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ON GRATZER’S PROBLEM OF BINARY 1-STEP
CONGRUENCE SCHEMES

IvAaN CHAJDA, Pferov

(Received October 7, 1987)

For a type 7 of algebras, a congruence scheme of type t is a sequence py, ..., p,
of polynomials of type 7 together with a function t: {1,...,n} — {0, 1}. A class of
algebras A" of a type 7 has a Uniform Congruence Scheme {py, ..., p,; t}, briefly
UCS, if for each 4 € & and every ay, dy, by, by of 4, 04, by ) € 8{a,, a,) if and only
if

bo = pl((l,(l), C(l, 1), vy c(l, nl)) ,
. pday sy (i, 1), ..., i, ny)) =
= pirs(@isry i + 1, 1), o ci + 1,n44)) for i=1,...n—1,
by = pfas—ym» c(n, 1), ..., ¢(n, n,))
for some elements c(i, j) € A. A function ¢ is called a switching function.

A class o has l-step principal congruences (with a trivial switching function),
see [1], if for any a, b, ¢, d of Ae A", {c,dy e Ba,b)if and only il ¢ = p(a, zy, ...
..y z,), d'=p(b, zy, ..., z,) for some (n + 1)-ary polynomial p and some elements
Zyy .. 2y Of A.

A class & has a l-step UCS if it has a UCS and 1-step principal congruences
with a trivial switching function. In this case, the congruence scheme is formed by
a single polynomial p fixed for all A€ A" and any a, b € A. The function ¢ can be
omitted in this case.

It was proved in [2] (Theorem 13) that {py, ..., p,; t} is a UCS for some A~ of
type T containing no constant if and only if all p; are at least binary. The paper [1]
asked for a characterization of varieties with 1-step principal congruences. Moreover,
G. Gritzer in [3] formulated the folloving

Problem. Find a nontrivial class A of groupoids such that for every Ae A
and every a, b, c,d of A,

{e,dyeb(a,b) ifandonlyif c=a+y, d=b+y

for some y € A.
The aim of the paper is to give a description of such varieties of algebras.
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Let A be an algebra. A binary relation R on A is compatible if it has the substitu-
tion property with respect to all operations of A. Denote @ = {<{x, x); x € A}.
R is reflexive if w < R. If a, b € A, denote by R(a, b) the least reflexive compatible
binary relation on A containing the pair {a, b).

Lemma 1. Let a, b, x, y be elements of an algebra A. Then {x, y) € R(a, b) if and
only if x = p(a, zy, ..., z,), y = p(b, zy, ..., z,) for some (n + 1)-ary polynomial p
and some elements z;e A (i = 1, ..., n). '

The proof is straightforward.

Hence, an algebra A has 1-step principal congruences with a trivial switching function
if and only if 6(a, b) = R(a, b) for each a, b of A.
Theorem 1. Let ¥ be a variety. The following conditions are equivalent:

(1) ¥ has 1-step principal congruences with a trivial switching function;
(2) for every Ae ¥ and every elements a,b,c,d € A, R(a, b).R(c,d).R(a, b) =
< R(c, d) R(b, a) R(c, d).
Proof. (1) = (2): Let Ae ¥ and let a, b, ¢, d, x, y be elements of A. Suppose
{x,y>€R(a, b)R(c,d) R(a, b).
By (1), we have v
(*) {x,yy€0(a, b)0(c,d)6(a, b).
Since A has 1-step principal congruences, we have
(0(e. 2) = 0(h(o). h(2)
for any homomorphism h of 4 and any elements v, z of A4 (see the remark after

Theorem 3.5 in [1]). Let h: A > A4/6(c, d) be the canonical homomorphism. Thus (x)
gives

<h(x), h(y)> € 6(h(a), k(b)) 6(h(a), h(b)) = 6(h(a), h(b)),

{x, ¥y eb(c,d)6(a, b) O(c, d) = 0(c, d) 0(b, a) O(c, d) .

By (1), we have <x, y) € R(c, d) R(b, a) R(c, d), which proves (2).
(2) = (1): Applying the condition (2) four times, we obtain
R(a, b) R(c, d) R(a, b) = R(c, d) R(b, a) R(c, d) =
< R(b, a) R(d, ¢) R(b, a) = R(d, ¢) R(a, b) R(d, ¢) =
S R(a, b) R(c, d) R(a, b) ;

thus (2) implies
(x=) R(a, b) R(c, d) R(a, b) = R(c, d) R(b, a) R(c, d)
for any A € ¥" and any elements a, b, ¢, d of A. Since R(a, b) is reflexive and com-
patible, we need only to show that R(a, b)is also symmetrical and transitive. However,
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R(a,a) = o = 6(a, a) and (**) give
R(a, b) = w R(a, b) o = R(a, b) ® R(a, b) = R(a, b) R(a, b)
proving the transitivity. Moreover, we have
R(a, b) = R(a, b) R(a, b) = R(a, b)  R(a, b) = w R(b,a) = R(b, a),
whence the symmetry is evident. Thus 6(a, b) = R(a, b) and A has 1-step principal
congruences with a trivial switching function.
For the sake of brevity, denote by z the sequence z, ..., z,. The foregoing Theorem
1 and Lemma 1 enable us to characterize 1-step principal congruence varieties in
terms of polynomials:
Theorem 2. Let ¥~ be a variety. The following conditions are equivalent:
(1) ¥~ has 1-step principal congruences with a trivial switching function;
(2) for each (n + 1)-ary polynomials f,g there exist (n + 3)-ary polynomials
D, q, T such that
f(x,2) = q(f(y. z. x, y, 2),
p(y x, v, 2) = 4(9(x, 2), x, y, 2) »
p(x, x, v, 2) = r(f(y, 2), x, y, 2) ,
; 9(v, z) = r(g(x, 2), x, y, 2) .

Proof. (1) = (2): Let A = F,,,(x, y, 2y, ..., z,) be a free algebra of ¥ with free
generators X, y, zy, ..., Z,. Let f and g be (n -+ 1)-ary polynomials over ¥". By
Lemma 1,

{f(x,2), f(y, 2)> e R(x, y) ,

<g(x, 2), 9(v, 2)> € R(x, y) ,
thus

(. 2), 9y, 2)> € R(x, y) R(f(y, 2), g(x, )) R(x, y) -
By Theorem 1 this implies

{f(x, 2), 9(y, 2)> € R(f(, 2), 9(x, 2)) R(y, x) R(f(y, 2), 9(x. 2)) ,

i.e. there exist elements ¢, d € A such that
{f(x, 2), > e R(f (¥, 2), 9(x, 2)),
{e,dy e R(y, x),
<d, 9(, 2)> € R(f(y. 2), 9(x. 2)) -

Since A is a free algebra, Lemma 1 implies the existence of (n + 3)-ary polynomials
P, g, r such that

f(x, z) = a(f(y, 2), x, ¥, 2)
¢ =q(g(x, 2),x, 5, 2),
d=r(f(y,2),x,»,2),
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9(y, z) = r(g(x, 2). x. y. 2)
¢ =p(y.x, 5, 12),
d= p(x, X, Y, z) .

(2) = (l): Let Ae ¥, leta, b, c, d, x, y be elements of A and suppose
{x,y>€R(a, b)R(c, d) R(a, b) .
Then <{x,z) e R(a, b), <z, v) e R(c, d),‘<v, yye€ R(a, b) for some elements z, v of A.
By Lemma 1, there exist polynomials f, g and elements ey, ..., ¢, € A with
x =f(a,e), z=f(be),
v =g(a,e), y=g(be).
By (2), there exist (n + 3)-ary polynomials p, g, r such that

x = f(a,e) = q(f(b,e),a,b,e) = q(z,a,b,e),

p(b,a, b, e) = gq(g(a,e),a, b, e) = q(v,a,b,e),
thus
{x.p(b,a,b,e)yeR(z,v) = R(c,d).

Analogously, we can prove
{p(a,a,b,e), y>eR(c,d).
Moreover, Lemma 1 implies

{p(b,a,b,e), p(a,a,b,e))eR(b,a),
thus
{x, y> € R(c, d) R(b, a) R(c. d) .

By Theorem 1, (1) holds.

If ¥~ has a 1-step UCS, we need not investigate all polynomials f, g in (2) of
Theorem 2 since R(a, b) is determined by a single polynomial.

Let a, b be elements of an algebra A and let p be an (n + 1)-ary polynomial over 4.
Denote

Dy(a, b) = {{x.y>; x = p(a, z), y = p(b, z) for some ze€ A"} .
Lemma 2. Let p be an (n + 1)-ary polynomial of an algebra A. A has 1-step

UCS {p} if and if 6(a, b) = D,(a, b) for every a, b of A.
The proof is evident.

Definition. An (n + 1)-ary polynomial p of A is generic (in A) if Dja,b) =
= R(a, b) fot every a, b of A. A polynomial p is generic in a variety ¥" if it is generic
ineach Ae 7.

Theorem 3. Let p be an (n + 1)-ary polynomial of an algebra A. The following
conditions are equivalent:
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(1) pis generic;
(2) (i) for every a, b of A there exists z € A" such that p(a, z) = a, p(b, z) = b;
(ii) for every a, b, x of A there exists z € A" such that p(a, z) = x = p(b. z);
(iii) for every a, b of A, for each m-ary operation f of A and each z, ..., Zn €
€ A” there exists z € A" such that
f(p(a> zl)’ ey p(aa zm)) = p(a* z) ’
f(p(b> zl)’ cre p(b7 zm)) = p(b7 z) .
The proof is a direct consequence of the fact that D,(a, b) = R(a, b) if and only
if a, by e D,(a, b), ® = D,a, b)and D [a, b) is compatible.
Corollary 1. Let A be a groupoid (i.e. an algebra with one binary operation +).
The following conditions are equivalent:
(1) X + y is a generic polynomial,
(2) (1) for every a, b e A there exists z € A with
a+z=a, b+z=0;
(ii) for every a, b, x € A there exists ve A with
a+v=x=b+v;
(i) for every a, b, x, y € A there exists w e A with
(@a+x)+@+y)=a+w,
(b+x)+(b+y)=b+w.

Theorem 4. Let ¥ be a variety and p and (n + 1)-ary polynomial. The following
conditions are equivalent:

(1) {p} is the 1-step UCS in ¥, i.e. {x, y) € 0(a, b) if and only if x = p(a, z),

-y =pb, z);
(2) p is a generic polynomial in ¥~ and there exist (2n + 2)-ary polynomials
Wis ooy Wy €15 -ons €. f15 .0y fu sSUch that

p(x, 2) = p(p(y, 2), es(x, ¥, 2, 0), ..., e(x, y, 2, v)) ,
Py, wi(x, y, 2, 0), ..., wix, y, 2, 0)) =
= p(p(x, v), es(x, ¥, 2, 9), ..., &%, ¥, 2, ),
plx, wi(x, y, 2, 0), .o, w(x, y, 2, 0)) =
= p(p(y, 2. f1(x, y, 2, 0), ... ful%, ¥, 2, 0)),
p(y, v) = p(p(x, v), f1(x, ¥, 2, ), ... fulX, ¥, 2, ¥)) .

Proof. (1) = (2): Since {p} is a L-step UCS, then clearly p is a generic polynomial
in¥.Let A = F,,,5(X, Y, 2y, ...s Zy, Uy, ..., D,) be a free algebra in . Clearly

<p(x, 2), p(v, 2)> € R(x, y)
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and

{p(x,v), p(y, v)> € R(x, y),
thus

<plx, 2), p(v. v)> € R(x, y) R(p(y> z). p(x, v)) R(x, ).
By Theorem 1, this implies
<p(x. 2), p(y. v)> € R(p(y. 2), p(x, 2)) R(y, x) R(p(y: 2), P, v)) »
i.e., there exist elements ¢, d of A such that
<plx. 2). > € R(p(y, 2), p(, v)) »
e,dye(y, x),
<d, py, v)> € R(p(y, 2), p(x, v)) -
By (1), there exist elements ey, ..., e, fy, ..., fus Wy, ..., W, Of A such that
p(x. z) = p(p(y, 2), €15 .- €4) s
¢ = p(p(x,v), ey,....¢,),
¢ = p(y, Wiy oo W) s
d = p(x, Wy, .0 W),
d = p(p(y. 2), f1, s fu) s
p(y. v) = p{p(x, v), f1, . fu) 5

whence (2) is evident.

(2) = (1): Let ¥ satisfy (2), Ae ¥ and let a, b,c,d,x,y be elements of A.
Suppose

{x, ¥y € R(a, b)R(c,d) R{a, b).
Then there exist elements r. s € A4 such that
(x,r>eR(a,b), {(r.syeR(c,d), {s,y>eR(a,b).
Since p is generic, we have R(a. b} = D(a, b), R(c,d) = D,(c, d), thus
x = pla,z), r = p(b,z) and
s = pla,v), y = p(b,v) forsome z,vof A".
By (2). there exist w;, e;. f; (i = 1, ..., n) such that
x = p(a. z) = p(p(b, ), ey(a, b, z,v), ..., e,(a, b, z,v)),

p(y. wi(x, ¥, 2, v). ... w(x, y, z,v)) = p(p(a, v), e,(a, b, 2,v), ..., ea, b, z,v)),
thus
<x, p(b. wy, ....w,)> € R(p(b, z), p(a, v)) = R(r,s) < R(c, d).
Analogously,
{pla,wy, ..., w,), ¥> e R(c, d).
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MO'WOVCT, <p(b, wy, ..., ), p(a, Wis oo, w,)> € R(b, a). thus (x, y> e R(c,d).
. R(b, a) R(c, d). By Theorem 1, 6(a, b) = R(a, b). Since p is generic, 0(a, b) =
= D,(a, b) and Lemma 2 implies (1).

Corollary 2. In a variety ¥ of groupoids, the following conditions are equivalent:
(1) <x,y>eb(a,b)ifandonly if x = a + z, y = b + z;
(2) x + y is a generic polynomial in ¥ and there exist 4-ary polynomials
e, f, w such that
x+z=(y+z)+ex, yz0),

y 4+ w(x, y,2,0) = (x + v) + e(x, y, 2, v},

|81
<
~—

x + w(x,y,2,0) = (y + z) + f(x, y.
yH+ov=(x+uv)+f(x pz0).

Remark. Corollaries 1 and 2 give the answer to Griitzer's problem.The condition
(ii) of Corollary 1 (or of Theorem 3) is rather restrictive. It can be deleted if we
modify the congruence scheme as follows:

{x,y>€0(a, b) if and only if either x=y or x=a+z, y=b+z.
In such a case, (iii) of Corollary 2 must be replaced by
(iii"y for any a, b, x, y of A there exist w, u, z of A with

(@a+x)+(@a+y)=a+w, b+x)+(b+y)=b+w,
x+(@+y)=a+u, x+(b+y)=0b+u,
(@+x)+y=a+z, b+x)+y=>b+:z.
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