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- Definition. An element m in a lattice is said to be relatively maximal with respect
to an element x when x £ m, and m < z implies x < z.

An-element in a lattice is said to be relatively maximal when it is relatively maximal
with respect to some element of the lattice.

Lemma. In any lattice, n(a) = A({a)\{a}) exists for every element a, and either
n(a) = a or a < 7n(a).

Proof is obvious.

This lemma makes the following definition legitimate:

Definition. An element a of a lattice is said to be completely (alias strictly) meet-
irreducible if a < n(a).

Proposition. Relatively maximal elements in a lattice coincide with completely
meet-irreducible elements in the lattice.

Proof. Suppose m is a relatively maximal element, say with respect to an element x.
Then x < n(m), and consequently m =# n(m). By the lemma, we obtain m < n(m).
To prove the converse, suppose a < n(a). It is easy to see that the element a is
relatively maximal with respect to n(a). Q.E.D.

Remark. In view of the preceding proposition, we may reformulate a well-known
theorem:

In a compactly generated (alias algebraic) lattice, every element is representable
as a meet of a set of relatively maximal elements.

(Cf. [1].)

The set of all completely meet-irreducible (i.e. relatively maximal) elements in
a lattice L will be denoted by Rm(L).

Theorem. Let L be a campdctly generated lattice. Denote r(a) =
= {xeRm(L) | a £ x}. Then the following conditions are equivalent:

(i) Lis distributive,
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(ii) r is an embedding of the lattice L into the dual of 2Rm(D)

(iii) (Va,be L) r(a A b) = r(a) v r(b) and r(a v b) = r(a) n r(b),

(iv) (Va,be L) r{a A b) = r(a) L r(b).

Proof. (i) = (iv): Take mer(a A b). In view of distributivity, m = m v
v(a Ab)=(mva)a(mv b). Since m is meet-irreducible, m = m v a or
m = m v b. Hence m e r(a) or me r(b), and consequently m € r(a) U r(b).

(iv) = (iii): Inclusions r(a) U r(b) = r(a A b) and r(a v b) = r(a) n r(b) follow
immediately from antitony of the operator r.

(iit) = (ii): It remains to prove that r is injective. Suppose r(a) = r(b). Inasmuch
as a = Ar(a) and b = Ar(b), we obtain a = b.

(ii) = (i): The lattice L is isomorphic to a sublattice of a Boolean lattice, and there-
fore distributive. Q.E.D.

Corollary. A mapping sending each element a of a distributive lattice L to the
complement of r(a) is an embedding of Linto 28™™,

Remark. In a distributive lattice, it is clear that all principal ideals with completely
meet-irreducible top elements are prime. However, not every prime ideal in a com-
pactly generated distributive lattice is principal. Hence we have obtained a generaliza-
tion of the Birkhoff theorem for finite distributive lattices to distributive compactly
generated lattices, distinct from the general case.
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