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SPANNING TREES OF LOCALLY FINITE GRAPHS 

BOHDAN ZELINKA, L i b e r e c 

(Received April 24, 1986) 

We shall consider infinite undirected graphs without loops and multiple edges. 
A graph G will be called locallyfinite, if each vertex of G has a finite degree. 

If R is a subset of the vertex set V(G) of a graph G, then by G — R we shall denote 
the graph obtained from G by deleting all vertices of the set R. 

For locally finite graphs, R. Halin [ l ] introduced the concept of an end of a graph. 
Before giving the definition, we define some auxiliary concepts. 

A rest of a one-way infinite path P is a one-way infinite path, all of whose vertices 
and edges belong to P. Two one-way infinite paths P1 ? P 2 of a locally finite fraph G 
are called equivalent, if there exists a one-way infinite path P 0 in G (which may 
coincide with Px or with P2) with the property that every rest of P 0 has common 
vertices with both Px and P 2 . This relation defined on the set of all one-way infinite 
paths of G in this way is really an equivalence relation [1]. Its equivalence classes 
are called the ends of G. 

An end Cš of C is called free, if there exists a finite subset jR of the vertex set V(G) 
of G such that in the graph G — R there exists a connected component which contains 
paths from &, but no one-way infinite paths from any other ends of G. (We say that R 
separates Q£ from the other ends.) 

If a locally finite graph G has finitely many ends, then all of them are free [ l ] . 
Obviously an infinite locally finite graph G contains at least one end, because it 
contains at least one infinite path. 

We shall study ends of spanning trees of a graph G. The following propositions 
are easy to prove. 

Proposition 1. Let T be an infinite locallyfinite tree. Then two one-way infinite 
paths ofTbelong to the same end ofTifand only if their intersection is a rest of 
both of them. 

Proposition 2. Let G be an infinite locallyfinite graph, let Tbe its spanning tree. 
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/ / two one-way infinite paths in Tbelong to the same end ofT, then they belong to 

the same end of G, but not vice versa. 

Now we prove a lemma. 

Lemma 1. Let G be a connected infinite locallyfinite graph, let T be its spanning 
tree, let & be afree end of G. Then T contains at least one pathfrom &. 

Proof. As C£ is free, there exists a finite set R of vertices of G which separates & 
from the other ends. Let G0 be the connected component of G — R containing 
paths from CĚ, let H0 be the subgraph of G induced by the union of R and the vertex 
set V(G0) of G0. Let T0, be the subgraph of T induced by the vertex set V(H0) of H0; 
T0 is a forest. Each connected component of T0 contains at least one vertex of R; 
otherwise it would be also a connected component of T and T would not be a tree. 
This implies that the number of connected components of T0 is at most |jR|. As T0 is 
infinite and has a finite number of connected components, at least one connected 
componentofTo h infinite. AsT0 is locally finite,this connected component contains 
a one-way infinite path. This path is also in G; as it is in Я 0 , it belongs to &. 

Now we shall define a concept which will be useful in the sequel. 
Let A be a non-empty finite subset of F(G), let të be an end of G. We say that 

a subset R of V(G) separates Afrom Œ, if each path from C£ with the initial vertex 
in A contains a vertex of R and A n R = 0. Evidently, each non-empty finite subset A 
of V(G) is separated from each end Qč of G by a finite set; for example, we may 
choose R as the set of all vertices of G which do not belong to A and are adjacent 
to at least one vertex of A. The cardinality of R is less than or equal to the sum of 
degrees of vertices of A. As A is finite and G is locally finite, this sum is finite and so 
is the cardinality of R. Hence we may define c(A, G) as the minimum cardinality of 
a set separating A from C£; it is a positive integer. Now take the supremum of c(a, C£) 
for all non-empty finite subsets A of V(G). This supremum will be called the degree 
of & and denoted by d(Gi). It is either a positive integer, or K0. 

Lemma 2. Let G be a connected infinite locallyfinite graph.Let C5 be afree end 
of G, let d(C£) befinite. Let T be a spanning tree of G. Then the number of ends 
ofTwhich are included in C£ is at most d(&). 

Proof. Let k be the number ofends ofTwhich are contained in ©. From the defini
tion of the end and from the fact that Tis a tree it follows that Tcontains k one-way 
infinite paths P x , . . . ,P f c , where k = rf(6), which are pairwise vertex-disjoint and 
have the property that the initial vertex of any Pt (i = 1, . . . , k) separates all other 
vertices of Pi from all vertices of the paths Pj for і Ф j . All paths Pu ..., Pk belong 
to the end ffi of G, but to pairwise distinct ends of T. Let A be the set of initial vertices 
of the paths Pu ..., Pk. Any set R separating A from ^ in G must have at least k 
vertices, otherwise there would be a path among P l 9 . . . , P k which would contain 
a vertex of R. Thus c(A, Cc) g к and also d(&) ^ к. 

Lemma 3. Let G be a connected infinite locallyfinite graph. Let © be afree end 
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of G, let d(&) befinite. Let k be an integer, 1 g k £ d(6). 77zen i&ere ехШз a span-
ning tree Tof G which has exactly k ends contained in Œ. 

Proof. First, consider k = d(&). As CB is free, there exists а finite set R0 cz V(G) 
separating & from all other ends. Let H be the subgraph of G induced by the union 
of R0 and the vertex of the connected component of G — R0 containing paths 
from ©. The graph H evidently has exactly one end ^ 0 which is a subset of C£. Take 
a set Rx of the least cardinality which separates R0 from ©0. We have | ^ | S d(&). 
If |jR ĵ < d(Qc), we find a set R2 separating Rx from ^ ; if [jR2| < d(&), we continue 
by finding R3 separating R2 from ©, etc. If we can proceed to infinity in this way, 
then every subset of V(G) can be separated from ^ by less than d(&) vertices, which 
is a contradiction. Thus there exists a positive integer m such that Rm is separated 
from G by a set S0 such that |S 0 | = а{Щ and by no set of a lesser cardinality. Now we 
can construct an infinite sequence (<$»)Г=о recurrently. If Sj is constructed for somej, 
then we can find a set Sj+1 such that | S j + 1 | = d(C£) and Sj+1 separates Sj from Cč0. 
Now for each positive integer i let Ft be the subgraph of G induced by the union 
of StKJ Si+l and the vertex set of the connected component of G — (S|U Si+1) 
which contains paths from St to Si+i. The sets Sh Si+l in Ft are separated by not 
less than d(<&) vertices. Thus according to Menger's Theorem there exist k = d(&) 
pairwise vertex-disjoint paths from St to Si+1. If the vertices of St are denoted by 
a[l\ . . . , aJc

0*, then we denote these paths by P[l\ ..., P£° in such a way that a(jl) is 
a terminal vertex of P*-° for j = 1, ..., fc. Then the terminal vertex of P)° in S i + 1 

will be denoted by а(/+1). We proceed in this way for all fs. The union of Pj i } for 
all i's is a one-way infinite path Pj for each j = 1, . . . , fc. Thus we have constructed k 
pairwise vertex-disjoint one-way infinite paths P1 ? ..., Pk. Now let H' be the connected 
component of G — (P 0 и S0) which contains paths from R0 to S0; it is a finite graph, 
because it contains no infinite path. Let H" be the graph by the union of P 0 , S0 and 
the vertex set of # ' . Let TQ be a spanning tree of H". If we add the paths P l 5 . . . , Pk 

to it, we obtain a spanning tree T0 of H. We can construct a spanning tree T of G 
having T0 as a subtree and this is the required spanning tree for k = d(fê). 

Now suppose 1 ^ d(©) < /c. We proceed by induction. Suppose that there exists 
a spanning tree 7\ of G having k + 1 ends contained in ^ . Then Tt contains k + 1 
pairwise vertex-disjoint one-way infinite paths P l 9 . . . , P k + 1 belonging to ß. There 
exists a subgraph G* of G such that the subgraph T* of Tx induced by V(G0) consists 
ofthe rests P j , . . . , P* + 1 of P1? ..., P k + 1 . As P?, P*+ 1 belong to the same end of G, 
there exists a one-way infinite path Q in G having infinitely many common vertices 
with both P* and P*+ 1 . We traverse ß starting at its initial vertex. Whenever we 
enter a vertex v of P*+ ! by an edge e not belonging to Pk + x, we add e to Tf (previously 
e was not in T*). Simultaneously we delete the edge of P*+ 1 ending at f (when tra
versing P*+ ! from its initial vertex). As Q has infinitely many common vertices with 
P*+i, in this way we delete infinitely many edges of P*+ u thus none of its rests is in 
the resulting graph. Evidently neither a new one-way infinite path, nor a circuit is 
obtained; thus we have constructed the required tree. 
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These lemmas imply a theorem. 

Theorem 1. Let G be a connected infinite locallyfinite graph, let © be itsfree end, 
let d(&) befinite. Let k be an integer. Then thefollowing two assertions are equi
valent: 

(i) 1 S к й d(e). 
(ii) There exists a spanning tree of G having exactly k ends included in 0Č. 

Corollary 1. Let G be a connected infinite locallyfinite graph withfinitely many 
ends 0£Ь...,С£Ш offinite degrees. Let k be an integer. Then thefollowing two 
assertions are equivalent: 

m 

(i) m й к 'й X 4®i)-
i=i 

(ii) There exists a spanning tree of G having exactly k ends. 
Now we shall consider the case when d(C) is infinite. 
Theorem 2. Let G be a connected infinite locallyfinite graph, let C£ be itsfree end, 

let d(CS) = K0. Then there exists a spanning tree Tof G having infinitely many ends 
belonging to &. 

Proof. The construction is similar to that from the proof of Lemma 3. However, 
here the cardinalities ofthe sets Sf are not equal; they form a non-decreasing sequence 
tending to infinity. If \St\ = |Sf+i| = k, we construct the paths P\l), ...,Pk

l) in the 
same way as in the proof of Lemma 3. If k = \St\ < \Si + i\ = /, we construct again 
P[l\...,P[l) and denote their terminal vertices in Si + 1 by a[l+1),...,ak

l+1). The 
remaining vertices in Si+1 will be denoted arbitrarily by a(

k
l+i\ ..., a\l+1). Now for 

each positive integer / t h e path Pj is the union of paths P{p for all i's for which such 
a path exists. Thus we have infinitely many pairwise vertex-disjoint one-way infinite 
paths Pu P2,... . From G we delete all edges whichjoin a non-initial vertex of one 
of these paths with a vertex of another one; then we construct a spanning tree of the 
graph thus obtained. This tree is the required tree T 

Now we propose two conjectures. 

Conjecture 1. Let G be a connected infinite locallyfinite graph, let Cč be itsfree 
end, let d(&) = K0. Thenfor each positive integer k there exists a spanning tree T 
of G having exactly k ends included in C£. 

Conjecture 2. The assertion ofLemma 1 holds even without the assumption that C£ 
is free. 

We present a partial result concerning these conjectures. 

Theorem 3. There exists a connected infinite locallyfinite graph G with one end C£ 
such that d(&) = K0 and with property thatfor each positive integer k there exists 
a spanning tree Tk of G having exactly k ends. 

Proof. We will construct the graph G. Its vertex set is the set of all ordered pairs 

196 



(i,j) of positive integers. Two vertices (iiJi), (i2J2) a r e adjacent if and only if 
either ix = i2 and \j\ — j2\ = 1, or j \ = j 2 and |řx — i2| = 1. Let N denote the 
set of all positive integers. Let P0 be the one-way infinite path with the vertex set 
{(r,0) | ieN}. For each keN let Pk be the one-way infinite path with the vertex 
set {(k,j) \jeN}. Further, for positive integers i, k let Qf} be the finite path which 
is the union of the path with the vertex set {(fe + i,j) \j ^ i + 1} and the path 
with the vertex set {(j, i + 1) | k ^ j ^ k + i}. Now the tree Tk is the union of the 
pa thsP 0 ,P l 5 . . . ,P k _ b ôf ? e 2

f c >, . . . . 
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