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Let X be a completely regular Hausdorff space, E a normed space over K, the field
of real or complex numbers, and C,,(X, E) the space of all continuous E-valued
functions on X. When E = K = R, the set of real numbers, a topology f, is defined,
in [6], on Cy(X, E) which gives its dual M (X) the set of all Baire perfect measures
on X. In this case we consider the general case when E is a normed space.

Notations of [3] will be used. X will always denote a completely regular Hausdorff
space and E a normed space over K (scalars), the field of real or complex numbers.
All linear spaces are taken over K. C,(X, E) will be denoted by Cy(X) when E = K.
X and vX will be respectively the Stone-Cech compactification and real compactifica-
tion of X. M(X), M,(X), M(X, E’) have the meanings as in ([3], p. 196). For a con-
tinuous function f from X into a topological space Y, f, f will respectively denote its
unique extensions to X and vX if extensions are possible. Notations of [7] for locally
convex spaces will be used. A locally convex space F is strongly Mackey if every
relatively countably compact subset of (F', o(F’, F)) is equicontinuous. A subset Z
of X will be called a zero set if Z = f'{0} for some f e C,,(X) The norm topology
on CyX, E) is defined by |f| = sup |f(x)]. i: C(X) » K,
is defined by fi(f) = p(f\X). *¥

As in [6], M,(X) denotes the space of all scalar-valued Baire perfect measures
on X. A subset G in a completely regular space Y will be called distinguished if there
exists a continuous mapping ¢ from Y onto a separable metric space such that
G = ¢~ *(¢(G)). The class of all distinguished subsets of X disjoint from X will be
denoted by 2(X) = D. For a De 2, the topology 75, on C,(X, E) is defined to be the
one generated by the seminorms ||« |,, as g varies over By(X), all bounded scalar-
valued functions on X, vanishing at infinity and zero on D, || f |, = su; (171 ) la(x)])-

Asin ([9], Theorem 2.4) it can be verified that yy, is the finest locally convex topology
agreeing with the topology of uniform convergence on compact subsets of X \ D,
on norm-bounded subsets of C,(X, E) (note for a compact C = X\ D, fe CyX, E)
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norm sup of f over C is in the sense sup | f||~ (C)). We define B, = A{yp: D € Z}.
As observed in [6] for every De %, DnvX = (. For a function fe CyX, E),
|£]: X - R is defined by |f] (x) = || f(x)||- A locally convex topology on Cy(X, E)
will be called locally solid if it has a 0-nbd. base consisting of absolutely convex
sets ¥, such that f € V, ||g| < fimplies g € V(f, g in Cy(X, E)). For a duality <F, G,
A < F. The polar of 4 = A° ={geG, |<a,g)| <1, for each ae A}. For any
collection {A,} ,e; of subsets of a locally convex space F, I',4, will denote the absolute-
ly convex hull of U A, We define M, (X, E') = {ue M (X, E'), pt,€ M}(X) for

act
every x € E}. It is known that ye M (X) implies |u| e M,(X). First we prove that
pe M, (X, E') implies ‘ul € M(X).

Theorem 1. For a pe M(X, E), |u| € M(X).

Proof. From ([6], Theorem 2.1) if is sufficient to prove that |u|™*(D) = 0 for
every D e 2. Take a Baire subset ¥, of X such that |u|™(B) = 0, for any Baire
B < Vo\D. For any x€E, |x| £1,|u|” £ |#|~, and so |ue|~ (B) = 0. Since
|u| is perfect, this implies |u|~ (Vo) = 0. So we get |n| (Vo 0 X) = 0. Take
any finite partition {V;: 1 < i < n} of ¥, n X, and any collection {x;: 1 < i < n}
in E with |x,-| <1, for every i. From what is proved above it follows that

| Zn:ux‘(V‘-)] = 0and so |ul (Vo m X) = 0. This means |ul~ (Vo) = 0and so |u|~*(D) =
i=1

= 0. Thus lul is perfect.
The following theorem is a simple consequence of the definition of f,.

Theorem 2.

(i) Bo < B, < Bi.

(ii) B, is the finest locally convex topology agreeing with itself on norm-bounded
subsets of C,(X, E).

(iii) Cy(X) ® E is dense in (Cy(X, E), B,) if it is dense in (CyX, E), B,) ([3],
p. 206).

Proof follows easily from the definition of f8,,.

Theorem 3. Let Y be a completely regular Hausdorff space and ¢:X — Ya con-
tinuous mapping. Then the canonical mapping (Cy(Y, E), B,) — (Cy(X, E), B,) .
.(f—»fo (p) is continuous.

Proof. For a distinguished set D, in Y, Dy = I\Y, D = §~Y(Dy) € 2, where
@: X — Y is the unique continuous extension. This implies that the mapping

_ (ColY, E), vn,) = (CH(X,, E), B,)
is continuous. The result follows now.
For a i (X, E). ||}, define 4, CiX)* [0, ), 4,(7) = sup {Ju(a)]: g ¢
e CX.E). [g] = 1}. ’
Lemma 4. 2, is additive and positively homogeneous. :
Proof. Take fe CyX)* g ¢ Cy(X)", such that f + g = 5 > 0, on X, for some 7.



Taking any h € Cy(X, E), with [|h| < f + g, we get that

|
k) = u(f}:{g) " u(f}fg)

it easily follows that

)“M(f + g) = }”u(f) + /lu(g) .

On the other hand, take hy, h, in Cy(X, E), |[h,| £/, ||112|| = g. This gives that
[hy + hy|| < f + g, which 1mpllesl {f + 9) 2 2(f) + 2(9) Thus 2,(f) + J,(g) =

= A(f + g). In particular, 2,(3) + 4,(3) = 4,(1). Take any f1, g; in Cy(X)*. From
above it follows that A,(f1) + A.(9:) + A1), Af1) + Alg: + 1) =

=2{f1 + g1+ 1) = 4(f1 + g1) + 4(1) and so A(f1 + 91) = L) + 2,(g,).
Also it is easily verified that A,(pf) = p A,(f), for any p = 0 and f e C,(X)*.

=9

f+g”

f+g“

From

Theorem 5. The space (Cy(X, E), B,) is locally solid, and has a 0-nbd. base con-
sisting of solid absolutely convex sets.

Proof. For any D € 9, take gp: X —» R, gp = 0 on D, g, bounded and vanishing
at infinity and put V), = {fe Cy(X, E), sup /17 (%) 90(x) )£ 1} and V=0V,

De2

This gives V° = V3, polar being taken in (Cy(X, E), B,)’. Take pe V°. Since
b 1s locally
solid it follows that u e V° if and only if A,(||g[) < 1, for every g € Vp, for each D.
Using Lemma 4, it is easily verified that W = {f e Cy(X, E), A,(||f]) £ 1, for every
pe V° is convex, contains V, is contained in ¥°°, and is locally solid. This proves the
result.

Corollary 6. A net f, - 0, in (C,(X, E), B,), if and only if |f,]| = 0 in (C,(X), B,)-

Proof. Assuming f, - 0 in (C,(X, E), B,) take an absolutely convex, solid f,
0-nbd W in (Cy(X), B,). This means for every D € Z, there exists a gp, € Bp(X), such
that W o P = I'p{g € C)(X): sup [g9]™ (x) go(x)| < 1}. Take W, =

= I'p{fe CyX, E): sup | ||~ (x) go(x)| < 1}. Since W is locally solid, f, € Wo
xeX~

implies | f,|| € W. This proves | f,] — 0. Conversely suppose | f,|| = 0 in (Cy(X), B,)-

Fix a y € E with ||y| = 1. We first prove that |f,| y — 0 in (C,(X, E), B,). Take an

absolutely convex solid 0-nbd. V; in (Cy(X, E), §,). With above notations Vg = Wo,

for some gp’s in BD(X). Form P, as defined above, with these gp’s. It is easy to se¢

now that ||£,[ € P implies || f,]| = Y Aigi, with )" || < 1, sup | |g|™ (x) go(¥)| =
i=1 i=1 xeX~ m

<1,for D(i)e T, g;e C(X), 1 < |y =3 4g:y and
i=1
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so ||f.]| v € Wo. Since ||f]| < || [Ife]y]| and Vo is locally solid f, e V. The result
follows now.

Theorem 7. If X is realcompact B, < Bo. In this case Cy(X) ® E is dense in
(CX. E). )

Proof. If E = K = R, this result is proved in ([6], Prop. 4.6). First we prove
that f, - 0in (Cy(X, E), B,,) if and only if || f,]| = 0in (Cy(X), B.,). Suppose ||f,]| = 0
in (CyX), Bo). Take xeE with |x| = 1. We claim that |f,]| ® x> 0 in
(Cy(X, E), B.,) Let A be an equicontinuous subset of M (X, E'). This means |A| =
= {|u|: 1€ A} is an equicontinuous subset of M ,(X). (This is proved in [3], Theorem
3.7, p. 202). Now |u(|f.]| ® x)| < |u| (| |/l ® x]) = |u| (| £]}) = ©. uniformly for
jt€ A. This proves the claim. Now ||f.| < | [f:] ® x|, and ||£.] ® x - 0. Since
(C(X, E), B.,) is locally solid ([3], Theorem 8.1), we get f, — 0.

Now suppose f, = 0in f,. This means | f,]| = 0 in (C(X), B.,) ([3], Theorem 8.1).
Since B, < B.,, considered as topologies on Cy(X) ([6], Theorem 4.1; this is proved
for K = R, but easily extends to the case when K = C), we get ||f,| = 0 in B,
By Corollary 6, this means f, - 0 in (Cy(X, E), B,). Thus B, < B, as topologies
on Cy(X, E). Since Cy(X) ® E is dense in (Cy(X, E), B.,), it follows that C,(X) ® E
is dense in (Cy(X, E), B,).

Theorem 8. If C,(X) @ E is dense in (Cy(X, E), B,), then

(i) for any pe M(X, E'), L,(1, X, E) > Cy(X, E);

(ii) (Cy(X, E), B,) = M(X, E), Le (Ci(X, E), B,) being related to corresponding
peMyX, E') by L(f) = u(f), % f e CyX, E).

Proofis very similar to ([3], Theorem 5.3) and is omitted.

In the next theorem we give a new characterization of the topology f,, which
avoids the use of distinguished sets.
Let

F = {(Y, ¢): Y a separable metric space,
¢@: X — Y a continuous onto mapping} .

Every element F = (Y, ¢)e & gives rise to a linear mappihg Ty: Cy(Y, E) >
— CX,E), h > hoo. »

Theorem 9. f, is the finest locally solid, locally convex topology V, on C,(X, E)
such that the mappings

Ty: (CW(Y, E), Bo) - (CW(X, E), V)
are continuous for every F = (Y, p)e &.

Proof. When X is a separable metric space, , = B, (simple verification). Thus Ty
is continuous when V, = B,. This means V, exists and V, = B,. To prove V, < |-
we take a sequence {f,} = Cy(X, E),f, - Oin ||+|. Fixe € E, |le] = 1. The continuous
mapping ¢: X — RY, ¢(x) = {||f,| (x)} maps X onto the separable metric space
Y = ¢(X). The sequence {g,} = C,(Y. E), g{{|f:] (x)}) = [/i] (x) ® e uniformly
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converges to 0 and so converges to 0 in (Cy(Y; E) Bo). Thus |fi]| ® e converges
to 0 in (CyX, E), V,). Since (CyX, E), V,) is locally solid, this means f; — 0 in
(CX, ), V),

To prove V, = B, we first consider the case when E = K. Take a sequence {f,} <
< CyX), f, 1 0. The mapping

p:X > RY, x-{f(x)}

is a continuous mapping from X onto a separable metric space @(X). Fix a pe
€ (Cy(X), V). Then ¢ * e M(p(X)) (note ¢ = p(g) = u(g - ¢)). Since the sequence
{9.) = C(0(X)), 9.({f:}) = £, monotonically decreases to 0, we get ¢ * u(g,) — 0,
from which it follows that p(f,) = 0. Thus (CyX), V,) = M, (X). Next we will
prove that (Cy(X), V,)’ = M,(X). Take a pe(CyX), V,)'. By the locally solid pro-
perty of V,, lul e (Cy(X), V,) = M,. Thus for any metric space Yand every ¢: X — Y,
a continuous onto mapping, ¢  |u| € M{(Y). Thus |u| e M(X) ([6], Lemma 2.2,
p. 469). By ([6], Theorem 2.1) e M,(X). (Though results proved in [6] are for
k = R, they easily extend to when K = C). Since 8, < V,, we get (CyX), V,) =
= M,(X). Now we are ready to prove that when E = K, B, = V,. Take H ¢ M (X),
H V,-equicontinuous. There exists an absolutely convex solid ¥, 0-nbd Win Cy(X),
such that W< H® = {ge Cy(X): |u(9)| < 1, VueH}. If ge W and peH, then
|1 (g]) = sup {|u(n)|: |n| < |g|: h € Cy(X)}. Since W is solid, we get |u|(|g]) < 1.
Thus |H| is V,-equicontinuous, and so for any (Y, ) e &, ¢ = |H| is Bo-equicontinu-
ous in M(Y). By ([6]. Prop. 2.6, p. 471), H is B,-equicontinuous. This proves V,
and B, on Cy(X).

Now we come to the general case (Cy(X, E), V,). Fix e€E, |le| = 1. We shall
prove that the mapping ¥: (Cy(X), B,) = (Cy(X, E), V,), g > g @ e is continuous.
Taking any % = (Y,¢)eF, the mappings Ty: (CyY, E), Bo) = (Cy(X, E), V,),
g—9go@, and Y,: (CyY), Bo) = (Cy(Y, E), By), g > g ® e are continuous. Let
Y1 (CY), Bo) = (Cy(X), B,), g = g o @. For any locally solid, absolutely convex
0-nbd U in (Cy(X, E), V,), ¥ *(Tr '(U)) is a O-nbd in (Cy(Y), Bo)- Since
Y1 ' (W (U)) = yg (T7 (U)) (simple verification), and ¥, = B, on C,(X), we get ¥
is continuous. Now take a net f, — 0 in (Cy(X, E), B,). This gives |f,] —» 0 in
(Cy(X), B,),. Since y is continuous, || f,| ® e = 0in (Cy(X, E), V,). Since (C,(X, E), V,)
is locally solid and ||£,]| = [[(|/.] ® e)|, we get £, » 0in (Cy(X, E), V,). This proves
the theorem.

Theorem 10. Let X be a P-space ([2], p- 62). If C,(X) ® E is dense in (Cy(X, E), B,),
then (Cy(X, E), B,) is Mackey. If E is a Banach space (C,(X, E), B,) is strongly
Mackey.

Proof. Putting F = Cy(X,E) and F' = M (X, E’), let A be a norm-bounded
relatively countably compact subset of (F’, o(F', F)). Since vX is topologically
complete and P-space, M, (vX) = M(vX) ([10], p. 469). Further, since vX is also
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a P-space ([2], p. 125), M (vX) = M (vX). Now using the fact that vX is realcom-
pact, we get M, (vX) = M,(vX). Combining these facts we get M,(vX,E’) =
= M, (vX,E'). From this it easily follows that (C,(vX, E), B,)’ = (C4(vX, E), B)". Since
(Cy(vX, E), Bo) is Mackey ([4]) and B, < B,, we get fo = B,. By Theorem 3,
(Cy(vX, E), B,) = (Cy(X. E), B,) (f = f|x) is continuous. This means a p e M,(X, E')
gives a

feM,(vX, E),

A(f) = u(flx) . feCy¥X, E).

Also it is a simple verification that = ||~ Thus 4 = {fi: e 4} is norm-
bounded and o(M,(vX, E'), C(vX, E)) relatively countable subset of M,(vX, E').
Since M,(vX, E') = M(vX, E'), 4 is a Bequicontinuous subset of (Cy(vX, E), B,).
There exists an increasing sequence of compact subsets K, of vX, such that

~ (N p
l“l (X Kn)é( +1)(n+1)2n+x’

for each pe H, where p = sup{]ul (X) peH} [4]. Take any De 2, D « X\ X.
This means D = X \vX. Define g,: X — R,

_ i 4(pn+ 1)

i=1

AknKn-n (Ko = 0).

gp vanishes at infinity.

Take fe CyX, E), (x) gp(x) = 1, for every xeX. This gives |f|~ <
< n/4p + 1) on K,\K,_,. Fora peH,

W) = Dl QD) = 1™ (UF1°) = 3 B 1™ ™ <
n 1
= psl

4p+1)n2"
This proves A° is a 0-nbd. in (Cy(X, E), B,). This proves the theorem.

Theorem 11. Let X be a paracompact locally compact Dy-space and E is a normed
space. Then (Cy(X, E), B,) is Mackey. If E is a Banach space, then (Cy(X, E), B,)
is strongly Mackey.

Proof. A paracompact locally compact space is topologically complete ([1],
Theorem 11.2, p. 92). Since X is a Do-space, this implies X is realcompact ([6],
Theorem 4.1). Thus M,(X) = M,(X), which implies M(X, E') = M(X, E’). Since
the result is known to be true in the case of topology B ([5]) and f, = B, the result

now follows.
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