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SEQUENTIAL CONVERGENCES ON LATTICE ORDERED GROUPS 

MATÚŠ HARMINC, Košice 

(Received November 25, 1986) 

Sequential convergences on groups were investigated by J. Novák in [11], cf. also 
the surveys of R. Frič and V. Koutnik [4, 5]. The notion of sequential convergence 
on an abelian lattice ordered group was introduced in [8] ; the non-abelian case was 
dealt with in [9]. Several particular cases of convergences on lattice ordered groups 
were studied by C. J. Everett and S. Ulam [3] and by F. Papangelou [12]. The rela
tions between the system of all convergences on a lattice ordered group G and higher 
degrees ofdistributivity of G were investigated by J. Jakubik in [10]. 

Let G be a lattice ordered group. The system of all sequential convergences on G 
will be denoted by Conv G (for definitions, cf. Section 1 below). This system is 
partially ordered by the set inclusion. In the present paper the order properties of 
Conv G will be investigated. We establish that Conv G is a complete lower semilattice 
and every closed interval ofConv G is a complete Brouwerian lattice. The equivalence 
ofthe following four conditions will be shown: 
(1) Conv G has a greatest element; 
(2) Conv G is an upward-directed set; 
(3) Conv G is a lattice; 
(4) Conv G is a complete lattice. 
The atoms of Conv G are described constructively in the case when G is abelian. 

Some of these results were announced at the Conference on Convergence in 1984 
(cf. [7]). 

1. PRELIMINARIES 

For notation and terminology we refer to G. Birkhoff [2] and L. Fuchs [6]. 
Throughout the paper, G denotes a lattice ordered group and G+ denotes the positive 
cone of G. 

Let N be the set of all positive integers. The set of all sequences in G will be denoted 
by GN. The set GN is a lattice ordered group with respect to the induced operation 
and order of G. The constant sequence (g, g, g9...) is denoted by const (g). If S e GN 

then S(n) denotes the n-th term of the sequence S. 
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1.1. Definition. A subset Yof (GN)+ is said to be G-normal, if const(#) + S — 
— const (g) e Y whenever g є G and S e Y. 

1.2. Definition. A G-normal convex subsenrigroup P of (GN)+ will be called 
a convergence on G if the following conditions are satisfied: 

(I) If S is a sequence belonging to P, then each subsequence o f S belongs to P 
as well. 

(II) Let Se(GN)+. If each subsequence of S has a subsequence belonging to P, 
then S belongs to P. 

(III) Let g є G. Then const (g) є P if and only if g = 0. 
The system of all convergences on G will be denoted by Conv G. 

1.3. Remark. Let P є Conv G. Further, let S e GN and g e G. We denote by Tthe 
sequence with T(n) = \S(n) — g\ for each n e N. We put S ^P g if and only if Te P. 

L e t P e C o n v G. It is easy to verify that the following assertions are valid (for 
detailed proofs cf. [9]): 

(i) if S ^ p g then T ^ p g for each subsequence Tof S; 
(ii) if S e GN and iffor each subsequence Sx of S there exists a subsequence S2 of St 

such that S2 ~>p g, then S ^ P g; 
(iii) const (#) ~>p g whenever g e G; 
(iv) if S ~>P g± and S ^>P g2 then gt = g2\ 
(v) ifSjL -^Pg1andS2 ^Pg2ihQn(S1 - S2) ^p(flfi - 02)>( si л ^ ) ^ p ( # i A #2) 

and(S^ v S2)-*p(g! v #2); 
(vi) if Si ~>P flf, S2 ^ p flf and if S e GN with Sx(n) й S(n) й S2(n) for each n є N9 

then S ^ p #. 
In view of the above properties each convergence on Ggives a convergence group 

in the sense of [4, 5, 11]. 
Conversely, let us have a partial function ^> from GN into G fulfilling(i)-(vi); 

if we put P = {S e (GN)+ : S -+ 0} then P є Conv G and the partial functions ^ and 
^ P coincide. 

1.4. Remark. Let P, g є Conv G. Then P <= g if and only if S ~>P g implies 
S ^Q g whenever S є GN and g є G. Therefore there is a one-to-one order preserving 
mapping from Conv G into the set {^P: P є Conv G}, both naturally ordered. 

2. SEMILATTICE Conv G 

Again, let G be a lattice ordered group. Let the set Conv G be partially ordered 
by inclusion. In this section we are concerned with the properties of the partially 
ordered set Conv G. We denote by I a non-empty system ofindices. 

2.1. Lemma. Let P ^ C o n v G for each ieI, Then the infimum of {Р^ієІ} 
in Conv G exists. Namely, inf{Pf: ieI} = С\ШР^ 
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Proof. Immediate; it suffices to verify that fW Pi є Conv G (by Definition 1.2). 
The following construction will help us to solve the question about suprema in 

Conv G. 
Let 7be a non-empty subset of (GN)+. We denote 

ôY = {S є (GN)+: there exists R є 7such that S is a subsequence of R); 
<7> = {Se(GN)+: there exist # l5JR2,...5jRfceYand дид2,-;9ке^ such that 

S(n) = 0! + Px(n) - gx + g2 + R2(n) - g2 + ... + gk + Kk(n) - gk for each 
neiV}; 

[7] = {S e (GN)+ : there exists R e 7such that S(n) g R(n) for each n e N}; 
7* = {S e ( G ^ : for each subsequence S± of 5 there exists a subsequence 52 of S1 

such tha tS 2 e7} ; 
7=[<<57>]*. 

2.2. Theorem. Lei 7 be a non-empty subset of (GN)+. If [<<57>] does not contain 
const(#) for any g e G, g Ф 0, then Y is the smallest element of Conv G con
taining Y.In the opposite case there exists no P e Conv G containing 7. 

This assertion was established for the abelian case in [7] (Theorem 2). In the 
non-abelian case only slight modifications in the proof are needed (for details cf. [9], 
Theorem 1.18). 

2.3. Lemma. Let P( є Conv G for each i eI. If there is Pup є Conv G such that 
Pi Я Pup for each i e I then there exists sup {P^ i e 1} in Conv G. Namely 
sup{P,:ze/} = <UieiP*>*. 

Proof. The system 9 = {PeConvG: P £ Pup} has a greatest element. By 
Lemma 2.1, ̂ 9 is a complete lattice. Therefore there exists a supremum Psup of the 
system {Pf: i e / } in ^ . Clearly, Psup is the supremum of {Př: і є і } in ConvG. 
Denote 7 = Uiei^i- It is easy to see that У с Pup and thus also [<5Y>] c Pup. 
Since Pup has no constant sequence except const (0), [<<57>] cannot have it, either. 
By Theorem 2.2, Psup = 7. In order to complete the proof it suffices (because of 
OY= 7 and [<7>] 2 <T» to prove that [<7>] s <7>. Then Psup = F = 
= [<<57>]* = <7>* = <Uiei^r>*. So, let Se[<5Y>], i.e. SG(GN)+ and there is 
Te <7> such that S{n) й T(n) for each n e N. There exist k є iV, Гу є 7, ^ є G for 
each j є {1, 2,. . . , k] such that T = £ J . t (const (^) + T; - const (gj)). 

For the moment fix n є АГ. 
We have 0 S S(n) ^ Jjei(ffj + Г/п) - ^ ) . Because of the Riesz property 

of a lattice ordered group (see for example [6]) there are S^n),S2(n),...,S^n) 
in G such that 0 ^ S,{n) ^ ^ + Tj(n) - g} for each j e {1, 2, . . . , Jc}, and S(n) = 
= I;=^,(n). 

In this way we get sequences Sj e (GN)+, j e {1, 2,. . . , k} with Sj ^ const (#y) + 
+ Tj - cohst(#,.) and S = ^ = i Sj. Now, Tse 7 implies S ; e 7 for each j e 
e{l ,2, . . . , / t} andthus Se<7>. 

2.4. Lemma. Lei {Р£: і є/} Ье a chain in Conv G. ТЪеи (Uiei^0* Є Conv G. 
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P r о о f. Straightforward. 
A partially ordered set K is said to be a complete lower semilattice if each non

empty subset ofX has an infimum in K. 

2.5. Theorem, (a) Conv G is a complete lower semilattice. 
(b) Every chain of Conv G is bounded., 
(c) Every closed interval of Conv G is a complete Brouwerian lattice. 

Proof, (a) is a corollary of Lemma 2.1. 
(b) is a corollary of Lemma 2.4. 
(c): An arbitrary closed interval of Conv G has a greatest element and by Lemma 

2.1, it contains infima of all of its non-empty subsets. Therefore it is a complete 
lattice. In view of [2], it suffices to prove that the infinite meet-distributive law 
holds for this complete lattice. We will do it. Let Qu Q2 e Conv G and Qx Я Q2. 
Consider the closed interval of Conv G from Q± to Q2. Let P є Conv G such that 
<2jL я P Я Q2. Let / be a non-empty system of indices and let Pf є Conv G and 
<2i £= Pi Я Q2 for each i eI. Accordingto Lemmas 2.1 and 2.3, it suffices to verify 
that P О <U;ei P;>* = <Uiei (P n P,)>*. 

" c " : Let SePn <UieiPi>* and let T be a subsequence of S. Then there is 
a subsequence R of Tbelonging to <Uie/Pi>. Therefore there are Sx,S2,...,Ske 
є Uiei Pi and 0 l5 02 , . . . , flfk є G such that P = %j=i (c°nst (^) + Sj - const (#,•)). 
Since gj + Sj(n)-gjuR{n) for each neJV, ;e{l ,2 , . . . , ic} and R e P , thus 
S,. є P for each j є {1, 2, . . . , k}. Because of Sj e VieI Př we have {Sl9 S2,..., S j £ 
S U/e/ (P n Pi) and JR є <Uiei P n Př)>. Therefore S є <UřeJ (P n P,)>*. The con
verse inequality ( " з " ) is obvious. 

Let G and Conv G be as above. Then the discrete convergence onG defined by 
d(G) = {S є (GN)+ : S(n) = 0 for all but finitely many n e N} is the smallest element 
of Conv G. On the other hand, Conv G need not have a greatest element (cf. [7, 9]). 
J. Jakubik has shown in [10] that if G is a completely distributive archimedean 
lattice ordered group, then Conv G has a greatest element. 

2.6. Theorem. Thefollowing conditions are equivalent: 
(1) Conv G has a greatest element. 
(2) Conv G is an upward-directed set. 
(3) Conv G is a lattice. 
(4) Conv G ï5 a complete lattice. 

Proof. (1) implies (2), trivially. (2) and Lemmas 2.1, 2.3 imply (3). (3) implies (4): 
Suppose that Conv G is a lattice but not a complete one. In view of Lemmas 2.1 and 
2.3 there are P^ConvG, і є / , such that <U/ejPi>*iConvG. By Theorem 2.2 
(with Y = Uiei Pi) t n e r e exists g є G, g Ф 0, such that const (g) e <^)іє/ Pf>. Hence 
there are sequences Sl9 S2, •••» Sfc ш Uie/ P» and elements gl9 g%> •••> £fc in G such 
that 0 = £* . i (^j + Sj(n) - #;) for each n є 7V. For each ; e {1, 2,. . . , fe} there is 
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i(j)eI with SjEPi(jy However, it follows that a finite subset of ConvG, e.g., 
{P,-(i), ^i(2)> •••> Рцк)} has no upper bound in Conv G; this contradicts (3).Finally, 
(4) implies (l) trivially. 

3. ATOMS OF Conv G 

In this section we assume that G is an abelian lattice ordered group. First we recall 
some notions. Let S be a sequence in G. Then S is said to be orthogonal if S(n) > 0 
for each n e N and S(i) л S(j) = 0 for each i, j є iV, i Ф j . 

An element Ь є G is basic if b > 0 and the interval from zero to b is a chain. 
The notion ,of an atom of the partially ordered set Conv G has the usual meaning. 

Thus, a convergence P є Conv G is an atom in Conv G if for each Q є Conv G, 
ß £ P implies g - d{G) or g - P and P Ф d(G). 

3.1. Lemma. LetG have no basic element and let Se GN with S(n) > Ofor each 
n є N. Then there existTand S0 in GN such that 
Tis orthogonal, 
S0 is a subsequence of S and 
T(n) g So(n)for each n e N. 

Proof. Since S(l) is not basic, there exist al9 bx є G such that 0 < ax < S(l)y 

0 < bx < S(1) and at л b± - 0. 
Denote N1 = {neN: S(n) л ax > 0}. 
IfiV1 is a finite set, then put T(l) = at and denote by S' the sequence that arises 

from S by deleting the terms S(n) for which S(n) л ax > 0. 
If Nt is infinite, then put T(1) = bt and denote by S' the sequence that arises-

from S л const (oi) by deleting the first term and all zero members. 
In both of these cases our choice yields T(l) and Sf such that 0 < T(l) < S(l)? 

S'(n) > 0 for each n є N, S' л const (T(l)) "= const (0) and a subsequence S^ of S 
such that S'(n) g 5'i(^) for each n є JV. Since 5'(1) is not basic either, we can repeat 
the same procedure as we did for S, now for S'. In this way we obtain T(2) є G> 

S" є GN and a subsequence S2 of 5 such that 0 < T(2) < S'(l), S" л const (T(2)) = 
- const (0) and 0 < S"(n) ^ S2(n) for each n e N. Moreover, T(l) л T(2) = 0. 

We proceed by induction. The sequence T obtained is orthogonal and there is 
a subsequence S0 of S' with T(n) ^ So(n) for each n є iV. 

3.2. Lemma. IfP is an atom o/Conv G řfoen í/i^re is no orthogonal sequence in P . 
Proof. Assume to the contrary that T is an orthogonal sequence and TeP. 

Denote 
T^n) = T(2n) and 
T2(n) = T(2n + 1) for each n є АГ and put 
P1 = Щ and 
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p2 = {T2}. By [8] (Theorem 7.3 and Corollary 7.6) we have Px є Conv G, 
P2 e Conv G and Px Ф P2. On the other hand, Px g P and P2 £ P (cf. Theorem 
2.2). Since P is an atom in Conv G and neither Px nor P2 is a discrete convergence, 
Px = P = P2 is valid, which is a contradiction. 

From 3.1 and 3.2 we obtain 

3.3. Theorem. If G has no basic element then Conv G has no atom. 

From now on throughout this section, let B denote the set of all basic elements 
of G. For a subset H of G we denote # 1 = {g e G: \g\ л |ft| = 0 for all h e Я}. 

3.4. Lemma. Let P be an atom in Conv G and let S є P with S{n) > 0 /or each 
n є 2V. Гйеи {S(n): n є iV} n В1 is a finite set. 

Proof. On the contrary, suppose that there exists a subsequence S' of S such 
that S'(n) e BL for each n є N. Since Б 1 is a convex i-subgroup of G and thus an 
l-group without basic elements, we can apply Lemma 3.1 for B1 and S'. Therefore 
there are T' and S'0 in GN such that 
T' is orthogonal, 
S'0 is a subsequence of S' and 
T'(n) ^ SóM for each n e N. 
Clearly, T' є P, which contradicts Lemma 3.2. 

3.5. Lemma. Let H be a linearly ordered convex l-subgroup of G and let S be 
a decreasing sequence in H with inf{S(n): neN} = 0. Then [Š] is an atom in 
Conv G. 

Proof. Denote Ра = Щ. By applying the results of [8], PaeConvG. We 
shall show that Pa is an atom in Conv G. Let P є Conv G and let P я Pa. It is 
easy to verify that P n HN and Pa n HN are elements of Conv H. According to [8] 
(Theorem 3.9), Conv H has at most two elements including d{H). Since S є Pa n HN 

and thus Pa n HN Ф d(tf), either P n # " = d(H) or P n Я* = Pa n # N follows. 
Because P = (P n #N)* and Pa = (Pa n Hw)*, we have P = (P n Я*)* = (d(H))* = 
= d(G) or P = (P n Я")* = (Pa n #*)* = Pa. 

3.6. Theorem. Let PeConvG. Тйвп thefollowing conditions are equivalent: 
(i) P is an atom in Conv G; 
(ii) řfoere exisfs a linearly ordered convex l-subgroup H of G which contains 

a decreasing sequence S such that inf{S(n): n eN) = 0 and P = [S}. 
Proof. Let P be an atom in Conv G and let Te P, Тф d{G). Assume that the set 

{n є N: T(n) л b > 0} is finite for each b e B. By Lemma 3.4, the set {neN: there 
is b є B such that T(n) л b > 0} is infinite. Then there is a subsequence ST of T 
and a one-to-one sequence SB e BN such that ST(n) л 5ß(n) > 0 for each n є N. 
If we denote T0(n) = ST(n) A SB(n) for each n є iV, then Т0 є P and T0 is orthogonal, 
which contradicts Lemma 3.2. So, our assumption above was not right and there 
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is b0 e B such that the set {n є N: T(n) л b0 > 0} is infinite. Let S0 be the sequence 
that arises from T by deleting all terms T(n) for which T(n) л b0 = 0. Clearly, 
S0eP. 

Denote H = {bo}11- Then H is a linearly ordered convex /-subgroup of G (cf. [1], 
Proposition 3.2.3 and Corollary 7.2.5) and S0(n) e H for each n e N. It is easy to see 
(cf. [8], Lemma 3.3) that there exists a decreasing subsequence S of S0; therefore 
S e P and Щ £ P. Since P is an atom in Conv G and S ф d(G), we have Щ = P. 
By [8] (Lemma 3.2) we conclude mf{S(n): n eN) — 0. Lemma 3.5 completesthe 
proof. 
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