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STRICT TOPOLOGY AND PERFECT MEASURES 

SuRJiT SiNGH KHURANA, JoRGE E. ViELMA, Iowa City 

(Received September 10, 1986 in revised form February 27, 1987) 

Let X be a completely regular Hausdorff space, E a normed space over K, the field 
of real or complex numbers, and Cb(X, E) the space of all continuous E-valued 
functions on X. When E = K = R, the set of real numbers, a topology ßp is defined, 
in [6], on Cb(X, E) which gives its dual Mp(X) the set of all Baire perfect measures 
on X. In this case we consider the general case when E is a normed space. 

Notations of [3] will be used. X will always denote a completely regular Hausdorff 
space and E a normed space over K (scalars), the field of real or complex numbers. 
All linear spaces are taken over K. Cb(X, E) will be denoted by Cb(X) when E = K. 
X and vX will be respectively the Stone-Čech compactification and real compactifica-
tion ofX. M(X), Ma(X), M(X, E') have the meanings as in ([3], p. 196). For a con­
tinuous function / from X into a topological space Y9 / , / will respectively denote its 
unique extensions to X and vX if extensions are possible. Notations of [7] for locally 
convex spaces will be used. A locally convex space F is strongly Mackey if every 
relatively countably compact subset of (F', a(F\ F)) is equicontinuous. A subset Z 
of X will be called a zero set if Z = /*{0} for some/e Cb(X). The norm topology 
on Cb(X, E) is defined by ||/|| = sup |/(x)|. For a fi e (Cb(X), \\ • ||)', Д: C(X) ^ K, 
is defined by fi(f) = fi(f\X). xeX 

As in [6], Mp(X) denotes the space of all scalar-valued Baire perfect measures 
on X. A subset G in a completely regular space 7will be called distinguished ifthere 
exists a continuous mapping cp from Y onto a separable metric space such that 
G = 9_1(^(G)). The class of all distinguished subsets of X disjoint from X will be 
denoted by @(X) = D. For a DeQ), the topology yD, on Cb(X, E) is defined to be the 
one generated by the seminorms || • ||̂ , as g varies over BD(X)y all bounded scalar-
valued functions o n l , vanishing at infinity and zero on D, \\f\\g = sup (||/|| (x) |#(x)|). 

xeX 

As in ([9], Theorem 2.4) it can be verified that yD is the finest locally convex topology 
agreeing with the topology of uniform convergence on compact subsets of X \ D, 
on norm-bounded subsets of Cb(X, E) (note for a compact C cz X \ D, / є Cb(X, É) 
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norm sup off over C is in the sense sup | | / [ |"(C)) . We define ßp = A{yD: D є 9). 
As observed in [6] for every D e Ѳ, D n vX = 0. For a function fe Cb(X, E), 
\\f\\:X ^ R is defined by | |/ | | (x) = ||/(x)||. A locally convex topology on Cb(X9 E) 
will be called locally solid if it has a 0-nbd. base consisting of absolutely convex 
sets V, such t h a t / є V, \\g\\ ^ / i m p l i e s g e V(f, g in Cb(X, E)). For a duality <F, G>, 
Л c F. The polar of A = Л0 = {g є G, |<a, #>| ^ 1, for each « є A]. For any 
collection {Aa}aeI of subsets of a locally convex space F, ГаАа will denote the absolute­
ly convex hull of U Ал. We define Mp(X, E') = {,u є Ma(X, E% px e Mp(X) for 

ає/ 
every xeE}. It is known that цєМр(Х) implies |ju| eMp(X). First we prove that 
fi є MP(X, E') implies |^| є Мр(Х). 

Theorem 1. For а ju є Mp(X, E'), |^| є Мр(Х). 
Proof. From ([6], Theorem 2.1) if is sufficient to prove that \^\~*(D) = 0 for 

every De9. Take a Baire subset V0 of X such that M~(#) = 0, for any Baire 
B a V0 \ D. For any x є £, 
L J is perfect, this implies \fix 

й 1, \px\~ = H~> and S0 кЧ~ (B) = °* Since 

(Fo) = 0. So we get \fix\ (V0 n X) = 0. Take 
any finite partition {Ff: 1 й і й n} of V0 n Z , and any collection {xt: 1 <; ř й n} 
in £ with \xÁ g 1, for every í. From what is proved above it follows that 

|5>*, (Pi ) | = 0 a n d s o | ^ | ( F 0 n Z ) = O.Thismeans|^|-(Fo) = 0andso |^ | -* (D) = 
i=l 

= 0. Thus |^| is perfect. 
The following theorem is a simple consequence of the definition of ßp. 

Theorem 2. 

(i) ß0 й ßP й ßx. 
(ii) ßp is the finest locally convex topology agreeing with itself on norm-bounded 

subsets of Cb(X, E). 
(iii) Cb(X)®E is dense in (Cb(X,E),ßp) if it is dense in (CjX,E),fi,) ([3], 

p. 206). 
Prooffollows easily from the definition of ßp. 

Theorem 3. Let Y be a completely regular Hausdorffspace and q>: X ^ Ya con­
tinuous mapping. Then the canonical mapping (Cb(Y,E),ßp)^>(Cb(X,E),ßp). 
• ( / *^ / o q>) is continuous. 

Proof. For a distinguished set D0 in Y, D0 cz f \ Y, D = ф _ 1 ( / ) 0 ) є ^ , where 
ф: X -^> Yis the unique continuous extension. This implies that the mapping 

(Cb(Y,E),yDo)^(Cb(X,E),ßp) 

is continuous. The result follows now. 
For a p є ( О Д , E), || • D', define A„: СЬ(Х)+ ^ [0, oo), !„( /) = sup { | ^ ) | : g e 

eCb(X,E),\\g\\ ufi-

Lemma 4. Xß is additive and positively homogeneous. 
Proof. T a k e / є Cb(Xy, g e cb(X)+, such t h a t / + g ^ n > 0, on X, for some ц. 
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Taking any h є Cb(X, E), with |j/2|| ^ / + g, we get that 

| hf 
\f+9 

|s/, Й£ 1: 

f+9\ 
From 

**>4^)4^) 
it easily follows that 

ф + д)^К(Л + Ш-
Ontheo ther hand, take huh2 in Cb(X,E), \\кх\\ Sf, \\пі\\ й g. This g i v e s t ^ a t 

\\h + h2\\ й f + 0, which implies kJJ + flf) ^ A,(/) + A,(flf). Thus kJJ) + ЯД0) = 
= AM(/ + flf). In particular, Xj$) + Xj$) = Яд(1). Take a n y / l s 04 in Cb(*) + . From 
above it follows that kJJx) + k^(g,) + AM(l), АМ(Л) + Я Д ^ + 1) -
= Ші + ffi + 1) = W i + 9i) + A,(l) and so ЯДЛ + <h) - АД(Л) + Я ^ О -
Also it is easily verified that Яд(р/) = p Яд(/), for any p ^ 0 a n d / є C&(^)+ . 

Theorem 5. The space (Cb(X, £) , ßp) is locally solid, and has.a 0-nbd. base con­
sisting ofsolid absolutely convex sets. 

Proof. For any D e <%>, take gD: X ^ R, gD == 0 on D, gD bounded and vanishing 

at infinity and put VD = {feCb(X,E)9 sup || |/ | |"(*)#i>(*)| = *} a n d v= U VD. 
xeX , ОеѲ 

This gives V0 = ClV%, polar being taken in (Cb(X,E)9ßp)
f. Take fieV0. Since 

ßp <^ || • ||, ft є (СЬ(Х, E), || • ||)'. From Lemma 4 and the fact that each VD is locally 
solid it follows that fi e V0 if and only if Яд(||#||) ^ 1, for every g є VD, for each jD. 
Using Lemma 4, it is easily verified that W = {fe Cb(X, E), A^(||/||) ^ 1, for every 
pi є V0} is convex, contains F, is contained in F 0 0 , and is locally solid. This proves the 
result. 

Corollary 6. A netfa ^ 0, in (Cb(X9 JS), j8p), ř/ <md on/j; i/ ||/a|| ~> 0 in (Cb(X), ßp). 
Proof. Assuming/ a ~>0 in (Cb(X9E),ßp) take an absolutely convex, solid ßp 

0-nbd Win (Cb(X), ßp). This means for every D є @, there exists a #^ є £д(Х), such 
that W з P = rD{# є СЬ(Х): sup | |#|~ (x) flfD(x)| ^ 1}. Take W0 = 

хєХ 
= Ґ д { / є С ь ( Х , £ ) : sup | | |/ | |~ (x)fifD(x)| й 1}. Since Ж is locally solid, fae W0 

xeX~ 

implies ||/a|| є Ж This proves ||/a|| ^ 0. Conversely suppose ||/a|| ^*> 0 in (Cb(X), ßp). 
Fix а j ; є E with ||y|| = 1. We first prove that ||/.|| 3; ~> 0 in (Cb(X, £), jSp). Take an 
absolutely convex solid 0-nbd. V0 in (Cb(X, E), ßp). With above notations Кс => FT0, 
for some gD's in BD(X). Form P, as defined above, With these gD's. It is easy to see 

n m 
now that ||/.|| є P implies ||/,|| - ^ A^„ with £ |Af| g 1, sup | \g(\~ (x) gD(o(x)\ = 

i—l i=l хєХ~ m 
g 1 , for D(i) e 9, gt є Cb(X), 1 й і й n, for some n. Thus, | | / a | y = J] Я ^ ^ and 

i = 1 
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so | / e | | ye W0. Since ||/e|| <̂  || \\fa\\y\\ and V0 is locally solid / а є VQ. The result 
follows now. 

Theorem 7. / / X is realcompact ßp й ß«>- In this case Cb(X) ® E is dense in 
(Cb(X,E),ßp). 

Proof. If £ = K = Я, this result is proved in ([6], Prop. 4.6). First we prove 
t h a t / . ^ 0 in (C,(X, £), ^ ) if and only if ||/.|| ^ 0 in (Cb(X), ßJ. Suppose ||/e|| ^ 0 
in (Cb(X),fin). Take х є £ with ||x|| = 1. We claim that ||/,|| ® x ^ 0 in 
(Cb(X, £), ß J . Let A be an equicontinuous subset of MjjC, E'). This means \A\ = 
== {|ju|: ju є Л} is an equicontinuous subset ofM^(X). (This is proved in [3], Theorem 
3.7, p. 202). Now | j< | / . | | ® x)| ^ |^| (|| ||/.|| ® x||) - |^| (||/.||) ^ 0. uniformly for 
pieA. This proves the claim. Now ||/а|| й \\ ||/a|| ® *||, and ||/a|| ® x ^ 0. Since 
(Cb(X, £), ßw) is locally solid ([3], Theorem 8.1), we get / a ~> 0. 

Now suppose/a ^ 0 in ß«,. This means ||/e|| •+ 0 in (Q(X), j S j ([3], Theorem 8.1). 
Since ßp ^ j5^, considered as topologies on Cb(X) ([6], Theorem 4.1; this is proved 
for K = R9 but easily extends to the case when K = C), we get | | / J ~> 0 in ßp. 
By Corollary 6, this means fa ^> 0 in (Cb(X, E), ßp). Thus ßp ^ ß^, as topologies 
on Cb(Z, E). Since CÒ(Z) ® £ is dense in (Cb(X, £), 0 Д it follows that Cb(X) ® E 
is dense in (Cb(X, £), ßp). 

Theorem 8. / / Cb(X) ® £ is dense in (Cb(X, £) , jßp), then 
(i) /or any д є Mp(X, £'), L,(fi, X, £) з СЬ(Х, £); 

(ii) (Cb(X, £), ßp)' = Мр(Х, £), Le (Cb(X, £), ßp)' being related to corresponding 
fi e Mp(X, E') by L(f) = ii(f), # / є СЬ(Х, £). 

P r o o f i s very similar to ([3], Theorem 5.3) and is omitted. 

In the next theorem we give a new characterization of the topology ßp, which 
avoids the use of distinguished sets. 

Let 
SF = {(У, cp)-, F a separable metric space, 

q>: X ~> 7 a continuous onto mapping} . 

Every element F = (У, 9) є ŠF gives rise to a linear mapping TF: Cb(Y, £) ^ 
^ Q ( Z , £), ft ^ й 0 c>. 

Theorem 9. ßp is thefinest locally solid, locally convex topology Vp on Ch(X, E) 
such that the mappings 

TF:(Ch(Y,E),ßQ)^(Ch(X,E),Vp) 

are continuous for every F = (У, c>) є SF. 
Proof. When X is a separable metric space, ßp = ß0 (simple verification). Thus TF 

is continuous when Vp = ßp. This means Vp exists and Vp ^ ßp. To prove Fp ^ ||-|| 
wetakeasequence{/J c C ò ( Z , £ ) , / n ^ O i n | | - | | . F i x e e £ , | | e | | = l.Thecontinuous 
mapping q>:X^ RN, <p(x) = {||/n|| (x)} maps X onto the separable metric space 
Y= cp{X). The sequence {g.} c Q ( y £), ^ { | | / J (*)}) = ||/,|| (x) ® * uniformly 
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converges to 0 and so converges to 0 in (Cb(Y, E) ß0). Thus ||/,|| ® e converges 
to 0 in (Cb(X, E)9 Vp). Since (Cb(X, E)9 Vp) is locally solid, this means ft ~> 0 in 
(Cb(X9E),Vp). 

To prove Fp = ßp we first consider the case when E = K. Take a sequence {/„} c 
c Cb(X), / n J, 0. The mapping 

c>: X ^ Ä* , x ^ {/„(*)} 

is a continuous mapping from X onto a separable metric space q>(X). Fix a fi e 
e (Cb(X), Vp). Then q> * д є Mt(q>(X)) (note ф * ju(#) = fi(g o c>)). Since the sequence 
Ш c Сь(ф(Л:)), дп(Ш) = Л» monotonically decreases to 0, we get cp * fi(gn) ^> 0, 
from which it follows that fi(fn) ^ 0. Thus (Cb(X)9 Vp) c M,(X). Next we will 
prove that {Cb{X), Vp)' = Mp(X). Take a ^є(С ь (Х) , 7p)'. By the locally solid pro­
perty ofFp, |ju| e (Cb(X), ѴРУ cz Ma. Thus for any metric space 7and every q>: X ~> У, 
a continuous onto mapping, q>*\p\eMt(Y). Thus | ^ | e M p ( Z ) ([6], Lemma 2.2, 
p. 469). By ([6], Theorem 2.1) fi e MP(X). (Though results proved in [6] are for 
k = R9 they easily extend to when K = C). Since ßp ^ Fp, we get (Cb(X), Vp)' = 
= Mp(Jř). Now we are ready to prove that when E = K, ßp = Vp. Take H a Mp(X), 
H Fp-equicontinuous. There exists an absolutely convex solid Vp 0-nbd Win Cb(X)9 

such that W c Я 0 = {# є Cb(X): \fi(g)\ S 1, V^ є Я} . If # e W and /t є Я , then 
|ju| (jflf|) = sup {|ju(ft)|: |ft| g |of|: h є СЬ(Х)}. Since Ж is solid, we get |^| (\g\) й 1. 
Thus |Я| is Fp-equicontinuous, and so for any (7, c>) є #", ф * \Н\ is ß 0 - e q u i c o n t m u -
ous in Mt(Y). By ([6], Prop. 2.6, p. 471), Я is ßp-equicontinuous. This proves Vp 

and ßp on СЬ(Х). 
Now we come to the general case (Cb(X9E)9 Vp). Fix eeE, ||e|| = 1. We shall 

prove that the mapping ^ : (Cb(Z), ßp) ~+ (Cb(X, E)9 Kp), g ^ g ® e is continuous. 
Taking any & = (Y,q>)eF, the mappings TF:(Cb(Y9E)9ß0)^(Cb(X9E)9Vp)9 

д^доЦ>9 and y0:(Cb(Y)9ß0)--+(Cb(Y9E)9ß0)9 g^g®e are continuous. Let 
фх: ( Q ( 7 ) , jS0) ~> (Cb(X), ßp)9 g ^ # ° <P- F o r any locally solid, absolutely convex 
0-nbd U in (Cft(X, £) , 7,), ^ ( T f * ( U ) ) i s a °-nbd in (СЬ(У), jS0)- Since 
ФїХф'Щ) = yo(TfXU)) (simple verification), and Fp = jSp on Cft(Z), we get ý 
is continuous. Now take a net fa •*> 0 in (CbCX9E),ßp). This gives ||/a|| ~> 0 in 
(Cb(X), ßp)p. Since ф is continuous, ||/,|| ® e ^ 0 in (C,(Z, E)9 Vp). Since (Cb(X, E), Vp) 
is locally solid and ||/e|| g ||(||/.[| ® e)||, we g e t / . ~» 0 in (Cb(X, £), Kp). This proves 
the theorem. 

Theorem 10. Let X be a P-space ([2], p. 62). / / Cb(X) ® E is dense in (Cb(X9 E)9 ßp)9 

then (Cb(X9E)9ßp) is Mackey. If E is a Banachspace (Cb(X9E)9ßp) is strongly 
Mackey. 

Proof. Putting F = Cb(X,E) and Fr = Mp(X9E% let A be a norm-bounded 
relatively countably compact subset of (Fř

9 a(F\ F)). Since vX is topologically 
complete and P-space, Mœ(vX) = Mx(vX) ([10], p. 469). Further, since vX is also 
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a P-space ([2], p. 125), Mt(vX) = Mx(vX). Now using the factthat vX is realcom-
pact we get Mp{vX) c M^(vJ^). Combining these facts we get Mt(vX, E') = 
= M,(vX,E'). Fromthisiteasilyfollowsthat (Cb(vX9E),ßp)' = (Cb(vX,E),ßc)'. Since 
(Cb(vJT, £), jSo) is Mackey ([4]) and ß0 й ßp, we get ß0 = ßp. By Theorem 3, 
(Сь(ѵХ5 E), ßp) ^> (Cb(X, E), ßp) (f ^ f\x) is continuous. This means a p e MP(X, E') 
gives a 

# e M , ( v X , F ) , 

A(/) = K / | x ) , / e Q ( v I j ) . 

Also it is a simple verification that |$ |~ = [jExJ . Thus ^l = {fiifieA} is norm-
bounded and a(Mp(vX, E'), C(vX, E)) relatively countable subset of Mp(vX, E'). 
Since Mp(vX, E') = Mt(vX, E'), Â is a ft-equicontinuous subset of (Cb(vX, E), ßt)'. 
There exists an increasing sequence of compact subsets Kn of vX, such that 

\ß\~(X\Kn)u 
(p + l)(n + l)2n+í 

for each fi e H, where p = sup {|^| (Z): ^ є Я} [4]. Take any D e Ѳ, D c X \ X . 
This means Z) c X \ vX. Define gD: X ^ R, 

9D e £ 4 L ± i ^ Ä - i ) (ко = 0). 
ĵD vanishes at infinity. 

Take feCt(X,E), \\f\\~(x)gD(x)uU for every x e I This gives | |/ | |~ ^ 
^ n/4(p + 1) on Kn\Kn_±. For a jti є Я , 

IK/)I й H(il/Il) - Н~(«/«~) = i u . , l!/«~dH~ â 
i = 1 

< Z _ J L _ _ i _ p á i . 
^ 4(i? + 1) n 2й 

This proves Л° is a 0-nbd. in (Cb(X, E), ßp). This proves the theorem. 
Theorem 11. LeřX be a paracompact locally compact D0-space and E is a normed 

space. Then (Cb(X, E), ßp) is Mackey. If E is a Banach space, then (Cb(X, E), ßp) 
is strongly Mackey. 

Proof. A paracompact locally compact space is topologically complete ( [ l ] , 
Theorem 11.2, p. 92). Since X is a D0-space, this implies X is realcompact ([6], 
Theorem 4.1). Thus Mp(X) = Mt(X), which implies Mp(X, E') = Mt(X, E'). Since 
the result is known to be true in the case oftopology ß0 ([5]) , and ßp 2> ßQ, the result 
now follows. 
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