Czechoslovak Mathematical Journal

Bohdan Zelinka
Spanning trees of locally finite graphs

Czechoslovak Mathematical Journal, Vol. 39 (1989), No. 2, 193-197

Persistent URL: http://dml.cz/dmlcz/102294

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL
 Mathematical Institute of the Czechoslovak Academy of Sciences
 VI. 39 (114), PRAHA 14. 6. 1989, No 2

SPANNING TREES OF LOCALLY FINITE GRAPHS

Bohdan Zelinka, Liberec
(Received April 24, 1986)

We shall consider infinite undirected graphs without loops and multiple edges. A graph G will be called locally finite, if each vertex of G has a finite degree.

If R is a subset of the vertex set $V(G)$ of a graph G, then by $G-R$ we shall denote the graph obtained from G by deleting all vertices of the set R.

For locally finite graphs, R. Halin [1] introduced the concept of an end of a graph. Before giving the definition, we define some auxiliary concepts.

A rest of a one-way infinite path P is a one-way infinite path, all of whose vertices and edges belong to P. Two one-way infinite paths P_{1}, P_{2} of a locally finite fraph G are called equivalent, if there exists a one-way infinite path P_{0} in G (which may coincide with P_{1} or with P_{2}) with the property that every rest of P_{0} has common vertices with both P_{1} and P_{2}. This relation defined on the set of all one-way infinite paths of G in this way is really an equivalence relation [1]. Its equivalence classes are called the ends of G.

An end \mathfrak{E} of C is called free, if there exists a finite subset R of the vertex set $V(G)$ of G such that in the graph $G-R$ there exists a connected component which contains paths from \mathfrak{E}, but no one-way infinite paths from any other ends of G. (We say that R separates \mathfrak{E} from the other ends.)

If a locally finite graph G has finitely many ends, then all of them are free [1]. Obviously an infinite locally finite graph G contains at least one end, because it contains at least one infinite path.

We shall study ends of spanning trees of a graph G. The following propositions are easy to prove.

Proposition 1. Let T be an infinite locally finite tree. Then two one-way infinite paths of T belong to the same end of T if and only if their intersection is a rest of both of them.

Proposition 2. Let G be an infinite locally finite graph, let T be its spanning tree.

If two one-way infinite paths in T belong to the same end of T, then they belong to the same end of G, but not vice versa.

Now we prove a lemma.
Lemma 1. Let G be a connected infinite locally finite graph, let T be its spanning tree, let \mathbb{E} be a free end of G. Then T contains at least one path from \mathfrak{E}.

Proof: As \mathfrak{E} is free, there exists a finite set R of vertices of G which separates \mathfrak{E} from the other ends. Let G_{0} be the connected component of $G-R$ containing paths from \mathfrak{E}, let H_{0} be the subgraph of G induced by the union of R and the vertex set $V\left(G_{0}\right)$ of G_{0}. Let T_{0} be the subgraph of T induced by the vertex set $V\left(H_{0}\right)$ of H_{0}; T_{0} is a forest. Each connected component of T_{0} contains at least one vertex of R; otherwise it would be also a connected component of T and T would not be a tree. This implies that the number of connected components of T_{0} is at most $|R|$. As T_{0} is infinite and has a finite number of connected components, at least one connected component of T_{0} is infinite. As T_{0} is locally finite, this connected component contains a one-way infinite path. This path is also in G; as it is in H_{0}, it belongs to \mathfrak{E}.

Now we shall define a concept which will be useful in the sequel.
Let A be a non-empty finite subset of $V(G)$, let \mathfrak{E} be an end of G. We say that a subset R of $V(G)$ separates A from \mathfrak{E}, if each path from \mathfrak{E} with the initial vertex in A contains a vertex of R and $A \cap R=\emptyset$. Evidently, each non-empty finite subset A of $V(G)$ is separated from each end \mathfrak{E} of G by a finite set; for example, we may choose R as the set of all vertices of G which do not belong to A and are adjacent to at least one vertex of A. The cardinality of R is less than or equal to the sum of degrees of vertices of A. As A is finite and G is locally finite, this sum is finite and so is the cardinality of R. Hence we may define $c(A, \mathfrak{E})$ as the minimum cardinality of a set separating A from \mathfrak{C}; it is a positive integer. Now take the supremum of $c(a, \mathfrak{E})$ for all non-empty finite subsets A of $V(G)$. This supremum will be called the degree of \mathfrak{E} and denoted by $d(\mathfrak{C})$. It is either a positive integer, or \aleph_{0}.

Lemma 2. Let G be a connected infinite locally finite graph. Let \mathfrak{E} be a free end of G, let $d(\mathbb{E})$ be finite. Let T be a spanning tree of G. Then the number of ends of T which are included in \mathfrak{E} is at most $d(\mathfrak{E})$.

Proof. Let k be the number of ends of T which are contained in \mathbb{E}. From the definition of the end and from the fact that T is a tree it follows that T contains k one-way infinite paths P_{1}, \ldots, P_{k}, where $k=d(\mathfrak{C})$, which are pairwise vertex-disjoint and have the property that the initial vertex of any $P_{i}(i=1, \ldots, k)$ separates all other vertices of P_{i} from all vertices of the paths P_{j} for $i \neq j$. All paths P_{1}, \ldots, P_{k} belong to the end \mathfrak{E} of G, but to pairwise distinct ends of T. Let A be the set of initial vertices of the paths P_{1}, \ldots, P_{k}. Any set R separating A from \mathfrak{E} in G must have at least k vertices, otherwise there would be a path among P_{1}, \ldots, P_{k} which would contain a vertex of R. Thus $c(A, \mathfrak{E}) \leqq k$ and also $d(\mathfrak{E}) \leqq k$.

Lemma 3. Let G be a connected infinite locally finite graph. Let \mathbb{E} be a free end
of G, let $d(\mathfrak{E})$ be finite. Let k be an integer, $1 \leqq k \leqq d(\mathfrak{C})$. Then there exists a spanning tree T of G which has exactly k ends contained in \mathfrak{E}.

Proof. First, consider $k=\mathrm{d}(\mathfrak{E})$. As \mathfrak{E} is free, there exists a finite set $R_{0} \subset V(G)$ separating \mathfrak{E} from all other ends. Let H be the subgraph of G induced by the union of R_{0} and the vertex of the connected component of $G-R_{0}$ containing paths from \mathfrak{E}. The graph H evidently has exactly one end \mathfrak{E}_{0} which is a subset of \mathfrak{E}. Take a set R_{1} of the least cardinality which separates R_{0} from \mathfrak{E}_{0}. We have $\left|R_{1}\right| \leqq d(\mathfrak{E})$. If $\left|R_{1}\right|<d(\mathfrak{E})$, we find a set R_{2} separating R_{1} from \mathfrak{E}; if $\left|R_{2}\right|<d(\mathfrak{E})$, we continue by finding R_{3} separating R_{2} from \mathfrak{E}, etc. If we can proceed to infinity in this way, then every subset of $V(G)$ can be separated from \mathfrak{E} by less than $d(\mathbb{E})$ vertices, which is a contradiction. Thus there exists a positive integer m such that R_{m} is separated from \mathbb{E} by a set S_{0} such that $\left|S_{0}\right|=d(\mathbb{E})$ and by no set of a lesser cardinality. Now we can construct an infinite sequence $\left(S_{i}\right)_{i=0}^{\infty}$ recurrently. If S_{j} is constructed for some j, then we can find a set S_{j+1} such that $\left|S_{j+1}\right|=d(\mathfrak{E})$ and S_{j+1} separates S_{j} from \mathfrak{E}_{0}. Now for each positive integer i let F_{i} be the subgraph of G induced by the union of $S_{i} \cup S_{i+1}$ and the vertex set of the connected component of $G-\left(S_{i} \cup S_{i+1}\right)$ which contains paths from S_{i} to S_{i+1}. The sets S_{i}, S_{i+1} in F_{i} are separated by not less than $d(\mathfrak{C})$ vertices. Thus according to Menger's Theorem there exist $k=d(\mathfrak{C})$ pairwise vertex-disjoint paths from S_{i} to S_{i+1}. If the vertices of S_{i} are denoted by $a_{1}^{(i)}, \ldots, a_{k}^{(i)}$, then we denote these paths by $P_{1}^{(i)}, \ldots, P_{k}^{(i)}$ in such a way that $a_{j}^{(i)}$ is a terminal vertex of $P_{j}^{(i)}$ for $j=1, \ldots, k$. Then the terminal vertex of $P_{j}^{(i)}$ in S_{i+1} will be denoted by $a_{j}^{(i+1)}$. We proceed in this way for all i 's. The union of $P_{j}^{(i)}$ for all i 's is a one-way infinite path P_{j} for each $j=1, \ldots, k$. Thus we have constructed k pairwise vertex-disjoint one-way infinite paths P_{1}, \ldots, P_{k}. Now let H^{\prime} be the connected component of $G-\left(R_{0} \cup S_{0}\right)$ which contains paths from R_{0} to S_{0}; it is a finite graph, because it contains no infinite path. Let $H^{\prime \prime}$ be the graph by the union of R_{0}, S_{0} and the vertex set of H^{\prime}. Let T_{0}^{\prime} be a spanning tree of $H^{\prime \prime}$. If we add the paths P_{1}, \ldots, P_{k} to it, we obtain a spanning tree T_{0} of H. We can construct a spanning tree T of G having T_{0} as a subtree and this is the required spanning tree for $k=d(\mathfrak{C})$.

Now suppose $1 \leqq d(\mathfrak{E})<k$. We proceed by induction. Suppose that there exists a spanning tree T_{1} of G having $k+1$ ends contained in \mathfrak{E}. Then T_{1} contains $k+1$ pairwise vertex-disjoint one-way infinite paths P_{1}, \ldots, P_{k+1} belonging to \mathfrak{E}. There exists a subgraph G^{*} of G such that the subgraph T_{1}^{*} of T_{1} induced by $V\left(G_{0}\right)$ consists of the rests $P_{1}^{*}, \ldots, P_{k+1}^{*}$ of P_{1}, \ldots, P_{k+1}. As P_{1}^{*}, P_{k+1}^{*} belong to the same end of G, there exists a one-way infinite path Q in G having infinitely many common vertices with both P_{1}^{*} and P_{k+1}^{*}. We traverse Q starting at its initial vertex. Whenever we enter a vertex v of P_{k+1}^{*} by an edge e not belonging to P_{k+1}, we add e to T_{1}^{*} (previously e was not in T_{1}^{*}). Simultaneously we delete the edge of P_{k+1}^{*} ending at v (when traversing P_{k+1}^{*} from its initial vertex). As Q has infinitely many common vertices with P_{k+1}^{*}, in this way we delete infinitely many edges of P_{k+1}^{*}, thus none of its rests is in the resulting graph. Evidently neither a new one-way infinite path, nor a circuit is obtained; thus we have constructed the required tree.

These lemmas imply a theorem.
Theorem 1. Let G be a connected infinite locally finite graph, let \mathfrak{C} be its free end, let $d(\mathfrak{E})$ be finite. Let k be an integer. Then the following two assertions are equivalent:
(i) $1 \leqq k \leqq d(\mathfrak{C})$.
(ii) There exists a spanning tree of G having exactly k ends included in \mathbb{E}.

Corollary 1. Let G be a connected infinite locally finite graph with finitely many ends $\mathfrak{E}_{1}, \ldots, \mathfrak{E}_{m}$ of finite degrees. Let k be an integer. Then the following two assertions are equivalent:
(i) $m \leqq k \leqq \sum_{i=1}^{m} d\left(\mathfrak{E}_{i}\right)$.
(ii) There exists a spanning tree of G having exactly k ends.

Now we shall consider the case when $d(\mathbb{E})$ is infinite.
Theorem 2. Let G be a connected infinite locally finite graph, let \mathfrak{E} be its free end, let $d(\mathfrak{F})=\aleph_{0}$. Then there exists a spanning tree T of G having infinitely many ends belonging to \mathfrak{E}.

Proof. The construction is similar to that from the proof of Lemma 3. However, here the cardinalities of the sets S_{i} are not equal; they form a non-decreasing sequence tending to infinity. If $\left|S_{i}\right|=\left|S_{i+1}\right|=k$, we construct the paths $P_{1}^{(i)}, \ldots, P_{k}^{(i)}$ in the same way as in the proof of Lemma 3. If $k=\left|S_{i}\right|<\left|S_{i+1}\right|=l$, we construct again $P_{1}^{(i)}, \ldots, P_{k}^{(i)}$ and denote their terminal vertices in S_{i+1} by $a_{1}^{(i+1)}, \ldots, a_{k}^{(i+1)}$. The remaining vertices in S_{i+1} will be denoted arbitrarily by $a_{k+1}^{(i+1)}, \ldots, a_{l}^{(i+1)}$. Now for each positive integer j the path P_{j} is the union of paths $P_{j}^{(i)}$ for all i 's for which such a path exists. Thus we have infinitely many pairwise vertex-disjoint one-way infinite paths P_{1}, P_{2}, \ldots. From G we delete all edges which join a non-initial vertex of one of these paths with a vertex of another one; then we construct a spanning tree of the graph thus obtained. This tree is the required tree T.

Now we propose two conjectures.
Conjecture 1. Let G be a connected infinite locally finite graph, let \mathfrak{E} be its free end, let $d(\mathfrak{E})=\aleph_{0}$. Then for each positive integer k there exists a spanning tree T of G having exactly k ends included in \mathfrak{E}.

Conjecture 2. The assertion of Lemma 1 holds even without the assumption that \mathfrak{E} is free.

We present a partial result concerning these conjectures.
Theorem 2. There exists a connected infinite locally finite graph G with one end \mathfrak{E} such that $d(\mathfrak{E})=\aleph_{0}$ and with property that for each positive integer k there exists a spanning tree T_{k} of G having exactly k ends.

Proof. We will construct the graph G. Its vertex set is the set of all ordered pairs
(i, j) of positive integers. Two vertices $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ are adjacent if and only if either $i_{1}=i_{2}$ and $\left|j_{1}-j_{2}\right|=1$, or $j_{1}=j_{2}$ and $\left|i_{1}-i_{2}\right|=1$. Let N denote the set of all positive integers. Let P_{0} be the one-way infinite path with the vertex set $\{(i, 0) \mid i \in N\}$. For each $k \in N$ let P_{k} be the one-way infinite path with the vertex set $\{(k, j) \mid j \in N\}$. Further, for positive integers i, k let $Q_{i}^{(k)}$ be the finite path which is the union of the path with the vertex set $\{(k+i, j) \mid j \leqq i+1\}$ and the path with the vertex set $\{(j, i+1) \mid k \leqq j \leqq k+i\}$. Now the tree T_{k} is the union of the paths $P_{0}, P_{1}, \ldots, P_{k-1}, Q_{1}^{(k)}, Q_{2}^{(k)}, \ldots$.

Reference

[1] Halin, R.: Über unendliche Wege in Graphen: Math. Annalen 157 (1964), 125-137.

Author's address: 46117 Liberec 1, Studentská 1292, Czechoslovakia (katedra tváření a plastů VŠST).

