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A SUBLATTICE OF THE CONGRUENCE LATTICE

IvaN CHAIDA, Prerov

(Received May 22, 1986)

The problem under which conditions the set of all principal congruences on an
algebra A is closed under joins and meets in Con 4 was investigated separately by
a few authors. First, K. A. Baker [1] studied the so called Principal Intersection
Property (briefly PIP), i.e. the property that for any ay, a,, by, b, € A the con-
gruence

O(ay, by) A O(ay, b,)

is principal, i.e. it is equal to ©(a, b) for some a, b of 4.
P. Zlatos [5] studied conditions under which the congruence

O(ay, by) v 6(ay, by)

is principal for any ay, a,, by, b, of A4; in such a case, A4 is said to have Principal
Compact Congruences, briefly PCC.

Hence, if an algebra A has both PIP and PCC, the set of all principal congruences
forms a sublattice of Con A.

Recall that a variety ¥ is congruence distributive if Con A is distributive for each
A€V . ¥V is congruence permutable if © . = @ . O for each ©, € Con A4 for
any A€ ¥". ¥ is arithmetic if it is both congruence distributive and congruence
permutable.

J. Duda [4] proved some remarkable results in solving the above problem:

Proposition 1 (Theorem 2 in [4]). In a congruence permutable variety ¥, the
following conditions are equivalent:

(1) ¥ has PCC;

(2) there exists a 6-ary polynomial s such that s(x, u, x, y, u, v) = s(y, v, x, y, u, v)
implies x = y and u = v.

An algebra (H; v, A, —,0, 1) with three binary and two nullary operations is
a Heyting algebra if it satisfies

(a) (H; v, A,0,1) is a bounded distributive lattice,

(b) x—>x=1,
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© (x=>nNAay=p,xA(x->y)=xnry,
@x->@(Arz)=(x->y)A(x>z)and(x vy)>z=(x>2)A (y-2).

Example 1. Any variety of Heyting algebras has PCC.
It is well known that such a variety is congruence permutable and we can put
s(xy, Xa, X3, X4, X5, Xg) = (X1 = X3) A (X3 2 x;) A (x5 2 Xs5) A (x5 > x;) .
Proposition 2. (Theorem 4 in [4]). In an arithmetic variety V", the following con-
ditions are equivalent:

(1) 7 has PIP;

(2) there exists a 5-ary polynomial q such that g(x, x, y,u, v) = g(y, x, y, u, v)
if and only if x = y or u = v holds on any subdirectly irreducible member
of V.

Example 2. Any variety of Heyting algebras has PIP.

It is known that such a variety is arithmetic and we can put

q(x1, X3, X3, X4 Xs5) = [(x1 = x3) A (x3 2 x1)] v [(x4 = x5) A (x5 = x,)] .

Clearly, gq(x, x, y, u, v) = q(y, x, y, u, v) on a subdirectly irreducible Heyting algebra
is satisfied if and only if

[xoy)A(-ox)] v e-v)a@-u)]=1, ie
(x=>A(p->x)=1 or (u->v)Ar(v->u)=1,
which is equivalent to x = y or u = v.
Example 3. Any discriminator variety ¥ satisfies PCC (see Example 2
in [4]). ¥ is clearly arithmetic and we can put s(x;, X;, X3, X4, X5, Xg) =

= t(xy, t(x3, Xy, X4), X), Where f(x, y, z) is the discriminator on ¥". Moreover,
¥ satisfies PIP (Example 3 in [4]), since we can put

Q(xl, X2, X3, X4, xs) = t(t(xla X3, x4), t(xn X3, Xs), Xs) .

Corollary 1. Let ¥~ be a discriminator variety and A € ¥". The set of all principal
congruences on A forms a sublattice of Con A.

Examples 1 and 2 imply one result also for an algebra of the lattice type:

Corollary 2. Let H be a Heyting algebra. The set of all principal congruences
on H forms a sublattice of Con H.

Since Heyting algebras are special cases of distributive lattices, there is a question
if Corollary 2 can be formulated also for other lattices. The disadvantage is that
Propositions 1 and 2 require the congruence permutability which is not satisfied in
lattice varieties. In the sequel we are going to show that Corollary 2 can be “localized”
and this local version can be proved also for some other lattices.
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The starting points is K. Baker’s result:

Proposition 3 (Theorems 2.8, 2.9 in [1]). In a congruence distributive variety ",

the following conditions are equivalent:

(1) ¥ has PIP;

(2) there exist 4-ary polynomials do,d, such that ©(ay, by) A O(ay, b,) =
= O(do(ay, by, ay, by), dy(ay, by, a,, by)) holds for each ay, a,, by, b,e
eAe?,;

(3) there exist 4-ary polynomials dy, dy such that dyo(x, y,u,v) = d,(x, y, u, v)
if and only if x = y or u = v holds on any subdirectly irreducible member
of V.

Now, we can define the local property:

Definition. Let ¥~ be a variety with a nullary operation 0. ¥~ satisfies 0-PIP if for
each a,, a, € A€ ¥ there exists a € 4 such that

6(ay,0) A O(a,,0) = O(a,0).
" satisfies 0-PCC if for each a,, a, € A € ¥ there exists b € 4 such that
O(ay,0) v O(a,,0) = 6(b,0).

Varieties having 0-PCC were characterized in [3]. For 0-PIP, we can simplify
Proposition 3 by putting d; = 0 and assuming b, = 0 = b,, i.e., the second and
fourth variables in d, are equal to 0. Hence, we obtain only one binary polynomial:

Lemma. Let ¥~ be a congruence distributive variety with a nullary operation 0.
The following conditions are equivalent-
(1) ¥ has 0-PIP;
(2) there exists a binary polynomial d(x,y) such that ©(a,,0) A O(a,,0) =
= O(d(ay, a,), 0) for each ay,a,e AeV;
(3) there exists a binary polynomial d(x, y) such that d(x, y) = 0 if and only if
x =0 or y =0 holds on any subdirectly irreducible member of ¥ .
The proof is a word-for-word analogue of that of K. A. Baker [1], and hence
omitted.

Theorem 1. Let D be a distributive lattice with the least element O (or the greatest
element 1). The set of all principal congruences of the form O(x,0) (or ©(x, 1))
forms a sublattice of Con D.

Proof. Let ¥~ be a variety of all distributive lattices with the least element O.
By Theorem 5 in [3], 7" has 0-PCC. It is well known that ¥ is congruence distributive.
A distributive lattice is subdirectly irreducible if and only if it is either one element
or a two element chain. Thus the polynomial d(x, y) = x A y satisfies (3) of Lemma,
i.e. 77 has 0-PIP. For a variety of all distributive lattices with 1, the proof is dual.

An algebra A4 with a nullary operation 0 is weakly regular (see e.g.[3]) if each
two congruences @, @ € Con A coincide whenever [0], = [0]o.
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Theorem 2. Let D be a weakly regular distributive lattice with the least element 0.
The set of all principal congruences of D forms a sublattice of Con D.

Proof. By Theorem 1 in [2], D is weakly regular if and only if for each a, b of D
there exists ¢ € D such that ©(a, b) = O(c, 0). Hence, the set of all principal con-
gruences in D coincides with the set of all principal congruences of the form 6(x, 0).
By Theorem 1, we obtain the assertion.
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