Czechoslovak Mathematical Journal

Jéan Jakubik
Retracts of abelian lattice ordered groups
Czechoslovak Mathematical Journal, Vol. 39 (1989), No. 3, 477-485

Persistent URL: http://dml.cz/dmlcz/102319

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102319
http://dml.cz

Czechoslovak Mathematical Journal, 39 (114) 1989, Praha

RETRACTS OF ABELIAN LATTICE ORDERED GROUPS

JAN JakuUBik, KoSice

(Received November 15, 1987)

Retracts of partially ordered sets were investigated in [1], [2], [3] and [4]. In
particular, in [4] they were applied for defining the notion of a variety of partially
ordered sets (namely, a nonempty class of partially ordered sets is said to be a variety
if it is closed with respect to retracts and direct products).

The present paper deals with retracts of direct products of abelian lattice ordered
groups.

Assume that an abelian lattice ordered group H is an internal direct product of
its [-subgroups 4 and B. Let G be a retract of H. It will be shown that G need not be,
in general, an internal direct product of a retract of 4 and a retract of B. Nevertheless,
it will be proved that there exist a retract R; of 4 and a retract R, of B such that G
is isomorphic to the direct product of R, and R,.

The above result will be applied for investigating retracts of lattice ordered groups
which can be represented as direct products of a finite number of linearly ordered
groups. Further, complete retract mappings of a complete lattice ordered group
are studied.

Retract varieties of abelian lattice ordered groups (defined analogously as varieties
of partially ordered sets [4]) will be investigated in a subsequent paper by using the
results established here.

PRELIMINARIES

We recall that a nonempty subset Q of a partially ordered set P is said to be a retract
of P if there is an isotone mapping f of P onto Q such that f(q) = ¢ for each element g
of Q.

Let us remark that each nonempty subset of a partially ordered set is viewed as
being partially ordered by the inherited relation of the partial order.

Let H be an abelian lattice ordered group and let G be an I-subgroup of H. If
there exists a homomorphism f of H onto G such that f(g) = g for each element ¢
of G, then G will be said to be a retract of H. Also, the mapingp f with the just
mentioned properties will be called a retract mapping of H onto G.

We shall apply the following notation which concerns direct products and lexico-
graphic products.
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Assume that A and B are I-subgroups of H such that the following conditions are
satisfied:

(i) for each h € H there exist uniquely determined elements h(A4) e A and h(Bj e B
such that h = h(A4) + h(B);

(i‘i) for each h, h' € H and each t € {+ , A, v} we have

(hth') (A) = h(A) 1 h'(4),

and similarly for B.

Under these assumptions H is said to be an internal direct product of A and B;
we shall express this fact by writing H = (i) 4 x B.

If Ay, A,, ..., A, are I-subgroups of H, then the relation

H=(i)A4; x A, x ... x 4,

is defined analogously as in the case of two internal direct factors.

If A, and B, are lattice ordered groups, then their direct product 4; x B, is
defined in the usual way. Let H = (i) A x B. The mapping ¢: H > A x B defined
by ¢@(h) = (h(A), h(B)) for each h € H is an isomorpnism of H onto A x B.

Let
(1) H=(i)4xB
be valid and let X = H. Then we put

X(4) = {x(4): xe X} ;
X(B) is defined analogously.

Now assume that H is linearly ordered. Next, let A and B be [-subgroups of H
such that the condition (1) above is satisfied and that, moreover, the following con-
ditions hold:

(iii) for each h, h" € H we have (h + h’)(A) = h(A) + h'(A), and similarly for B;

(iv) for each he H we have h 2 0 if and only if either h(A) > 0, or h(4) =
and h(B) = 0. :

Under these assumptions H will be said to be an internal lexicographic product
of A and B, and we write H = (i) A - B.

If A, and B, are linearly ordered groups, then we can define their (external)
lexicographic product A, o B, (cf., e.g., [5]). If
@) H=()4.B
holds, then the mapping ¢: H — A - B defined by ¢(h) = (h(A), h(B)) for each
h € H is an isomorphism of H onto A - B.

If (2) holds and X < H, then X(A) and X(B) are defined analogously as in the

case of the direct product.
The following two lemmas are easy to verify.

1.1. Lemma. Let (1) be valid-and let X be an l-subgroup of H. Then the following
conditions are equivalent:
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(i) X(4) € X and X(B) < X;

(i) X = (i) X(4) x X(B).
Moreover, if there are l-subgroups A, By of A and B, respectively, such that
X = (i) 4, x By, then A; = X(A) and B; = X(B).

1.2. Lemma. Let H be linearly ordered and let (2) hold. Let X be an I-subgroup
of H. Then the assertion of 1.1 remains valid if the symbol x is replaced by o.

1.3. Lemma. Let f: H — G be a retract mapping and let H, be the kernel of f.
Then the group H is a direct sum of its subgroups G and H,.

Proof. Clearly we have G n H, = {0}. Let ze H. Put g = f(z), hy =z — g.
Then hy, e H,. Assume that ¢'e G, hi e H, and z = g' + h}. Thus g = f(z) =
= f(g') + f(h}) = g’. and then h; = hj. Therefore the group H is the direct sum
of G and H,.

DIRECT PRODUCT DECOMPOSITIONS

Again, let H be an abelian lattice ordered group. Assume that the relation (1)
above is valid.

2.1. Lemma. Let A, be a retract of A (with the corresponding retract mapping g,)
and let By be a retract of B (with the corresponding retract mapping g,). Put

f(h) = g,(h(A)) + g>(h(B)) for each heH,

and f(H) = G. Then G is a retract of H (with the corresponding retract mapping f).
Moreover, G = (i) Ay x B,.

The proof is routine; it will be omitted.

Let f: H > G be a retract mapping. Let x € H, x(4) = a. x(B) = b. Then f(x) =
= f(a) + f(b). Denote

fay(A4) = ay, f(a)(B) = by, J(b)(4)=az, f(b)(B)=b,.
Hence
f(x) =ay + by +a, + b,.

2.2. Lemma. Under the above notation we have
f(al) =a; + by, f(bz) =da, + b,,
f(by) = fa) = 0.
Proof. First we assume that x = 0. Because of a; = 0 and b; = 0 we obtain
f(a;) = 0 and f(b,) 2 0. Since f(a) = a, + b,, we have f(a) = f(f(a)) = f(a;) +
+ f(b,). Thus f(b,) < f(a). But a A b, = 0, whence f(a) A f(b;) = 0 and thus

f(by) = 0. Therefore f(a,) = a; + b;. |
Similarly we can verify the validity of the relations f(a,) = 0 and f(b,) = a, + b,.
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Now let x be any element of H. Since x can be expressed in the form x = x; — x,
where x,, x, € H and 0 £ x, 0 < x,, we infer that the assertion of the lemma holds
for x as well.

Denote K, = f(4), K, = f(B).
2.3. Lemma. K, and K, are l-subgroups of G; moreover, G = (i) K; x K.
Proof. Since 4 is an I-subgroup of H and f: H — G is a homomorphism, K, is
an l-subgroup of G. Similarly, K, is an l-subgroup of G.
Let 0 £ x € G. Then under the above notation we have
x = f(x) = f(a) + f(b), 0= f(a)eK,, 0= f(b)ekK,.
Since a A b = 0, we obtain f(a) A f(b) = 0, whence
x = f(a) v f(b).
If x' is another element of G*, then (under analogous notation) we have
A xl =f(a') v f(bl) .
because a A b’ = b A a’ = 0, we infer that
x A x" = (f(a) A f(a")) v (f(b) A f(b')) = fla ~na’) v f(bab),
and clearly
xvx =flava)vflbvb).

Hence the mapping x — (f(a), f(b)) (x € G*) is an isomorphism of the lattice G*
onto the direct product K} x K of the lattices K; and K5 . Thus in view of Theorem 2
in [6]. the relation G = (i) K; x K, is valid.

2.4. Lemma. Let x, a,a, and b, be as above. Next, let x', a’, ay and b} have an
analogous meaning. If a; = a}, then b, = b}.

Proof. Assume that a; = a}. According to 2.2 we have

a; + by = f(ay) = f(a}) = ay + b},
hence b, = b}.

2.5. Lemma. For k, € K, put fi(ky) = ky(A). Then fy is an isomorphism of K,
into A.

" Proof. The mapping f, is a homomorphism of K, into 4. Let k; € K, such that
fi(ky) = 0. Thus (under the notation as above) a; = 0 and then in view of 2.4 we
have also b; = 0, hence k; = 0. Thus the kernel of f, is a one-element set and
therefore f; is an isomorphism of K into A.

Similarly we define the mapping f, of K, into B; the results are analogous.

2.6. Lemma. For each a € Awe put ¢,(a) = fy(f(a)). Then ¢, is a homomorphism
of A onto f(K,) and ¢,(a;) = a, for each a, € f(K,).
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Proof. According to the definition of K, the mapping f reduced to 4 is a homo-
morphism of 4 onto K,. Hence in view of 2.5, ¢, is a homomorphism of A onto

fl(Kl)'

Let a, € f,(K;). There exists k, € K; such that (under the above notation) we
have k; = a; + b;. Next, according to 2.2 the relation f(a;) = a, + b, is valid,
whence ¢,(a,) = a;.

2.7. Corollary. f,(K,) is a retract of A.
Similarly we can define the mapping ¢, of K, into B; we obtain analogous results.
From 2.1, 2.3, 2.5 and 2.7 we infer:

2.8. Theorem. Let H and H' be lattice ordered groups, H = (i) A x B. Then the
following conditions are equivalent:

(i) H' is isomorphic to a retract of H.

(ii) There areretracts A, of A and By of B such that H' is isomorphic to A; x B,.

This result can be generalized by an obvious induction for the case when H is an
internal direct product of a finite number of lattice ordered groups.

Again, let G = (i) 4 x B and let R be a retract of G. The following example
shows that R need not be a direct product of a retract of A and a retract of B.

2.9. Example. Let H be the set of all pairs (x, ) of integers; the operations +, A,
v on H are defined componentwise. Put
A={(x,y)eH:y=0}, B={(x,y)eH:x =0}.

We have H = (i) A x B. For each (x, y) € H let f((x, y)) = (x, x). Then f is a retract
mapping and f(H) is a retract of H.

Since f(H)(A) = A and A fails to be a subset of f(H), in view of 1.1 the lattice
ordered group f(H) cannot be represented as an internal direct product A, x B,
where 4; and B, are l-subgroups of A or B, respectively.

3. LINEARLY ORDERED GROUPS

In this section we assume that H is an abelian linearly ordered group.

3.1. Lemma. Assume that H = (i) A o B. For each h € H put f(h) = h(A). Then f
is a retract mapping of H onto A.

Proof. This is an immediate consequence of the definition of the lexicographic
product.
Assume that f: H — G is a retract mapping and let H, be the kernel of f.

3.2. Lemma. Let hy e H; and 0 < g€ G. Then h; < g.

Proof. By way of contradiction, assume that there are 0 < ge G and h, € H,
such that g < h,. Since H, is an l-ideal in H we obtain g € H, which is impossible.
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3.3. Lemma. Let he H, f(h) = g, h — g = hy. Then the following conditions are

equivalent:
(i) h 20

(i) g >0, 0r g =0 and hy 2 0.

‘Proof. Let (1) be valid. If g < 0, then h; = —g > 0; in view of 3.2, this is a con-
tradiction. Thus g = 0. If g = 0, then clearly h; = 0. Hence (i) holds. The implica-
tion (ii) = (i) is a consequence of 3.2.

An [-subgroup G of H will be called a large lexicographic factor of H if there is
an [-subgroup G, of H such that H = (i) G - G;.

From 1.3, 3.1 and 3.3 we obtain:

3.4. Theorem. Let H be an abelian linearly ordered group and let G be an
l-subgroup of H. Then the following conditions are equivalent:

(i) G is a retract of H;

(ii) either G = {0} or G is a large lexicographic factor of H.

The above'theorem and Theorem 2.8 (generalized to a finite number of factors)
yield

3.5. Theorem. Let H be a lattice ordered group, H = (i) A; X A, X ... X A,,
where Ay, A,, ..., A, are linearly ordered groups. Let H' be a lattice ordered
group. Then the following conditions are equivalent:

(i) H' is isomorphic to a retract of H. ,

(ii) There are linearly ordered groups By, B,, ..., B, such that H' is isomorphic
to By x B, x ... x B,, and for each ie{1,2,...,n}, either B, ={0} or B; is
a large lexicographic factor of A;. .

4. COMPLETE RETRACT MAPPINGS

A retract mapping f: H — G of a lattice ordered group H onto a lattice ordered
group G will be called complete if f is a complete homomorphism, i.e., if, whenever
{h}ier © H and Ayp h; = h, then Ay f(h;) = f(h) (and dually).

In this section we assume that H is a complete lattice ordered group and that
f+H - G is a complete retract mapping.

" It will be shown that if

(1) H=()AxB
is valid and if f is a complete retract mapping on H, then there is a refinement
(2) H = (i) A, x A, x B; x B,

of the internal direct product decomposition of (1) such that f can be constructed
by means of certain complete retract mappings on A, and B,, and complete homo-
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morphisms
(3) ¢1: Ay = By, @i A, > Ay, Y;:B,—> A, ¥2:B, - B,.
The following result is easy to verify.

4.1. Lemma. Let H be a lattice ordered group, H = (i) A, x A, x B; X B,.
Assume that mappings f1: Ay > Ay, f,: By > By and mappings (3) are given such
that the following conditions are satisfied:

(i) f1 and f, are retract mappings;

(1) @1, @2, ¥y and Y, are homomorphisms;

(iii) for each a, e A, and each b, € B, the relations f5(¢1(a2)) = 0 = fi(92(a2))
and f1(¥1(b,)) = 0 = f,(¥5(by)) are valid.

For each h e H put
(*) f(h) = f1(h(41)) + @2(h(42)) + h(A4;) + @1(h(42)) +

+ f2(h(B1)) + Ya(h(B,)) + h(B,) + ¥1(h(By)).
Then f is a retract mapping of H. If, moreover, all the homomorphisms f1, f5,
@1, P2, Yy and Y, are complete, then f is a complete retract mapping.

Below it will be proved that if (1) holds and if f is a complete retract mapping of H,

then there are direct decompositions

A=()A4, x A,, B=(i)B, x B,

and mappings f1, f2, ®1, @5, ¥; and ¥, with the properties as in 4.1 such that all
these mappings are complete homomorphisms and for each h e H the relation (x)
holds.

Thus let us suppose that (1) holds and that f is a complete retract mapping of H.
Denote

Ay ={aeA: f(a)e A} .
From the definition of 4, we immediately obtain:
4.2. Lemmma. A, is a convex I-subgroup of A.
For X < A we set
X? ={aeA:la] A |x| =0 for each xe X} .

4.3. Lemma. A% = 4,.

Proof. Clearly 4; < A%. Hence we have to verify that A%’ < A,. By way of
contradiction, suppose that 4% fails to be a subset of A,. Then there is 0 < a € A%
such that a does not belong to A,. Hence f(a) ¢ A. Thus there are 0 < a' € 4 and
0 < be B with f(a) = a’ + b. Then according to 2.2,

fla)y=a +b, f(b)=0.
Let {a;: i eI} be the set of all elements a; € A; with 0 < a; < a'. Since H is a com-
plete lattice ordered group, there exists

ay =V a;
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in A. Because f is a complete retract mapping, we have
f(ax) = Vielf(ai) .
Since f(a;)€ A for each iel, we infer that f(a;) A b’ = 0 whenever 0 < b’ € B;
hence f(a;) A b’ = 0 for each 0 < b’ € B. Thus f(a;) € 4 and hence a, € A,. Next,
0 < a’ — a,. If there existed 0 < a” < a’ — a, with a” € A,, then we would have
a, + a"eA; and
a,<a;+a" <a; +(a —a;)=a

which is a contradiction. Therefore a’ — a, € A5. At the same time, 0 < o’ — a, <
< a' e A; we obtain @’ — a; = 0, whence a’ = a, € 4,.

From 4.3 and from the completeness of H we get

4.4. Lemma. A = (i) 4, x A3.
For a e A} with f(a) = a, + b, a, € A, be B put ¢,(a) = b and ¢,(a) = a,(4,).

4.5. Lemma. ¢, is an isomorphism of Aj into B.

Proof. Let a € A3. Let a, and b be as above.

Since f is an endomorphism of H and since 49 is an I-subgroup of H, the mapping
@, is a homomorphism of A3 into B. Assume that (pl(a) = 0. Then a € A4,, hence
a = 0. Thus the kernel of ¢, is {0}, and therefore ¢, is an isomorphism.

4.6. Lemma. Let a € A}. Then f(a) (A43) = a.

Proof. There are a’€ A and be B withf(a) = a' + b. According to 2.2 we have
f(a’)y =a' + b, whence f(a’ — a) =0 and thus ¢’ — aeA4,. Put a' —a = a,.
Hence a’(4,) = a; and a'(4}) = a. Next, a’ = f(a) (4), thus

a'(43) = f(a) (4) (43) = f(a) (47).
We obtain f(a) (4]) = a.

Let us define B, and B} analogously as we did for 4, and 4% Lemmas 4.1—4.6
are valid for B, and B} as well; instead of ¢, and ¢, we now apply the notation v,
and ¥,.

For ae A, let us put f,(a) = f(a). We have f(f(a)) = f(a) € 4, thus f(a) € 4,.
Hence we obtain:

4.7. Lemma. f, is a retract mapping on A,.
If f, has an analogous meaning with respect to By, then 4.7 remains valid with f
replaced by f, and 4, by B,, respectively. :

From the definitions of the mappings under consideration we immediately obtain:

» 4.8. Lemma. All the mappings fy,f2, @y, @2, ¥y and , are complete homo-
morphisms.

4.9. Lemma. Let a € A2. Then ¢4(a) (B'{) = 0.
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Proof. Let a€ 4. Put f(a)(A) = a’, f(a) (B) = b. Then ¢,(a) = b. According
to 2.2 we have f(b) = 0, thus be B,. From ¢,(a) e B, we obtain ¢,(a)(B}) = 0.

Analogously, y,(b) (A7) = 0 for each b e B,.

Lemmas 4.5 and 4.9 yield:

4.10. Lemma. ¢, is an isomorphism of AS into By; similarly, Y, is an iso-
morphism of B} into A,.

4.11. Lemma. For each ae A2 and each be B} we have f(¢,(a)) =0 and
f1(‘//1(b)) =0.

Proof. In view of 4.10, ¢,(a) = f(a) (B,). Thus ¢,(a)€ B,. Hence f(¢4(a)) =
= f(¢4(a)). On the other hand, under the notation as in the proof of 4.9 we have
f(¢(a)) = f(b) = 0. Therefore f,(¢1(a)) = 0. Analogously we can verify the validity
of the relation f,(¥(b)) = 0.

4.12. Lemma. For each ac A’ and each be B} we have fi(¢y(a)) =0 and
f2(¥a(b)) = 0.

Proof. Let ae A}. Put f(a) = a' + b, a' € A, be B. Next, let a; = a'(4,). In
view of 4.2, a'(A}) = a. Denote a'(4,) = a,. Hence f(a) = a; + a + b, whence
f(a) = f(f(a)) = f(a,) + f(a) + f(b). According to 2.2, f(b) = 0. Therefore 0 =
= f(a,) = fi(a;) = f1(¢,(a)). Analogously we can verify that f2(¥a(b)) = 0:

The above results can be summarized as follows.

4.13. Theorem. Let f: H — G be a complete retract mapping of a complete
lattice ordered group H. Let H = (i) A x B. Let us apply the notation introduced
above and put A5 = A,, B, = B,. Then the conditions (i), (i) and (iii) from 4.1
are valid. For each h e H, the relation (x) from 4.1 holds.
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