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CAUCHY SEQUENCES IN ^ -GROUPS 

RoMAN FRic, Košice 

(Received January 4, 1988) 

The relationship between Cauchy sequences in an if-group G and Cauchy filters 
in the first countable filter modification yG of G (introduced by R. Beattie and H.-P. 
Butzmann in [4]) is investigated. In particular, an i^-group G (without the Urysohn 
axiom of convergence) and a Cauchy sequence S in G such that the corresponding 
elementary filter of sections of S fails to be a Cauchy filter in yG is constructed. 

1. 

In what follows, N denotes the positive integers, MON the set of all strictly 
monotone mappings of iV into N and FTON the set of all finite-to-one mappings 
of N into N (i.e., {n e N; s(n) = k} is a finite set whenever s є FTON and k є N). 
Let G be a nonempty set; a sequence <S = <S(n)> of points of G is a mapping of iV 
into G, and for s є MON the composition S o s denotes the subsequence of S the 
ři-th term of which is S(s(w)); for x є G, <x> denotes the constant sequence each 
term of which is x; if S, T are sequences in G, then S л T is defined by (S л T) . 
. (2n - 1) = S(n) and (S л T) (2n) = T(n), и e iV; if S is a sequence in G then the 
sets {S(n); ft > k], keN, form a base of the so-called elementary (Frechet)filter 
#'(iS) of sections of S; by a sequential convergence on G we understand a subset 
Ш cz GN x G satisfying certain axioms of convergence (throughout the paper we 
assume that every constant sequence <x> converges to x, each subsequence of a con
vergent sequence converges to the same limit and, with the exception of Proposition 1 
and Proposition 2, every convergent sequence has a unique limit), (<S, x) e © means 
that S converges (i.e. ©-converges) to x, and for x e G the set of all sequences con
verging to x is denoted by @*"(x). Let G be a group equipped with a sequential 
convergence © such that (5Т~ 1 , х з ;~ 1 ) є© whenever (S,x)e$> and (T,y)e&. 
Then (G, ©), or simply G, is said to be an J^-group (cf.[7]). We are mainly interested 
in abelian groups and in such cases the additive notation will be used. 

Besides the basic axioms of convergence, we consider the following ones (cf. [6]): 

{FSe) if (5, x) є © and iF(S) = jF( r ) , then (T, x) є ©; 

{JiSe) if (S, x), (T, x) є ©, then (S л Т, x) є ®. 
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Starting with a filter convergence A on a set X (we assume that for each x e X the 
ultrafilter x converges to x, and if a filter converges to x, then each finer filter con
verges to x), the most natural way to define a sequential convergence on X is to let 
a sequence S converge to a point x whenever the elementary filter #"(5) A-converges 
to x; denote by J*f(A) the resulting sequential convergence. As shown in [4], [2], [ l ] 
and [3], among all known opposite functors (assigning to suitable sequential con
vergences certain filter convergences) the one introduced by R. Beattie and H.-P. 
Butzmann plays a fundamental role: starting with a sequential convergence £ on X, 
a filter ŽF on X converges to a point x whenever there is a finer filter ^ with a coun
table basis such that every sequence £-converges to x whenever #"(S) з ^ ; denote 
by y(£) the resulting filter convergence. 

The importance of y follows, for instance, from the fact that the Novák completion 
of an abelian sequential convergence (the convergence is maximal, i.e., satisfies the 
Urysohn axiom) group G (cf. [11], [8]) can be constructed via the completion of 
the filter convergence group yG (see Corollary 3.16 in [1]) and, for every sequentially 
determined filter convergence group H (i.e. H = y<£H) with a maximal sequential 
convergence, the completion of H can be constructed via the Novák completion 
of S£R (see Corollary 3.18 in [1], cf. Theorem 8 in [3]). This is partly due to the 
fact that in case of a maximal sequential convergence a sequence S is Cauchy in G 
iff zF(S) is a Cauchy filter in yG. In view of Proposition 3.11 in [1], ifthe sequential 
convergence in G is not maximal then this might be not true any more. Indeed, 
answering a question by R. Beattie and H.-P. Butzmann, we construct an ^f-group G 
and a Cauchy sequence S such that J*(S) fails to be a Cauchy filter in yG. 

Our construction is based on the fact that in a group G every compatible sequential 
convergence on G can be identified with a certain subgroup of GN. The straight
forward proofs of the next two propositions are omitted. Similar propositions (with 
different axioms of convergence) can be found in [9] and [12]. 

Proposition 1. Let (G, ©) be an S£-group and let e be the neutral element of G. 

Then ©"(e) has thefollowing properties: 

(i) ©*~(e) is a subgroup of GN; 

(ii) flJT(x) = <x> ®*4*) = ®(e) <x> f°r aU x e G> 
(iii) if S e ®*~(e) and s є MON, then S o s є @*"(e); 
(iv) © has unique limits iff(e} is the only constant sequence in &^(e); 
(v) © satisfies axiom (J?J£) iffthefollowing implication holds: if Se©*~(e), 

then S л <e> є ©*~(e); 
(vi) © satisfies axiom (J^J*?) iffthefollowing implication holds: ifSe&*~(e), 

Te GN and 3F(S) - &(T), then Te ©"(e). 

Let G be a group. Identifying x є G with <x> є GN, we can consider G to be a sub
group of GN. A subgroup H of GN is said to be normal with respect to G ifgSg^1 = 
= <# S(n) g"1) e H whenever g є G and S є H. Let sé be a subset of GN. Let p,se 
be the set of all sequences S л <e> such that S є sé, let osé be the set of all sequences 
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S o s such that S є sé and s e MON, and let çsé be the set of all sequences TeGN 

such that SF^f) = #"(5) for some S e sé. Consider the set of all subgroups of GN 

containing sé and normal with respect to G. Denote by [ ^ ] G the intersection of all 
such subgroups. Then GN is the largest and [ ^ ] o the smallest element ofthe set. 

Proposition 2. Let G be a group and let sé be a subset of GN. 

(i) [ ^ ] G consists precisely of the finite products of sequences of the form 
gSeg~1 = {g S(n)E # " 1 ) , where g є G, S є sé and г = ± 1 . 

(ii) [çôsé^G is the smallest subgroup of GN containing sé, normal with respect 
to G and closed with respect to Ô and q>. 

(iii) There is a sequential convergence § ^ on G satisfying axiom (J^=sf) such 
that (G, bJ) is an &-group and sé c [^>5^]G = §^(e). 

(iv) If (G, §) is an J^-group such that § satisfies axiom (#"if) and sé c $*"(e), 

then £ v c §• 
(v) bjé has unique limits iff^P^sé^o contains no constant sequence except <e>. 

(vi) [çofisé^Q is the smallest subgroup of GN containing sé, normal with respect 
to G and closed with respect to fi, ô and q). 

(vii) There is a sequential convergence ©^ on G satisfying axioms (J^Jž?) and 
(Jä£?) such that (G, ©^) is an 5£-group and sé c ^cpô^isé~\G = ©^(e). 

(viii) / / (G, Щ is an Jg-group such that @> satisfies axioms (#"^f) and {Ji&) 
and sé cz $>^(e), then ©^ cz Ш. 

(ix) ©^ has unique limits iff[c>dßse]G contains no constant sequence except <(e). 

2. 

Cauchy sequences in =af-groups have been studied, e.g., in [5] and [10]. Recall 
that a sequence S in an j£?-group is Cauchy if S o s — S о t converges to 0 for all s, t e 
eMON. 

Definition. Let G be an if-group. A sequence S of points of G is said to be FTON-
Cauchy if S o s — S o t converges to 0 for all s, t є FTON. 

By Proposition 3.11 in [1], in an if-group G a sequence S is FTON-Cauchy iff 
J^(S) is a Cauchy filter in yG. Further (cf. Corollary 3.12 in [1]), if the sequential 
convergence in G is maximal, then each Cauchy sequence in G is FTON-Cauchy. 
In this section we construct (Example 1) an ^f-group G satisfying axiom (#"if) in 
which a Cauchy sequence need not be FTON-Cauchy. The construction is then 
modified (Example 2) so that G satisfies axioms (#"c^f) and (ЛЗ?). 

E x a m p l e 1. Let X be a countably infinite set arranged into a one-to-one sequence 
S = <5(n)>. Let G be the free abelian group generated by X. Denote by sé the set 
of all sequences of the form S o 5 — S o t, where s, t є MON. Observe that for each 
Te sé and each s є MON we have — Te sé and To s є sé. We shall define a sequential 
convergence § on X satisfying axiom (#"Jzf) in such a way that, first, each sequence 
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in sé will $-converge to 0 (hence S will be a Cauchy sequence), and, secondly, for 
ueFTON defined by u(l) = 1, w(2) = w(3) = 2, w(4) = ti(5) = u(6) = 3 , . . . , the 
sequence S o w will not $-converge to 0 (hence S will not be be a FTON-Cauchy 
sequence). 

In view of Proposition 2 it suffices to construct Jf cz GN such that: 

(i) Jf is a subgroup of G^; 
(ii) Sé Œ Jf\ 

(iii) To s є J ^ whenever Тє Jí and 5 e MON; 
(iv) if Те Л, U e GN and &(T) = &(U), then U є Л^; 
(v) <x> ф Jí whenever x Ф 0; 

(vi) S - 5 о и ф Jí\ 
and then put (T, x) є § iff Г - <x> є Jí. Observe that Jí = S"(0). 

Define уГ as follows: Т е Ж iff there are k є iV, Tř є ^ , 5^є FTON, і = 1 , . . . , fc, 
such that T(n) = (Tt 0 sx + .. . + Тк о sk) (n) for all but finitely many n є N. 

Claim. Jí satisfies all conditions ( i)-(vi) . 

Proof. Clearly, Jf satisfies conditions (i), (ii) and (iii). Condition (iv) follows 
immediately from Proposition 2 in [2] which asserts that (in sequential convergence 
spaces in which the convergence of a sequence does not depend on finitely many 
terms of the sequence) axiom (^Jsf) is equivalent to the fact that a sequence To t 
converges to x whenever Tconverges to x and t e FTON. Since G is a free group over 
the set {$(n); n є N}, <x> ф Jí for all x є G, x ф 0, and hence Jf satisfies condition 
(v). Finally, given k є N and sh tt e MON, ut є FTON, i — 1, ..., k, consider for 
each n є N the following proposition: 

(S - S o u) (n) = ((S o si - S o tt) o ux) (n) + . . . + ((S o sk -

- S o tk) o uk) (n) ; 

denote it by Р(и, (s l5 ..., sk), (i l 9 ..., tk), (w1? ..., uk)) or, simply by P(n). To prove 
condition (vi) it suffices to prove that for each p є N there exists q є JV, q > p, such 
that proposition P(q) is false. The proof is based on the so called box principle (if 
we place more than n objects into n boxes, then one of the boxes contains at least 
two objects) and the following observations. 

(Ox) For each jeN there exists meN such that j < \{peN; u(p) = ra}| and 
j < m < min {p e N; u(P) = m) ; hence the sequence S о и has arbitrarily long 
(finite) constant segments, while <(S — S о u) (n + 2)) is a one-to-one sequence. 

(0 2 ) For each i e {1, ..., k] we have (S о sL — S о tt) 0 w> = 5 o s f о ti£ — S o řř o ut 

and (S o Sj o u>i) (n) = (S o Si o ŵ ) (m) iff (S o íř o wf) (n) = (S o tt o Mf) (m), i.e., the 
sequences S o sř o ut and S o tt o wř- are constant on the same segments ofiV. 

Now assume that, on the contrary, for some k є N and for some sh tt e MON, 
UiEFTON, i = l , . . . , fc , proposition P(n) holds for all but finitely many neN. 
We claim that then for each p e N there exist j\,j2 є N such that p < j \ < j 2 and 
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proposition (Pji) is of the form 

*i - x = (yx - zt) + ..• + (yk - zk) , 

and at the same time proposition P(ji) is of the form 

x2 - x = (yx - zx) + .. . + (yk - zk) , 

where x, xx, x2 and also yh zh i = 1 , . . . , k, are generators of the free group G and 
x1 Ф x2. Since this is clearly impossible, either P(jx) or P(j2) is a false proposition. 
However, the claim is a straightforward consequence of (Ox) and (0 2 ) and the box 
principle. Indeed, using (Ox)9 start with a sufficiently large set M c N such that 
propositions P(j), 7 є M, have the form 

*/ - * = (Ул - zn) + ••• + (yjk - Zjh) , 

where x and xi? уд , ..., j j 7 c , z j l ? ..., zjk9 j e M, are generators of the free group G 
and Xj Ф x,n whenever j , m є M and j ф m; using repeatedly (0 2 ) and the box 
principle, we find a subset {jxJ2} of M such that for each i e { l , . . . , k] we have 
^jii = Уы anc* zyi = zJii- T r n s c°mplete the proof. 

E x a m p l e 2. Let X, G, S and j ^ be the same as in Example 1. Let fi<stf be the set 
of all sequences Tin G such that T = U л <0> for some U e sá. Define ©"(0) c= GN 

as follows: T belongs to ©"(0) iff there are k є iV, T; є ps/, st e FTON, і = 1 , . . . , fc, 
such that Т(и) = (To sx + ... + To sk) (n) for all but finitely many n eN. Finally, 
define © c GN x G by putting (T, x) є © iff (T - <x>) є ©"(0). In a similar way 
as in Example 1 it can be proved that G equipped with © is an i^?-group satisfying 
axioms (#"if) and (Ji<£) in which 5 is a Cauchy sequence but fails to be FTON-
Cauchy. 

Corollary 1. There exists an S£-group G satisfying axioms (J^JC?) and ( ^ ^ f ) , 
and a Cauchy sequence S in G such that ^(S)fails to be a Cauchyfilter in yG. 

The following result has been announced in [3]. 

Corollary 2. There exists an incomplete &-group H satisfying axioms (#"J^f) 
and {MSt) such that yH is complete. 

Proof. Consider the J5f-group (G, ©) from Example 2. Then G equipped with 
X = y(©) is a sequentially determined convergence group. Let (ô , X, eG) be the 
categorical completion of (G, X). By Theorem 3.9 in [1], (ô , X) is sequentially 
determined. Put H = (G, J*f(A)). Then yH = (G, 1). Clearly, JSP(X) satisfies axioms 
(J^if) and (J/J£), and J*f(l) restricted to G equals ©. Then S is a Cauchy sequence 
in H but fails to converge. Otherwise, X being sequentially determined, #"(<S) would 
be 2-convergent and hence A-Cauchy. But Proposition 3.11 in [1] would imply that S 
is FTON-Cauchy in (G, ©), a contradiction. 
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3. 

Motivated by Example 2 let us consider the following problem. Let (G, ©) be an 
J*f-group, let <в be the set of all Cauchy sequences in G and let ~ be the usual equi
valence for ^, i.e., S ~ Tiff S — Tconverges to 0. Let / be a mapping of <€ into 
the set 0>(GN) of all subsets of GN. Under what conditions is f(S) a set of Cauchy 
sequences each of which is equivalent to S, S є #? For instance, if/(S) = {Te GN; 
zF(S) = ^{T)) and © is a maximal sequential convergence, then each Tef(S) 
is a Cauchy sequence equivalent to S. Is this true if © satisfies axioms (#"^f) and 
(Ji3?) but fails to be maximal? 

A similar question can be asked for general Cauchy structures, namely, given 
a Cauchy structure and an equivalence relation, under what conditions what opera
tions on Cauchy objects preserve the equivalence classes? 
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