_{1} may also depend on $\max \left\{\left|r^{\prime}(x)\right|+\left|r_{n}^{\prime}(x)\right|:\left|x-x_{0}\right| \leqq a\right\}$. Observe also, that Prop. 3 yields lower bounds for $\left\|U_{2}(x ; \lambda)\right\|$ and $\left\|U_{2}^{-1}(x ; \lambda)\right\|$, since for any matrix $H=\left(h_{1}, \ldots, h_{n}\right), h_{i} \in \mathbb{C}^{n}$ we have by Hadamard's inequality:

$$
\|H\| \geqq \max _{i=1, \ldots, n}\left\|h_{i}\right\| \geqq|\operatorname{det} H|^{1 / n}
$$

Finally, we derive upper bounds for $\left\|U_{2}(x ; \lambda)\right\|,\left\|U_{2}^{-1}(x ; \lambda)\right\|$, namely:
Proposition 4. With the assumptions of Prop. 3 and with $r_{n}, r \in C_{1}(\mathbb{R})$ there exist constants K, K_{1} (depending on $n, r_{*}, r^{*} . r_{n *}, r_{n}^{*}, R$ as in Prop. 3 and K_{1} depending also on $\left.\max \left\{\left|r_{n}^{\prime}(x)\right|+\left|r^{\prime}(x)\right|:\left|x-x_{0}\right| \leqq a\right\}\right)$, such that

$$
\left\|U_{2}(x ; \lambda)\right\| \leqq \varrho_{0}^{K_{1}\left(1+x-x_{0}\right)} \exp \left\{\varrho_{0} \gamma^{*} \int_{x_{0}}^{x} \delta(t) \mathrm{d} t\right\}
$$

and

$$
\begin{gathered}
\left\|U_{2}^{-1}(x ; \lambda)\right\| \leqq \varrho_{0}^{K_{1}\left(1+x-x_{0}\right)} \exp \left\{-\varrho_{0} \gamma_{*} \int_{x_{0}}^{x} \delta(t) \mathrm{d} t\right\} \text { for } \\
x_{0} \leqq x \leqq x_{0}+a, \quad \lambda \leqq-K .
\end{gathered}
$$

Proof. Put $\tilde{U}_{2}:=\Phi_{11}^{0-1} \tilde{D}_{e} U_{2}$, then by (26), (30) $\tilde{U}_{2}^{\prime}=\varrho\left(\operatorname{diag}\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)+\right.$ $\left.+\Delta_{2}\right) \tilde{U}_{2}$ with $\Delta_{2}=\Phi_{11}^{0-1} \Delta_{1} \Phi_{11}^{0}+\widetilde{\Delta_{2}}$ where

$$
\tilde{J}_{2}=\frac{1}{\varrho(x ; \lambda)} \frac{\delta^{\prime}(x)}{\delta(x)} \Phi_{11}^{0-1} \operatorname{diag}((n-1), \ldots, 1,0) \Phi_{11}^{0}
$$

Hence, by Theorem 3 and its remark we obtain that $\left\|\Delta_{2}(x ; \lambda)\right\| \leqq \tilde{\varepsilon}(x ; \lambda)$ with

$$
\begin{gathered}
\tilde{\varepsilon}(x ; \lambda) \equiv K_{1} \text { for } \quad x_{0} \leqq x \leqq x_{1}(\lambda) \text { and } \equiv K_{1} \log \varrho_{0} / \varrho_{0} \text { for } \\
\\
x_{1}(\lambda) \leqq x \leqq x_{0}+a .
\end{gathered}
$$

Now the matrix $P:=\overline{\widetilde{U}}_{2}^{T} \widetilde{U}_{2}$ is positive definite and satisfies

$$
P^{\prime}=\varrho \bar{U}_{2}^{T}\left(2 \operatorname{diag}\left(\operatorname{Re} \varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)+\Delta_{2}+\bar{\Delta}_{2}^{T}\right) \tilde{U}_{2}
$$

Hence by $(28), P^{\prime} \leqq \varrho\left(2 \gamma^{*}+\tilde{\varepsilon}\right) P$ and $P^{\prime} \geqq \varrho\left(2 \gamma_{*}-\tilde{\varepsilon}\right) P$, which yields our assertions.

References

[1] Birkhoff, G. D.: On the asymptotic character of the solutions of certain linear differential equations containing a parameter. Trans. Amer. Math. Soc. 9 (1908), 219-231.
[2] Coddington, E. A. and Levinson, N.: Theory of ordinary differential equations. Mc GrawHill 1955.
[3] Eastham, M. S. P. and Grundniewicz, C. G. M.: Asymptotic theory and deficiency indices for higher-order self-adjoint differential equations. J. London Math. Soc. (2), 24 (1981), 255-271.
[4] Eberhard, W.: Über das asymptotische Verhalten von Lösungen der linearen Differentialgleichung $M[y]=\lambda N[y]$ für große Werte von $|\lambda|$. Math. Z. 119 (1971), 160-170.
[5] Kratz, W.: A substitute of l'Hospital's rule for matrices. To appear in the Proc. Amer. Math. Soc.
[6] Kratz, W. and Peyerimhoff, A.: A treatment of Sturm-Liouville eigenvalue problems via Picone's identity. Analysis 5 (1985), 97-152.
[7] Neumark, M. A.: Lineare Differentialoperatoren. Akademie-Verlag 1967.
[8] Reid, W. T.: Ordinary differential equations. Wiley 1971.
[9] Reid, W. T.: Riccati differential equations. Academic Press 1972.
[10] Swanson, C. A.: Picone's identity. Rend. Mat. (6) 8 (1975), 373-397.
[11] Wilkinson, J. H.: The algebraic eigenvalue problem. Clarendon Press 1965.
[12] Wolter, M.: Über die Entwicklungen nach Eigenfunktionen N-irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen. Math. Z. 178 (1981), 99-113.

Author's address: Universität Ulm, Abteilung Mathematik V, Oberer Eselsberg, D-7900 Ulm, F. R. Germany.

