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SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS 

VALTER ŠEDA, Bratislava 

(Received July 17, 1987) 

INTRODUCTION 

Most ofthe fixed point theorems have been derived in a topological space provided 
with one topology. Usually either the strong or the weak topology has been used. 
M. Švec in [21], V. M. Sehgal and S. P. Singh in [19] and A. Haščák in [9] worked 
with two or even three topologies although they did not stress this fact. Here we shall 
derive fixed point theorems with two or more topologies. The advantage ofthe method 
developed consists in dealing with sequences rather than with nets. The results in the 
paper extend theorems from [21], [9], [17] and [19] to multifunctions acting in 
metrizable locally convex spaces, and a surjectivity theorem proved by G. Conti 
and P. Nistri in [3]. The results are also closely related to those of J. Himmelberg 
in [10], S. Reich in [14] and F. E. Browder in [ l ] . 

1. PRELIMINARIES 

First we introduce the notation and give the results which will be needed in the 
sequel. By a locally convex space X we shall always understand a locally convex 
Hausdorff topological vector space. 2X will denote the family of all nonempty subsets 
of the space X. 

The following definitions are taken from [20] and [5]. If X is a nonempty subset 
of a locally convex space X, then the multifunction F: X ~» 2X will be said to be 
upper semicontinuous in X, u. sc. for short, iff F is u. sc. at each point x eK. The 
last statement means that for an arbitrary neighbourhood V of the set-image F(x) 
there exists such a neighbourhood U of the point x that F(U(x) n X) c V, where 
F(U(x) n X) = U F(z). 

zeU(x)nK 
F will be said to be sequentially upper semicompact in K, s. u. sco. for short, 

iff F is s. u. sco. at each point x e X. This means that the assumptions xn e X, xn ~> 
^ x є X as n ~> oo, yn e F(xn) imply that there exists a subsequence {уПк} of the se­
quence {yn}, convergent to some у є F(x). 

F will be said to be sequentially lower semicontinuous in X, s. 1. sc. for short, 
iff F is s. 1. sc. at each point xeK. This means that the assumptions {xn} <= X, 
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xn ~^ xeK as n -> oo, yeF(x) imply that there exists a sequence {yn} such that 
yn^yas n ~> oo, yneF(xn). 

The relation between sequentially upper semicompactness and upper semicontinuity 
is given by the following lemma. 

Lemma 1 ([18], pp. 1126—1127). Let X be a metrizable locally convex space, 
let 0 Ф K a X be a set and F: K ^ 2X a multifunction. Then F is s. u. sco. in K 
iffF is u. sc. in K and the set F{x) is compactfor each x e K. 

Compactness of the closed convex hull cl co (K) of a compact set is ensured by the 
Krejn theorem. 

Lemma 2 ( [ l3] , p. 241). IfK is a compact set of a quasicomplete locally convex 
space, then the closed convex hull cl co (K) ofK is compact. 

We recall that a topological vector space is quasi-complete if each bounded, 
closed subset ofthat space is complete ([15], p. 41). Since each Cauchy sequence is 
bounded, a quasi-complete metrizable topological vector space is complete. 

We shall use the Himmelberg fixed point theorem ([10], p. 205) which we denote 
as Lemma 3. Here we need the foilowing notation. A subset К ф 0 of a locally 
convex space X is said to be almost convex if for any neighbourhood U of 0 and for 
any finite set {w l 5 . . . , wn} ofpoints oîK there exist z l 5 . . . , zn є K such that (zf — wř) є 
є U for all і = 1 , . . . , n, and the convex hull co {zl9 ..., zn} c K. 

Lemma 3. Let Lbe a nonvoid convex compact subset of a locally convex space X, 
and let G: L^> 2L be an u. sc. multifunction such that G(x) is closedfor all x є L 
and convexfor all x in some dense almost convex subset K ofL. Then G has afixed 
point in L, i.e., there is a u є Lsuch that u є G(u). 

Another important lemma is the Ky Fan Intersection Lemma. 

Lemma 4 ([8], pp. 189-190, [11], p. 354). Let К ф 0 be a compact convex set 
in a real HausdorfT topological vector space X, or let К Ф 0 be a compact set in 
a real quasi-complete locally convex space X. Let F:K ^ 2K be a multifunction 
such that (i) F(x) is closed for each x e K, (ii) for any finite set A = {x1? x2,..., xn] a 

n 

c X, the convex hull co (À) of A is contained in (J F(x t). Then П F(x) + 0-
i= 1 xeK 

2. FIXED POINT THEOREMS 

First we will give a new proof of the Himmelberg fixed point theorem (Theorem 2 
in [10], p. 206). In the original proof of this theorem there is a gap, since an u. sc. 
multifunction acting in a locally convex space X need not be u. sc. in the comple­
tion X of that space. We recall that if F: X ~» 2Y is a multifunction, X and Y are 
Hausdorff topological spaces, Y is a compact space and each value of F is closed, 
then F is u. ac. iff F has a closed graph, i. e., F is a closed subset of X x Y(see e. g. 
[10], p. 205). 
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Let (X,x) be a locally convex space. Then by Theorem 1.5 and Theorem 4.1 
in [16], p. 29 and p. 66, respectively, there exists a complete locally convex space X 
containing X as a dense subspace. When {Va: a є À] is the base of the closed, convex, 
balanced and absorbing neighbourhoods ofOin X and qa is the Minkowski functicnal 
of Va for each a є A, then the seminorms {ga: a є A} have a unique continuous exten­
sion qa to X and the topology f of X is determined by the family {qa: a є A}. This 
implies the following statements: 

1. The topology in X induced by f coincides with the original topology т, i.e. 
(X , t ) = (X,T). 

2. If (Z, т) is metrizable, then (X, f) is metrizable, too, and thus it is a Fréchet 
space. 

3. If K is a compact set in (X, т), then it is compact in the completion (X, f) of 
the space (Z, т). 

4. If i£ is closed in (Z, т), then it need not be closed in (X, f). For example, if the 
whole space (X, т) is not complete, then it is not closed in (X, f), since the f-closure 
of X is X. (The f-closure means the closure with respect to f-topology. Similarly 
the T-compactness will mean the compactness with respect to т-topology). 

Lemma 5. Let (X, т) be a locally convex space, and let (X, f) be its completion. 
Let K be a nonvoid, convex and x-closed subset of X. Let F: K ~> 2K be an u. sc. 
multifunction in the topology x such that F(x) is a convex and x-closed subset ofK 
for each x e K and cl F(K)X (the x-closure) is x-compact. Then there exists a multi­
function F: clK? —> 2cU{K)r which is u. sc. in the topology f, F(x) = F(x)for each 
x є K and F(x) is T-closedfor each x є clX^. 

Proof. By the assumptions on F, F is a т x т-closed subset of K x clF(K)T. 
г x T denotes the product topology in the cartesian product X x X. The topology 
f x f has a similar meaning. Let F be the f x f-closure of F, i.e. F = c l F î x ï . 
Then F a cl(K x clF(K)xyxXÏ = c lX , x c\(c\F(K)x)~r = clKx x clF(X)T, since 
cl F(K)X is compact in both т and f topologies. Hence for any net xa є K converging 
to an x e cl Kx and any ya e F(xa) there exists a subnet yaß which converges to an 
element у є F(x). Thus F: cl Kx ^> 2ciFiK)r and F is u.sc. in the topology f. Further, 
(x,y)eF iff there is a net ( x a , y a ) e F such that xa converges to x j , e F ( x j 
and yaconverges to y(both in the topology f).Hence,if xeK, then F(x)=>clF(x)T = 
= F(x), since F(x) is а т-closed subset of а т-compact set cl F(K)X, and thus F(x) is 
also т-compact as well as f-compact which gives that F(x) is a f-closed set. If у ф F(x), 
then by Theorem 7 in [12], p. 190, there would exist disjoint neighbourhoods U(F(x)) 
and U(y) of the set F(x) and of the point y, respectively. As F is u. sc. at the point x, 
all values ya є F(xa) for all xa sufficiently close to x lie in U(F(x)) and not in U(y). 
Thus у ф F(x) and hence F(x) = F(x) for each x є K. Finally, it follows from the 
f x f-closedness of F that the set F(x) is f-closed for each x є cl K^. 

Using this lemma we prove the following Himmelberg theorem. 
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Theorem 1 (See [10], p. 206). Let K be a nonvoid, convex and closed subset of 
a locally convex space X. Let F : K ~* 2K be an u. sc. multifunction such that F(x) 
is closed and convexfor all x e K, and cl F(K) is compact. Then F has afixed point. 

Proof. Denote by T the topology of the locally convex space X and let (X, f) be 
the completion of the space {X, т). By Lemma 5, there exists an u. sc. extension F 
of the multifunction F which is defined in clK f.Put L = cl co^(cl F(K)^). Here in the 
middle term both closures are taken with respect to the topology f. By Lemma 2, 
L is f-compact and L c cl Kb Therefore 

F{L) c F(cl Кщ) c= cl coc(cl F(K) t) - L c= cl K?. 

Thus we see that all assumptions of Lemma 3 are fulfilled with G = F and with X 
instead of the space X. By this lemma, F has a fixed point u є L. But u є F(u) c 
c cl F(K)T c X, which gives that u e K and u є F(u). 

Corollary 1 (The Reich fixed point theorem, [14], p. 193). Let K be a closed 
convex subset with nonempty interior of a locally convex space X. Let F: K ~> 2X 

be an u. sc. multifunction such that F(x) is closed and convexfor all xeK, and 
F(K) is compact. Let F satisfy the Leray-Schauder condition on K: 

There is a point w in the interior of K such that 
( L - S ) / o r every x e dK (the boundary ofK) and every y e F(x), 

y — w ф m(x — w) for all m > 1 . 

Then F has afixed point. 
An equivalent formulation of the (L — S) condition is: 

( L - S ) ' If m(x — w) e F(x) — w for some x є дК, then m g 1. 
The next theorem extends a result by H. Schaefier in [17] dealing with the method 

ofa priori estimate in the Leray-Schauder theory. 

Theorem 2. Let X be a locally convex space, let F:X ^> Iх be an u. sc. multi­
function such that F(x) is closed and convexfor all x e X and there exists a closed, 
convex, balanced and absorbing neighbourhood U of0 with the propertythat the 
sets cl F(nU) are compactfor all natural n. 

Then eitherfor any X e <0, 1) there exists an x such that 

(1) xeXF(x), 

or the set {x eX: x e X F(x), 0 < X < 1} is unbounded. 
Proof. Denote by p the Minkowski functional of the set U. Since 0 is the inner 

point of U and U is closed, we have that p is a continuous seminorm and L̂  = {x e X: 
p(x) ^ 1} (Theorem 3.41-C in [22], p. 137). Clearly 0 is the unique solution of (l) 
for X = 0. If for a X0 e (0, 1> there is no solution of (1) for X = X0, we consider the 
u. sc. multifunction G which is defined by G(x) = X0 F(x) for all x є X and we shall 
show that for any natural n there exists a yn є pin F(jn) with 0 < ptn < 1 and p(yn) = 
= n. This will complete the proof of the theorem. 

Let n be a natural number. Define a continuous retraction rn: X -* nU by rn(x) = x 
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for all xenU and rn(x) = n x|p(x) for all x such that p(x) > n. Consider the com­
position Hn = G o rn. Then Hn is u. sc. and satisfies all assumptions of Theorem 1 
for K = X. By this theorem Hn has a fixed point xn in X, i.e. xn є Hn(xn) = 
= 0[r„(x„)] = A0 F[rn(x„)]. The case p(x„) ^ и cannot occur, otherwise we would 
have xn e A0 F(xn) which contradicts our assumption. Hence p(x,i) > n and thus 
rn(xn)p(xn)lnEÀ0. F(rn(xn)). This gives that ynep,nF(yn) with yn = rn(x„), ^n = 
= л A0/p(*n) < 1 and p(yn) = n. 

Now we will give a condition under which the multifunction I — jF is onto, where / 
is the identity on X. This means that for each у є X there exists a solution x of the 
inclusion y e x — F(x). This inclusion is equivalent to the inclusion 

(2) x e F(x) + y . 

Let F: X ~> Iх. Similarly as in [3], we say that a real number p, is an eigenvalue 
of F if there exists an x є X, x Ф 0, such that sx є F(x) for some s e R and 

ß = sup {s e R: sx e F(x)} . 

Then x is said to be an eigenvector of F belonging to д. Hence if there is an x ф 0 
such that sx є F(x), then either s ^ jx < oo or there is a sequence {sJ ^ oo such that 
snx e F(x). The latter case cannot occur if F(x) is a bounded set. 

Let p be a continuous seminorm in the locally convex space X and let r > 0. 
Consider the extended real number 

bp(r, F) = sup {fjL ^ 0: jU is an eigenvalue of F with an eigenvector x such that 
p(x) = r} if there exists an eigenvector with this property, and 

bp(r, F) = 0 otherwise. 
For any y e X we define 
(F),,o. = inf{b,(r ,F) : r > 0 } ; 

(F),.y = ( F + y),.oi 
(Fp) = s u p { ( F ) „ : y e Z } . 
Corollary 1 implies the following theorem which is closely related to Theorem 1 

i n [ 3 ] , p . l 9 7 . 

Theorem 3. Let X be a locally convex space, let F: X ^ 2X be an u. sc. multi­
function such that F(x) is closed and convexfor all x e X and there exists a closed, 
convex, balanced and absorbing neighbourhood U of0 with the property that the 
sets clF(nU) are compactfor all natural n. Let p be the Minkowskifunctional 
of the set U. Thenfollowing statements hold: 

(i) If(F)pQ < 1, then F has afixed point. 
(ii) If(F)py < 1, then the equation (2) has a solution. 

(iii) If(F)p < 1, then I — F is surjective (i.e., the equation (2) has a solutionfor 
each у є X). 

Proof. Since the statement (i) implies (ii) and this in turn implies the statement 
(iii), it suffices to prove (i). By (F)P)0 < 1 there exists an r > 0 such that bp(r, F) < 1, 
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which means that all eigenvalues corresponding to the eigenvectors x with p(x) = r 
are smaller than 1. Let K = {xeX:p(x) ^ r}. Since clF(K) c clF(L) provided 
L = {x e X: p(x) ^ n0} with r < n0, cl F(K) is compact. Hence the condition ( L - S ) ' 
is satisfied on the boundary of K. Thus by Corollary 1, F has at least one fixed point. 

3. FIXED POINT THEOREMS IN METRIZABLE LOCALLY CONVEX SPACES 

Let (X, o), (X, a) and (X, т) be three locally convex spaces defined on the same 
vector space X and let the topology Q be weaker or equal to the topology o and the 
topology a weaker or equal to the topology т. We will also assume that (X, т) is 
a metrizable space. Denote by xn ~^Q x, xn ^a x and xn ~>t x the convergence of the 
sequence {xn} to x as n ^> oo in the space (X, g), in the space (X, a) and in the space 
(X, т), respectively. Clearly 

(3) xn ^>x x implies xn ~>а x and xn ~^a x implies xn ~^Q x . 

Further, the closedness and the compactness with respect to one of these three topo­
logies will be denoted by the corresponding prefix, e.g. a т-closed set will mean a closed 
set with respect to topology T, and a <r-compact set will denote a set which is compact 
in the space (X, a). Similary, cl Ax and dAz will mean the closure of A and the boundary 
of A, respectively, in the space (X, т). We shall use the following two implications: 

If a subset K ofX is т-compact, then K is c-compact and the cr-compactness ofK 
implies the ^-compactness of K. 

Suppose 0 ф K c X. Given a multifunction F: K ~> 2X, F will be said to be gr 
sequentially lower semicontinuous in К, дт s. 1. sc. for short, iff for each point 
xeK, arbitrary yeF(x) and arbitrary {xJ czK such that xn^Qx there exists 
a sequence {y„}, yn є F(xn), such that yn ^ T y. 

F will be said to be qx sequentially upper semicompact in K, qx s. u. sco. for 
short, iff for each point x є K, arbitrary xn e K such that xn ^Q x and arbitrary yn є 
eF(x„) there exists a subsequence {y„k} of the sequence {yn} and a j e F ( x ) with 
Упи^хУ (as k^ co). 

The last property can be strengthened. 
F will be said to be strictly дт sequentially upper semicompact in K iff for each 

xedKQi arbitrary xneK such that xn~^Qx and arbitrary yneF(x„) there exists 
a subsequence {ynk} of the sequence {yn} and a y e X such that y„k ^ T y where 
у є F(x) if x є К. 

Comparing the last two definitions we see that the following implication is true: 
if F is strictly Qx s. u. sco. in K, then it is also qx s. u. sco. in K. Further, we see that 
both definitions are equivalent iîK = X. 

The following lemmas deal with the properties of the s. u. sco. multifunctions. 
Some ofthem generalize the results from [9]. 

In view of Lemma 1 and (3) we have the following lemma. 
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Lemma 6. IfF: K ^ 2х is Qx s. и. sco. in К, then in the topology т, F is и. sc. in K 
and the set F(x) is x-compactfor each x є К. 

Proof. By (3) we get that F is s. u. sco. in К with respect to the topology т. Then 
the result follows from Lemma 1. 

Lemma 7. IfF: K ^> 2х is QX s. и. sco. in Kand К is Q-sequentially compact, then 
the set F(K) is x-compact. 

Proof. Let {yn} be a sequence from F(K) and let [xn] be such a sequence that 
xn e K and yn є F(xn), n = 1, 2, ... . Since K is a ^-sequentially compact set, there 
is a subsequence {xln} of the sequence {xn} and an x є K such that xln~>Qx. As F 
is Qx s. u. sco. in K, there is a subsequence {y2n} °f the sequence {Уі„} such that 
У2л ^ т У e F(x) c F(K) and the proof of the lemma is complete. 

An alternative to the last lemma is the following lemma. Its proof can be done by 
modifying the proof of Lemma 7. 

Lemma 7'. If F: K -^ 2X is strictly Qx s. u. sco. in K, and K is Q-sequentially 
relatively compact, then the set cl F[K)Z is x-compact. 

The next lemma follows directly from the definition. 

Lemma 8. Let the multifunctions Ft: K ~» Iх, i = 1, 2, be Qx s. u. sco. Then the 
mappings —Fu Fx + F2 are also Q% s. u. sco. 

A more complicated situation arises when we consider the composite multifunction. 
Suppose we have two multifunctions F:K^2X and G : L ^ 2 * , where F(K) cz 
c L c: X, K c X. Then the composite multifunction G o F is defined by (G о F) (x) = 
= {zeX: thereisa yeF(x) such that zeG(y)}. Suppose, further, that F is QFrF 

s. u. sco. and G is gGxG s. u. sco. This means that in general we can have four (or 
more) topologies in X, namely £F, тг, £G, tG from which £F is weaker or equal to zF 

and QCr is weaker or equal to TG. Here rF need not be metrizable, but xG should be. 

Lemma 9. / / F is QFzF s. u. sco., G is QGxG s. u. sco. and the topology QG is weaker 
or equal to the topology т>, then the composite multifunction G o F is QFrG s. u. sco. 

Proof. Suppose that xn^QFx, xn, xeK, yneF(xn), zneG(yn), are arbitrary 
sequences. Then there exists a subsequence {ynk} of {yn} such that уПк ^>XF y for some 
y e F(x). Since the topology QG is weaker or equal to TF, we also have уПк ^вс у. 
But G is QGxG s. u. sco. and therefore there is a subsequence {zl1tk} ofthe sequence 
{z,,J and a zeG(y) such that zUk^Xcz. The relations zeG(y), yeF(x) mean 
that z є (G o F) (x) and the proof is complete. 

Under the above assumptions, Theorem 1 has the following modifications. 

Theorem 4. Let K be a nonvoid, convex, %-closed and Q-sequentially compact 
subset ofX. Let F: K ^> 2K be a Qx s. u. sco. multifunction such that F(x) is convex 
for each x e K. Then F has afixed point. 

Proof. We shall work in the space (X, т). By Lemma 6, F is u. sc. in K and F(x) 
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is т-compact for each x є K. Further, Lemma 7 gives that F(K) is т-compact and 
Theorem 4 follows directly from Theorem 1. 

Remark . If we apply Lemma 1' instead of Lemma 7, we get another modification 
of Theorem 1. In the same way we can obtain modifications ofthe other results. 

Theorem 4'. Let K be a nonvoid, convex, x-closed and Q-sequentially relatively 
compact subset of X. Let F: K ~> 2K be a strictly QX s. u. sco. multifunction in K 
such that F(x) is convexfor each x e K. Then F has afixed point. 

While the last theorem extends Theorem 8 from [9], the next theorem generalizes 
Theorem 9 from the same paper. 

Theorem 5. Let (X l 5 a) be a Fréchet space such that (i) (X,x) is continuously 
embedded into (X1? cr) and hence X c X±; (ii)/or each sequence {xn} a X which is 
x-bounded and xn ^a x we have x є X. Let K be a nonvoid, convex and x-closed 
subset ofX. Let F: K ~> 2K be a strictly QX s. u. sco. multifunction in K such that 
F(x) is convex for each x є K. Let F(K) be x-bounded and o-relatively compact. 
Then F has a fixed point. 

Proof. Consider the set K0 = cl(co(F(X)) t . Then K 0 is a nonvoid, convex, 
T-closed and т-bounded set. Onthe other hand, co (F(K)) is a a-precompact set and 
thus Kx = cl (co (F(K)))<,. is also a a-precompact set. Since the topology o in X is 
weaker or equal to the topology т, we have K0 c Kx. Therefore K0 is cr-precompact, 
too. 

Let {xn} cz K0 be an arbitrary sequence. Let {Um} be a countable base of closed, 
convex, balanced and absorbing neighbourhoods of 0 in СХх,а). By the cr-pre-
compactness of K0, for each m = 1, 2, ... there exists a subsequence {xmn} of the 
sequence {xm_ l ř1} with x0n = xn, n = 1 ,2 , . . . , and a point ameX1 such that 
xm,neam + ^m?

 n = l>2, ... . Hence the diagonal sequence {xnn} enjoys the pro­
perty хПгП e am + Um for each n ^ m and thus we can write xnt„ = am + ymn with 
Ут>пєит. Therefore хПгП ~ хкЛ - ут^п - ym,keUm - Um for each n > k ^ m. 
This implies that {xnn} is a a-Cauchy sequence which is т-bounded.Thereforethere 
exists a subsequence {xiKk)Mk)} such that xn(k)Mk) ^a x for some x eXx and by (ii), 
x e X. Hence K0 is also o- as well as ^-sequentially relatively compact. 

As F(K) c K, on the basis of the properties of K we also have K0 c K. Then 
F(K0) c F(K) c K0 cz K. The result now follows from Theorem 4', where instead 
o fX we work with K0. By this theorem F has a fixed point in K0. 

Corollary 1 can be modified as follows. 

Corollary 2. Let K be a convex, %-closed subset ofX with a nonempty x-interior. 
Let F:K ^ 2X be a qx u. sco. multifunction such that F(x) is convex for every 
xeK. Let K be Q-sequentially compact. Let there exist a point w in theinterior 
ofK which satisfies the ( L - S ) ' condition. Then F has afixed point. 

Proof. Similarly as in the proof of Theorem 4 the assumptions of the corollary 
imply that F is u. sc. in K with respect to the т-topology, and F(x) for every x e K 
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as well as F(K) are т-compact. Since both conditions ( L - S ) and ( L - S ) ' are equi­
valent, the result now follows from Corollary 1. 

Theorem 2 can be given the following form. 

Theorem 6. Let F: X —> 2X be a gx u. sco. multifunction in X such that F{x) is 
convexfor all xeX. Let there exist a %-closed, convex, balanced and absorbing 
neighbourhood U of 0 which is Q-sequentially compact. Then either the inclusion (l) 
has a solution for each X e <'0, 1> or the set {x e X: x є A F(x), 0 < Я < 1} is un­
bounded in the topology т. 

Proof. In view of Lemmas 6 and 7, the assumptions ofthe theorem imply that F 
is u. sc. in (X, т) and the set F{x) is т-compact for each x e K. Since the sets nU, 
n = l , 2 , . . . , are all т-closed, convex, balanced, absorbing and ^-sequentially 
compact, all F(nU) are т-compact. Thus Theorem 2 can be applied. By this theorem 
the alternative in Theorem 6 holds. 

Finally, we modify Theorem 3. 

Theorem 7. Let all assumptions of Theorem 6 be satisfied. Let p be the Minkowski 
functional of the set U in the space (X,r). Then the statements (i),(ii), (iii)/rom 
Theorem 3 hold. 

Proof. By the proof of Theorem 6 we see that all assumptions of Theorem 3 are 
satisfied. Hence the statement of Theorem 7 follows from Theorem 3. 

4. FIXED POINT THEOREMS INVOLVING WEAK TOPOLOGY 

In the theorems of the previous section the weak topology can be used instead 
of the Q- or a-topoiogy, especially when (X, т) is a reflexive locally convex space 
([14], p. 110). Let us recall some facts about the weak topology. When X' is the dual 
space of {X, т), the weak &(X, X') topology will be denoted by rw. (X, т>ѵ) is again 
a locally convex space and the topology Tw is weaker or equal to т. Suppose that 
К Ф 0 is a subset of X. If K is closed and convex, then it is weakly closed. Hence, 
in a reflexive locally convex space X a closed, convex and bounded set K is weakly 
compact (see [14], p. 110). Since X is metrizable, by the Shmulyan theorem ([7], 
p. 751) a weakly compact set is also sequentially weakly compact. In the case that 
(X, т) is a Banach space the two notions of weak compactness and of sequentially 
weak compactness are equivalent ([4], p. 92). 

Let F: K ~> 2X be a multifunction. We shall need the following definitions. 
F is said to be sequentially strongly lower semicontinuous in K, s. s. 1. sc. for short, 

ifF for each point x є K, arbitrary y e F(x) and arbitrary {xn} c K such that xn ^ x 
weakly there exists a sequence {yn}, yn

 e F{xn)> s u c n l h a t Уп -» У- (Here and in the 
sequel the sign ~> will denote the strong convergence in X.) Comparing this notion 
with the above definitions, we see that F is TWT s. 1. sc. 

Similarly, F is said to be sequentially weakly upper semicompact in K, s. w. u. sco. 

155 



for short, iff for each point x e K, arbitrary xn є K such that xn ^> x weakly 
and arbitrary yn є F(x„) there exists a subsequence {yilk} of the sequence {yn} and 
y e F(x) with the property уПк ~> y weakly. 

F is said to be sequentially strongly upper semicompact in K, s. s. u. sco. for short, 
iff for each point x e X, arbitrary xn є K such that xn ^ x weakly and arbitrary 
yn є F(xn) there exists a subsequence {y,,J of the sequence {yn} and a y e F(x) such 
that ynk ~* y. This definition means that F is xwz s. u. sco. 

Lemmas 6 and 7 can be applied to s. s. u. sco. multifunctions. For a s.w. u. sco^ 
multifunction we have the following lemma. 

Lemma 10. IfF: K ~» 2X is a s. w. u. sco. multifunction in K and K is sequentially 
weakly compact, then 

(i) the set F(x) is sequentially weakly compactfor each x eK\ 
(ii) the set F(K) is also sequentially weaklycompact. 
Proof. The statement (i) follows from the definition of the s. w. u. sco. multi­

function. If {yn} cz F{K) is a sequence, then there exists a sequence {xn} с: К such 
that yn e F[xn) for each natural n. Then, in view of the sequentially weak compactness 
of K, there exists a subsequence {хПк} of the sequence {xn} and a point x є K such 
that x„k ^> x weakly. Again by the definition of the s. w. u. sco. multifunction there 
is a subsequence {у1пк} ofthe sequence {y„k} and у є F(x) with the property yUk ~» y 
weakly. This proves (ii). 

Using the above definitions we can formulate the fixed point theorems from the 
preceding section in the special case when Q = Tw. For comparison we present here 
only Corollary 2 in this form. 

Corollary 3. Let K be a convex, closed subset ofX with nonempty interior which 
is sequentially weakly compact (e.g.,X is a reflexive Banach space andK is a closed, 
convex, bounded subset ofX with nonempty interior). Let F: K ~» 2X be a s. s. u. 
sco. multifunction in K such that F(x) is convexfor each xeK. Let there exist 
a point w in the interior ofK which satisfies the (L — S)' condition. Then F has 
a fixed point. 

Now we will prove another fixed point theorem involving the weak topology. It 
generalizes the result from [19] to multifunctions. Here we will assume that the 
metrizable locally convex space {X, т) is real. 

Let P denote the family of all continuous seminorms in (X, т). In addition to 
Lemma 4 we shall need the following two lemmas. 

Lemma 11 ( [ l9] , p. 171). Let {xn} be a sequence in X such that {xn} converges 
weakly to an x є X. Thenfor each p e P, we have p(x) S Hm infp(xw). 

n^ oo 

Lemma 12 ( [ l9] , p. 173). Let К ф 0 be a convex and weakly compact subset ofX. 
Then for any p є P and z e X there exists u e K such that 

p(u — z) = min {p(y — z): у є K} . 
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Theorem 8. LetK Ф 0 be a convex and weakly compact subset ofa real metrizable 
locally convex space X. Let F: K ~* Iх be a s. s. 1. sc. and s. w. u. sco. multifunction 
in K such that F(x) is convex-and weakly compactfor all xeK. Thenforeach 
p e P there exists u = Up є K and y e F(u) such that 

p(u — y) = min {p(x — v): x є K, v є F(u)] . 

Proof. Let p e P. Dehne a multifunction G: K ^ 2K by 

(4) G(x) = {y e K: inf p(y - v) й inf p(x - u) }. 
feF(y) veF(.v) 

Clearly x є G(x). Now we prove that G(x) is weakly closed in X for each x e K. 
Let {xa: a є Л} be а net in G(x) such that xa -+ j ; weakly. Since X is a metrizable 

locally convex space, G(x) c K is a relatively weakly compact set and y belongs 
to the weak closure of G(x), by Theorem 8. 12. 4. c in [7], p. 752, there exists a se­
quence {xn} cz G(x) such that xn ^ y weakly. Using Lemma 12 and (4), we get that 
there exist vn e F(x„) such that 

K*" " y«) = i n f Kx« - t;) ^ inf p(x - v). 
t'eF(.Xn) veF(xn) 

Since jP is s. w. sco. in K, there exists a subsequence {ü„J of the sequence {vn} and 
t> є F(y) such that f„k -* v weakly as k -^ oo. On the basis of Lemma 11 we then have 

(5) p{y - v) й lim inf р(хПк - ѵПк) S lim inf inf p{x - v) . 
fc^oo fe^oo úeF(xn k) 

Let v e F[y) be an arbitrary element. As F is s. s. 1. sc., there exists a sequence {v„k} 
such that vnk ^ v, ѵПк e F(xtlk). Hence we have 

(6) lim inf inf p(x — Ь) ^ lim inf p(x - ѵПк) = 
h^>oo veF(Xnk) k^>cc 

= lim p(x - ѵПк) = p(x - v). 
fc^oo 

The relations (5) and (6) imply that 

p(y — v) <j inf p(x — v) 
veF(y) 

and hence у є G(x), which shows that G(x) is weakly closed. 
n 

Now, let a finite subset A = {x1 ? . . . , x„} ofX be given and let z = £ atxb where 
« i = i 

af ^ 0 and £ af = 1, be an arbitrary element of co (Ä). By Lemma 12, there exists 
i=l n 

Vi e F(z) such that p(xt - vt) й p(xt - v) for all v є F(z). Denote v = £ a ^ . 
Since F(z) is convex, ueF(z) . Then i = 1 

n n 

(7) infp(z - t?) g p(z - t;) = p( X a,.(xf - vt)) й I ař p(xf - vt) . 
0eF(z) і = 1 і = 1 

n 
If inf p(z - v) > p(Xi - ^i)for а11 і = 1, ..., n,then infp(z ~ 0) > V a p ( x _. ГЛ 

t)6F(2) 0eF(2) У ,t-! V У 
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which contradicts (7). Thus there exists i0e { 1 , . . . , n) such that 

inf p{z - v) z% p(xio - vio) = inf p(xio - v) 
veF(z) veF(z) 

n 

and, consequently, z e G(xio) c (J G(xt). Hence, by Lemma 4, there exists u e f) G(x) 
whichmeansthat l = 1 xeK 

inf p(u — y) g inf p(x — v) for all x є K , 
ueF(w) ueF(u) 

and, in view of Lemma 12, there exists j є F(u) with the property 

(8) p(u — y) ^ p(x — v) for all x e K and all v e F(u) . 

Corollary 4. Let all assumptions of Theorem 8 be satisfied. Then either 
(a) there exist u e dK and p є P such that 

0 < inf p(u — v) = inf p(x — v) for all x e K 
veF(u) veF(u) 

or 
(b) F has a fixed point u e K. 

Proof. By (8), for each peP there exist u = upeK and ypeF(up) with the 
property 

(9) p(w^ — Ур) S p(x — v) for all x є iC and for all v e F(up) . 

Suppose that for some p є P, 
(10) p(up - ур) > 0 . 

Then yp ф К, otherwise (9) for x = yp would imply 0 < p(up — yp) <; p(j;^ - yp) = 
= 0, which is a contradiction. Further, up є ôK. In fact, K is weakly closed and hence 
a closed set. If Up e int (X) (the interior of K), then there would exist a real a, 0 < 
< a < 1, such that awp + (1 - a) yp = z є гЖ, and by (9) 

0 < p(up - yp) й p(z - Ур) = * P(up - УР) < P(up - Ур) 

which is a contradiction. Hence up e dK and this, together with (10), proves (a). 
The second case is that for each p e P there exist up є K and yp є F(up) such that 

(11) 0 = p(up — yp) ^ p(x — v) for each x є K and for each v є F(up) . 
Let 

^4p = {u є X: p(w — v) = 0 for some v e F(u)} for each p є P . 

(11) implies that up є Лр. We shall prove that Ap is weakly closed. If {xa: a є Л} is 
а net in Ap such that xa ~> у є K weakly then, similarly as above, there exists a se­
quence {xn} cz Ap such that xn ~* y weakly. Since xn e Лр, there exists vn e F(xn) 
such that 
(12) p(xn — vn) = 0 for each natural n . 

Since F is s. w. u. sco., there exists a subsequence {vnk} of the sequence {vn} and 
tf є F{y) such that y„k >̂ v weakly as k ^> oo, Then on the basis of Lemma 11 and 
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(12) we have 
p(y - v) S Um inf p(x„k - vnk) = 0 

/c^oo 

and thus p(y ~ v) = 0 which yields j e Лр. Furthermore, for any finite subset 
n 

{Pi'. i = l , 2 , . . . , n } c P we have £ p , e P and therefore 0 ф Л Р 1 + Р 2 + _ + Р п . But 
i = i 

^p1+P2+... + Pn c ^pi n ^P2 n • • • n APn which implies that the family {Ap: p e P} has 
the finite intersection property. Consequently П Ap Ф 0 and there exists w0 є K 

peP 

such that for each p є P there is vp e F(u0) satisfying p[u0 — vp) — 0. 
Let us now define 

Bp = {̂  є F(w0): p(w0 — г) = 0} for each p є P . 

Clearly vp є Pp . If ül5 v2 є Bp, then p(aw0 + (l - a) w0 — [at^ + (l - a) ^2]) = 
^ aj>(w0 — vx) + (l — a) p(u0 — v2) = 0 for each a, 0 < a < 1, and hence 
[ a ^ + (1 — a) Vj] є Bp which implies that Bp is convex. Furthermore, Bp is strongly 
closed, since for the sequence vn ~> u, u„ є Bp we have p(w0 — u) = lim p(u0 — vn) = 

n^-oo 

= 0, and in view of the weak closedness of F(w0), v e F(w0). Thus v є Bp. By the 
above mentioned properties Bp is weakly closed, too. Every Bp is a subset of the 
weakly compact set F(u0). Similarly as in the case of the sets Ap we can prove that 
the system {Bp: p є P} has the finite intersection property. Hence there is v0 є П Bp 

peP 
and this implies that p(u0 — v0) — 0 for each p e P. Therefore u0 = v0 є F(u0). 

Corollary 5. Let all assumptions of Theorem 8 be satisfied. Further, let a multi­
function F satisfy the boundary condition 
(13) for each u e dK there exist y є F(w), x e K and X > 0 such that 

y = u + X(x — u) . 
Then F has a fixed point. 

Proof. Consider upedK, ypeF(up) satisfying (9) and (10). The condition (13) 
implies that there exist y eF(up), x e K and X > 0 such that 

У = up + X(x - Up) . 
Three cases may occur: 

(i) X = 1. Then x = y and by (9), (10) we come to the contradictory inequality 
0 = p(x - y) ^ p(up - УР) > 0. 

(ii) IfA > l , thenwecanwr i tex = aup + (1 - oe)ywhereoe = (l - Л _ 1 ) є (0 ,1 ) . 
Consider v = ocyp + (1 - a) y. Since yp, y e F(up) and F(up) is convex, v e F(up), 
too. Then p{x ~ v) = a p(up — yp) < p(up - yp) which contradicts (9), (10). 

(iii) When 0 < X < 1, then y = Xx + (1 — X) up and since K is convex, y e K. 
Again by (9), (10) we come to the contradictory inequality 0 = p(y — y) ^ 
^ P{up - Vp) > 0. 
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R e m a r k s . 1. The last result is closely related to Corollary 2 in [19], p. 173 which 
deals with one-valued mappings, as well as to Theorem 3 in [ l ] , p. 286. 

2. For Я = 1 we get that the condition 
(14) for each u e dK there exists y e F(u) such that у є K implies the condition (13). 

Similarly as in the proofofTheorem 5 in [1], p. 288, we can apply the last corollary 
to the multifunction G: K ^ Iх which is defined by 

G(x) = 2x — F(x) for each x є K . 

It is clear that the set G(x) is convex and weakly compact iff F(x) shares this property. 
Further, if F is s. s. 1. sc., xn ~> x weakly in K and z є G(x), then y = 2x — z є F(x). 
This implies that there is a sequence yn e F(xn) such that yn >̂ y. Hence the se­
quence zn satisfies zn = 2x — yn ~> z = 2x — y and zn e G(xn). Therefore F is 
s. s. 1. sc. iff G is s. s. 1. sc.. Similarly, either both multifunctions F, G are s. w. u. sco. 
or none of them is. Hence if F satisfies all assumptions of Theorem 8, so does G. 
Similarly u є F(u) — 2u — G(w) iff u e G(u). 

Now we can easily show that if Fsatisfies the boundary condition 

(15) for each иєдК there exist yeF(u), xeK and Я < 0 such that y = u + 
+ Я(х — w), 

then G satisfies the condition (13). 
In fact, у є F(u) iff 2w — у є G(u) and y = u + X(x — u) iff 2u — y = u — 

— Я(х — u). Thus Corollary 5 yields the following corollary. 

Corollary 6. Let all assumptions of Theorem 8 be satisfied. Further, let a multi­
function F satisfy the boundary condition (l5). Then F has afixed point. 

Remark . Corollary 5 with the condition (14) instead of (13) is very close to 
Theorem 4, and Corollary 6 to Theorem 5 in in [ l ] , p. 288. 

5. EXAMPLE 

Let / cz Я be an arbitrary interval. Let X be the vector space of all continuous 
and bounded real functions having continuous and bounded derivatives to the m-th 
order on I. We shall consider four locally convex topologies т, a, g and Tw in this 
space. 

(i) The topology T is given by the norm 

| / | B m = max{sup|/<'>(x)|}, feX. 
0 ^ í ^ m xeI 

Similarly as in [9], the space (X, r) will be denoted by Bm(l). It is a Banach space. 
The convergence fk ^>xf means the uniform convergence f[j) 5 / 0 ) on / for j = 
= 0, l , . . . , m . 

(ii) lf / is compact, then the topology a coincides with the topology т. If / is 
a noncompact interval, the topology a is given by the sequence of seminorms {pn}™= i 
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in the following way. If Kt c K2 <= ... c Kn c . . . is a sequence of compact sub-
00 

intervals of/ such that (J Kn = / and Kn Ф £ n + l J then 
fi = i 

p n ( / ) = m a x { s u p | / ( i ) ( x ) | } , / є * , n = l , 2 , . . . . 
O ^ t | m хєКп 

The space (X, a) will be then denoted by B Cm(j). Its locally convex topology does 
not depend on the choice of {Kn}. The convergence/* ^af means the uniform con­
vergence fiJ) ztf(j) on each Kn for j = 0 , 1 , . . . , m , and hence the locally uniform 
convergence on / of all derivatives up to the order m. By the Ascoli lemma, a set 
L cz X is a-relatively compact iffthe derivatives/ ( j ),j = 0 , 1 , . . . , m, ofthe functions/ 
from the set L are uniformly bounded on each Kn while the functions f(m) are equi-
continuous on each Kn. Further, the topology т is stronger than the topology a 
in the space X and hence the space Bm(l) is continuously embedded into B Cm(I). 

A simple example shows that the space B Cjj) is not complete. Still, it is a subspace 
of the Fréchet space Cm(/) which consists of all continuous real functions having 
continuous derivatives (not necessarily bounded) up to the m-th order on J, and 
which is provided with the sequence {pn} of seminorms given above. It can be shown 
that (a) Cm(l) is the completion of the space B Cm(l); (b) Bm(l) is continuously 
embedded into Cm(l), and (c) for each sequence {fk} <= Bm(l) which is т-bounded 
and fk ^Je CjJ) we have / є Bm(l). 

(iii) The topology Q is determined by the uncountable system of seminorms 

px,i(f) = \f{i\x)\> fe*> * e / > i = 0 , l , . . . , m . 
The local base for the locally convex space (X, g) which we denote by q Bm(l) consists 
of the neighbourhoods 

U[Xí,X2,'..iXk; Z i , Í 2 > * - - » Í k ' n l » n 2 5 - " ' W j t ) = 

= {feX: |/<''>(x0| < nV, | / ( Ы Ы | < n-2\..., |/<">(x,)| < n ; 1 } 

determined for all natural numbers k, all k-tuples (xx, x2,..., xk) of real numbers 
from / , all fc-tuples (*i, *2> • ••> ifc) of integers ij9 0 ^ ij S m, and all k-tuples 
(« ! , . . . , nk) of natural numbers. Clearly there exists no countable local base and hence 
q Bm(l) is not metrizable. The convergence/fc -*Qf mans the pointwise convergence 
fk

J)(x) ^ fU)(x) at each point x e I for; = 0 , 1 , . . . , m. The set K cz X is ç-sequential-
ly relatively compact ifF every sequence {fk} с К contains a subsequence {fki} such 
fkP(x) -*f(J\x) a t e a c r i point x eI for j — 0 , 1 , . . . , m and for some feX. If / 
belongs to X, then K is ^-sequentially compact. 

(iv) The weak topology rw in the space X associated with the topology т. We denote 
the space (X, Tw) by w Bm(l). When the interval / is compact, then the space Bm(l) 
is separable and by [6], p. 374, the sequence {/fc} c Bm(l) converges weakly to fe 
є Bm(I) iffit is strongly bounded and/ k ^ e / . In the general case when / is noncompact, 
Theorem 31, [6] , p. 305 and Definition 10 in [6], p. 291 imply that fk ^ T w / iff 
\/к\вт is bounded, fk ^>gf and for each є > 0, any increasing subsequence {nk} 
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of natural numbers, each je {0, 1 , . . . , m} and each nkQe {nk} there exist finitely 
many indices nko < nkl < пкг < . . . < nkl such that 

min \ňÍ\x) - f(J)(x)\ < e for each x e I. 
lâiâl * 

The topologies Q and Tw are determined by the total vector subspaces Ги Г2, 
respectively, of the vector space X of all linear functionals over X. Гх consists of the 
functionals 

K{f)=f^{x), feX, 
for each x є J, i = 0, 1 , . . . , m, while T2 = X' is the dual space of the space (X, т). 
Since Г± с Г2, the topology Q is weaker or equal to rw. If <a, b> c: J, then L(/) = 
= Ja/(*) dx є Г 2 but Ьф Г'х and hence ^ is weaker than tw. 

Further, the space Г 0 of all linear functionals LXt0(f) = / ( x ) , / e I , is also total 
and thus Г0 determines a topology which is weaker than Q provided m > 0. Hence 
q Bm(l) as well as w Bjj) are not minimal and they are both weak. This, on the basis 
of Theorem 22. 16 in [2], p. 60, implies that the following lemma is true. 

Lemma 13. Neither of the spaces q Bm(l) (m ^ 1) and w Bm(l) is complete. 
Since Bm(l) is a Banach space, the set K <= Bm(l) is weakly compact iff it is se­

quentially weakly compact. The relation between the weak convergence and the 
^-convergence gives the result. If / is a compact interval, then the subset К с Bj^I) 
is relatively weakly compact iff it is strongly bounded and ^-sequentially relatively 
compact. If / = (a, oo), the situation is more complicated. A sufficient condition 
for the weak compactness in this case is given in the following lemma. 

Lemma 14. Suppose that I = <a, oo), where a є R. Then the set K c Bm(l) is 
weakly compact if thefollowing conditions are satisfied: 

(i) K is strongly bounded; 
(ii) K is weakly closed; 

(iii) K is Q-sequentially relatively compact; 
(iv) for each j e { 0 , 1 , . . . , m} and eachfeK there exists afinite lim/ ( j , )(x); 

x^oo 

(v) for each sequence {fk} a K, each je {0, 1 , . . . , m} and each є > 0 there 
exists a neighbourhood L/(oo) of oo and a k0 such that 

\řAxu-ňJ)(x2)\<e 
for each k ^ kQ and any two points xu x2 e U(oo). 

Proof. Let {fi) be a sequence in K. By (iii), there is a subsequence [fk] ofthat 
sequence such that 
(16) fk ^gf as k ^ oo . 

(i) implies that |Л |в т is bounded. By what was said above, {/k} will weakly converge 
to / if for each e > 0, any increasing subsequence {kp} of the sequence {k}, each 
j e {0, 1 , . . . , m} and each kpo there exist finitely many indices kpo < kpi < ... < kPr 
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such that 

(17) min \ІЇІ\х) - fU)(x)\ < e for e*dl x є l • 
Ійійг Pi 

Let є > 0, j e { 0 , 1 , . . . , m}, a subsequence {kp} of the sequence {k} and a kpo be 
given. We shall denote this subsequence by {k]. By (iv), (v), (16), there exist U(oo) 
and k0 ^ kpo such that for each k ^ /c0, each x є Lf(oo) and a fixed xt є Lf(oo) we have 

(18) |/<'>(x) - ^> (x ) | g | /P (x ) - ^ > ( x , ) | + Ltf>(*0 - / a ) ( * i ) | + 

+ |/a)(*i) - /ü)(*)l < £ / 3 + £ / 3 + £ / 3 = e • 
Since / — L (̂oo) = K is a compact set and all functions involved in the consideration 
are continuous, the Arzela theorem ([6], p. 291) implies that the convergence ofthe 
sequence flJ) to f(j) in K is quasiuniform. Hence, there are finitely many indices 
k0 < kt < ... < kr such that 

(19) min \Ui\x) - fU)(x)\ < s for each x є K . 
1 йі^г 

The inequalities (18) and (19) imply that (l7) is true (with/fc. instead of/fc , i = 
= 1, 2, ..., r). (ii) gives t h a t / e K and the proof of the lemma is complete. 

Remarks . 1. lfK is convex, then (ii) can be replaced by the assumption 
(ii') K is strongly closed. 

2. When / = (a, b), then Lemma 14 remains to be true if the following changes 
are made. In (iv) the existence of a finite l im/ ( / )( i) should be assumed at both 
endpoints of (a, b). In (v), а neighbourhood of both endpoints a, b in the form 
/ — Kt where Kx is а compact subinterval of/ should be considered instead of r7(oo). 
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