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SURJECTIVITY OF AN OPERATOR

VALTER SEDA, Bratislava

(Received February 12, 1988)

A new method of proving surjectivity of an operator f in a Banach space is pro-

posed. For this method the condition of coercivity of f in the form lim |f(x)| =
|x| -

plays an important role. Some results obtained by this method deal with the strict
surjective maps and with the quasi-bounded operators. The application of the
results to ordinary differential equations is given.

1. PRELIMINARIES

Let (E, | l) be a linear normed space, = X < E and F: X — E. We recall that F
is bounded iff it maps bounded sets into bounded sets. F is open iff it maps open
subsets of X onto open sets. F is completely continuous iff it is continuous and maps
bounded sets into relatively compact sets. F is proper iff the inverse image of a com-
pact set by the mapping F is compact. If E is a Banach space, then F is said to be
condensing iff it is continuous, bounded and for every bounded set A = X which is
not relatively compact we have a(F(A)) < a(A) where « is the Kuratowski measure
of non-compactness. A simple example of a condensing map is that of the form
G + H where G: X — E is a strict contraction and H: X — E is a completely con-
tinuous map. I: E — E will denote the identity mapping. If F is completely continuous
condensing), then the mapping f(x) = x — F(x), x € X, will be called a completely
continuous field (a condensing field).

The first method how to obtain surjectivity results is based on the equivalence of
surjectivity to a system of fixed point problems given in the following lemma.

Lemma 1. Let E be a vector space and F: E — E. Then the corresponding field
S =1 — F maps E onto itself iff for each y € E the mapping G,: E — E defined by

G(x)=F(x)+y, xeE,

has a fixed point.
The proof follows from the equivalence

Gy(xo) = xo iff f(x0) =y.
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The second method which gives surjectivity results is based on the domain in-
variance and on the connectedness of the topological vector space.

Lemma 2. Let E be a topological vector space and f: E — E. Let f be an open
mapping and let f(E) be a closed subset of E. Then f is surjective. Moreover, if f
is continuous and injective, then f is a homeomorphism of E onto itself.

Proof. Since f(E) is a nonvoid, open and closed subset of E simultaneously,
f(E) = E.If f is surjective and injective, it is bijective. At the same time both f and
the inverse mapping f ! are continuous and the second statement of the lemma
follows.

The following lemma is useful when using the second method.

Lemma 3 (Schauder theorem on domain invariance, [2], p. 66, [1], p. 72). Let
f:E - E be a completely continuous field in a linear normed space E (in a real
linear normed space E). Let f be injective (locally injective). Then f is an open map.

From the results based on Lemma 2 we mention only the following one:

Corollary 1. Let E be a Banach space, let the map F: E — E and the corresponding

field f =1 — F have the following properties:

(1) f is injective;

(2) F is a condensing, locally uniformly continuous mapping;
(3) lim|f(x)| = 0.

7|‘}:enf is a homeomorphism of E onto itself.

Proof. By the Nussbaum theorem on domain invariance ([6], p. 753), the as-
sumptions (1) and (2) imply that for each nonvoid open subset G < E, f(G) is open
and hence f is open. Suppose now that y, € f(E) and y, —» y as n — oo. By (1), there
exists a unique sequence {x,} such that f(x,) = y,. The assumption (3) implies
that there is an r > 0 such that |x,| < r. As U(r) = {x € E: |x| < r} is closed and
bounded and F is condensing, by Theorem 11.4 in [9], p. 129, f(U(r)) is a closed set
which contains the sequence {y,}. Hence y € f(U(r)) < f(E) and f(E) is a closed set.
This implies that f(E) = E. Clearly f is continuous, too. The corollary now follows
from Lemma 2.

If there is a ¢, 0 < g < 1, such that lF(x) - F(y)I < qlx — yl for all x, y € E,
then for the corresponding field f = I — F we have |f(x) — f(y)| = (1 — q) |x — »),
|7(x)] + [7(0)] = |f(x) = £(0)] = (1 — q) |x| and thus, all assumptions of Corollary 1
are satisfied. Hence the following statement is true.

Corollary 2 ([2], p. 11). Lei E be a Banach space and let F: E — E be strictly
contractive. Then the corresponding field f =1 — F is a homeomorphism of E
onto itself.

For a completely continuous field the following theorem holds.

Theorem 1. Let f: E — E be an injective, completely continuous field in a linear
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normed space E. Then

(4) f is a homeomorphism of E onto itself, the inverse mapping f ~* is a completely
continuous field and

lim |f7!(x)| =
|x| =00

iff the condition (3) is satisfied.

Proof. On the basis of Lemma 3, the conditions (1), (2') F = I — f is completely
continuous on E imply that f is an open mapping and a homeomorphism of E
onto f(E). Suppose that the assumption (3) is satisfied. We prove that f(E) is a closed
subset of E and thus, f(E) = E. Let {y,} = f(E) be a convergent sequence and
yo = lim y,. Then there is a sequence {x,} = E such that f(x,) = y,, n = 1,2, ....

Since {y,} is a bounded sequence, by (3) the sequence {x,} is bounded, too. The
condition (2') implies that there is a subsequence {x,q)} of the sequence {x,} and
a point xo € E such that

Xnky = Vnky = Xak) — f(Xay) = X0 as ko0,
Then lim N Xag) = Vo + Xo, and by the continuity of f, f(xo + yo) = yo. Thus
Yo ef(E) and f(E) is closed. Since f is bounded, we have that lim |f~!(x)| = co.

| -0
Further, we can write ] — f ™! = — (I — f) o f~* and as by (3) f ! is bounded and,
in view of (2'), I — f is completely continuous, F; =1 — f~! is completely con-
tinuous. '
On the other hand, if (1), (2') and (4) hold, then f ~* satisfies the conditions (1), (2')
and hence f ! is bounded, which implies that (3) is fulfilled.

Corollary 3. Let G be the family of all transformations f: E — E in a linear
normed space E enjoying the properties (1), (2'), (3). Then G is a group of homeo-
morphic transformations of the space E.

Proof. By Theorem 1 each fe G is a homeomorphic mapping of E onto itself,
and f~! belongs to G. Suppose now that f; =1 — F,, f, = I — F, are two trans-
formations from G where F, F, are completely continuous. Then I — f; o f, =
=F, + F; + (F; o (—F3)) is completely continuous. Clearly f, of, enjoys the
other properties of the-transformations from G.

Corollary 4 ([2], p. 67). Let f: E — E be a completely continuous field in a linear
normed space E. If there exists a k > 0 such that

(5) |f(x) = f(»)| = k|x = y| forall x,yeE,
then f is a homeomorphism of E onto itself.
Proof. By (5) fis injective and for an arbitrary x € E we have

/)] + 7] 2 [£(x) = £0)] 2 K[|,

which implies that f also satisfies the condition (3). The result follows from Theorem 1.
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A modification of Theorem 1 can be proved in a similar way as the original
theorem.

Theorem 1'. Let f: E — E be a locally injective, completely continuous field
satisfying the condition (3) in a real linear normed space E. Then f is surjective,
i.e. f(E) =E.

Remark 1. Since in the case E = R" the continuity of an operator F: R* - R"
implies the boundedness as well as the complete continuity of this operator, in this
case we can replace the condition (2') by the equivalent condition

(2") f is continuous in R

and Theorems 1, 1’, Corollaries 3 and 4 remain valid. We use the Euclidean norm H
in R™ and the scalar product in this space will be denoted by (-, *).

2. MAIN RESULTS

Further surjectivity results will be based on the next theorem which is a slight
modification of Theorem 1 in [8], pp. 161—162. First we shall introduce some
notation.

Let E be a Banach space and B the Banach space of all continuous functions
x:¢0,1) — E. The norm in B is defined by |x|| = sup {|x(1)|: 0 < t < 1} for each
x € B. Further, let U(r) = {x € E: |x| < r}. The degree will be considered in the
sense of Nussbaum, [6], p. 744, [8], p. 161.

Theorem 2. Let g: E — B be a continuous mapping. Denote by g(x, t) the value
of g(x) € B at the point t € €0, 1). Assume that
(i) v(x) = inf {|g(x, H:0 =<t =1} - oo for |x| - oo;
(ii) the mapping I — g(-, t) is condensing for each t e 0, 1);
(iii) for each y € E there is an ro > 0 with v(x) > |y| for all |x| = ro such that
deg (g(+» 0) = y, U(ro), 0) + 0;

(iv) g(x, *) is continuous in t, uniformly in x € U(r) for each r > 0.

Then g(E, t) = E for each te <0, 1).

Proof. Let y e E, 1, € <0, 1). By (iii), y ¢ g(0U(r,), t) for each t € <0, 1) (aU(r,)
means the boundary of U(r,)). Hence the mapping G: U(r,) x <0, 1) — E which is
defined by G(x, 1) = x — g(x, t) + y is continuous and G(x, 1) # x for x € dU(ry),
te<0,1). By (ii), G(+, 1) is a condensing map for t€<0, 1) and (iv) implies that
G(x, *) is continuous in ¢ uniformly in x e U(r,). Hence, by Corollary 2 in [6],
p. 745, and by (iii) we have

(6) deg (g(, o) — ¥, U(ro), 0) = deg (I — G(+, t,), U(r,), 0) =
= deg (I — G(+,0), U(ro), 0) = deg (g(+, 0) — ¥, U(r,),0) + 0.
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By virtue of Proposition 5 in [6], p. 744, the set S = {x € U(r,): g(x, t,) — y = 0}
is nonempty and this proves the theorem.

Remark 2. In view of the definition of 7o we have S, = {x € E: g(x,0) — y = 0}
< U(ry) and hence, by Proposition 5 cited above, for each r > r,

deg (9(+,0) — y, U(r), 0) = deg (g(+, 0) — y, U(ro),0) % 0.
Hence the condition (iii) (together with (1)) is equivalent to the condition
(iii’) for each y e E there is a sequence {r,} — o0 as n — oo such that deg (g(+, 0) — y,
U(r,), 0) = O for each r,
(together with (i)).
Remark 3.If E = R", then Theorem 2 is true without the assumptions (ii) and (iv).

Definition 1. Let F: E — E. We shall say that the field f = I — F is strictly sur-
jective if it is condensing and for each y € E there is a sequence {r,} — o0 as n— o
such that

deg (f — », U(r,),0) = 0.

Clearly each strictly surjective map is surjective.

Now we shall give two sufficient conditions that the completely continuous field f
be strictly surjective. The first is based on Theorem 1 while the second is proved by
means of the Borsuk theorem (Theorem 1 in [1], p. 72).

Theorem 3. If either

(i) f is an injective, completely continuous field satisfying the condition (3) in
a real Banach space E,

or

(it) f is an odd, completely continuous field satisfying the condition (3) in the real
linear normed space E,

then f is strictly surjective.

Proof. Let y € E be an arbitrary but fixed element. (i) In view of Theorem 1,
Theorem 3 in [1], p. 74, gives that deg (f — y, U(r),0) = +1 for each sufficiently
great r > 0.

(ii) By (3), there is an r, > 0 such that

(7) If(x)l > |y| for each xekE, lx| > 7.

Let r = ro. Then U(r) is an open, bounded and symmetric neighbourhood of the
origin and f(x) — y + 0 for each xedU(r) = {x € E:|x| = r,. If there existed
an x € 9U(r) such that

(®) [fG) = ¥ (F(x) = ») = [f(=x) = |7 (f(=x) = ¥),
then by the assumptions on f there would be a k > 0 such that either
Jx) =y =k=f(x) = y) or f(=x)=y=C(»[k)(=S(=x) = ).

In the former case f(x) = y(1 — k)(1 + k)™* and 0 < k <1 cannot occur in
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view of (7). In the latter case

o= ()

and the case 1 < k < oo cannot occur. This implies that (8) is not possible and the
Borsuk theorem implies the statement.
Using Theorem 2, we can enlarge the collection of strictly surjective maps.

Theorem 4. Let E be a Banach space, let f =1 — F, h =1 — H be two fields in E,
i.e. F,H: E — E. Suppose that

(a) both fields f and h satisfy the condition (3);

(b) f is strictly surjective;

(c) h is a condensing field;

(d) there exists a k,0 < k < 1 and an r Z 0 such that

9) [(1 — 1) f(x) + th(x)l > k[(1 -1 If(x)l + tlh(x)l]
forall xeE, lxl =2r, 02t

Then h is strictly surjective.

Proof. Let B be the Banach space as above. Consider the mapping g which is
defined for each x€e E,0 =t = 1, by
(10) g(x, 1) = (L — ) f(x) + t h(x).
Clearly g: E — B and in view of the continuity of f and h, g is continuous. Further,
g(x,0) = f(x), g(x,1) = h(x) for each x e E. We shall show that g satisfies all
assumptions of Theorem 2. By (a), (d) we have that v(x) = inf {|g(x, £)|: 0 £ ¢t <
< 1} - oo for |x| - o0 and hence (i) is satisfied. The conditions (ii), (iii) of Theorem
2 follow from the strict surjectivity of f, the equality I — g(-, f) = (1 — 1) F(x) +
+ t H(x) and the inequality «f(1 — t) F(4) + t H(A)] < (1 — 1) o[F(4)] +
+ ta[H(A4)] < o(A4) for each bounded set 4 with the Kuratowski measure of
noncompactness o(4) > 0. Since f and h are bounded, it follows from (10) that
g(x, t) is continuous in ¢, uniformly in x € U(r) for each r > 0. Hence all conditions
of Theorem 2 are satisfied, and by (6) for ¢, = 1, ry = r, we get the theorem.

Remark 4. By virtue of Theorem 3, Theorem 4 remains to be true if the condition
(b) is replaced by one of the conditions

(b) f is an injective, completely continuous field in a real Banach space E;

(b) fis an odd, completely continuous field in a real Banach space E.

Now we extend the notion of the quasi-bounded operator ([2], p. 62).

Definition 2. Let E be a linear normed space, let f: E — E be an injective completely
continuous field satisfying (3). An operator G: E — E is called f-quasibounded if

|G|, := lim sup |G| = inf sup 6) < ©.
e R L AT
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Theorem 5. Let E be a real Banach space, let f: E — E be an injective completely
continuous field satisfying (3) and G: E — E a condensing (completely continuous)
f-quasibounded operator. Then for each real A such that

(11) A1 for |G|, <1, |A|<|~611— for |G|, =1
s

(|A| < TC:T and for all real ) whenever |G|, = 0>
s

the operator h = f + AG is stricly surjective.

Proof. We shall apply Theorem 4 and Remark 4. If 1 is a fixed real number
satisfying the inequalities (11), then in both cases (G is condensing or G is completely
continuous) we obtain that AG is a condensing map. Then denoting f = I — F where
F:E - E is completely continuous, we have that h; =1 — (F — AG) is a con-
densig field, since the Kuratowski measure of noncompactness satisfies «((F — 1G) .
-(4)) £ «(F(4)) + o((2G) (4)) < «(4) for each bounded set 4 with «(4) > 0.
Thus (b’) and (c) from Theorem 4 and Remark 4 are fulfilled.

Further, llGlf = !ll |G|f < 1 and hence for any ¢, l/lGlf < g < 1, there is an
r > 0 such that for x € E,

x| = r implies »IAG(X)I-<
(2 e mes =

Then lf(x) + lG(x)I > If(x)! - ‘l G(x)l > lf(x)l (1 — g) for [xl > r which gives
that lim |h,(x)| = oo and the condition (a) in Theorem 4 is satisfied, too.

Jx|= o0

Now put (1 — ¢)/(1 + q) = k. Then by (12), for |x| = r and 0 < t < 1 we have
(1= 056 + 11,0 = 1) + 1260 = )] — |2 6] 2
z |f)] (1 = a) 2 k[[/()] + al/@)]] 2 KSR + [2 6] 2
= k[]f(x)| + tll G(x)]] = k[(1 — 1) If(x)| + t‘f(x)l + t‘l G(x)|] >
2 k(L — ) )| + ()]

Since the last condition in Theorem 4 is satisfied, Theorem 5 follows.

Remark 5. Theorem 5 extends Theorem 5.4 in [2], p. 62, to f-quasibounded
condensing operators.

The next corollary brings the third sufficient condition for a field to be strictly
surjective (the first two sufficient conditions were given in Theorem 3).

Corollary 5. Let E be a real Banach space, g =1 — G: E — E a condensing field
such that thereisa q,0 < q < 1, and an r > 0 with the property

(13) lxl > r implies that IG(x)l < q[xl .

Then g is strictly surjective.
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Proof. If we put f =1 and A = —1, we see that all assumptions of Theorem 5
are satisfied, because by (13), |G|, <g<1.
Some surjectivity results in R” are collected in the following theorem.

Theorem 6. Let f: R* — R" satisfy the conditions
(2") f is continuous,

(3) Jim /()] = oo,

and one of the conditions:
either

(14) there is an xo € R" such that
f(x) = xo = k(x — xo) implies k=0 foreach xeR" x # x,,
or
(14') there is an x, € R* such that
f(x) — xo = k(x — xo) implies k <0 foreach xeR", x # xo,
or
(15) there is an xo € R" and an r > 0 such that the scalar product satisfies
(f(x) = Xo, x = Xo) Z 0 foral xeR", |x—xo|=r
or
(15') there is an x4 € R" and an r > 0 such that
(f(x) = xg, x = Xo) £0 forall xeR", |x - xo‘ =>r.

Then f(R") = R".

Proof. If we introduce y = x — x, and the mapping h: R* —» R" by h(y) =
= f(x) — xo = f(y + xo) — Xo, we see that h satisfies (2”), (3) and one of the
conditions (14), (14'), (15), (15") with x, = 0. If h maps R" onto itself, then f does the
same. Hence it suffices to show the surjectivity of f in the special case that xo = 0.
Under the condition (14) or the condition (15) the statement of the theorem was
proved in Corollary 2, [8], pp. 163—165. In the case (14') or (15') we consider the
mapping —f. This mapping already satisfies (in addition to (2”),(3)) either (14) or (15)
and hence, it is surjective. Then f is surjective, too.

3. GENERALIZED BOUNDARY VALUE PROBLEM
FOR DIFFERENTIAL SYSTEMS

Similarly as in [8], by the generalized boundary value problem for the system of
differential equations

(16) X' =f(t,x), tei, xeR",

and the given continuous mapping F (not necessarily linear) of the space C(i, R")
of all continuous n-dimensional vector functions defined on the interval i into R"
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we understand the problem to find a solution x(f) of the system (16) on the interval i
for which F(x) is a given vector r in R", i.e.

(17) F(x)=r.

The topology in C(i, R") depends on whether i is compact or not. If i = <a, b
is a compact interval, then we consider the topology of uniform convergence de-
termined by the sup-norm, while in the case that i is a noncompact interval, e.g.
i = {a, ), then we use the topology of locally uniform convergence. This topology
can be introduced by a countable system of seminorms.

In the proof of the next theorem we shall use the Kamke convergence lemma ([3],
Theorem 3.2, pp. 26 —27) which has been formulated for f defined on an open set.
In the case that a boundary point of i belongs to i, f can be extended (e.g. by linear
extrapolation) to an open set which contains i x R” and again this lemma can be
applied.

Theorem 7. Let f = f(t,x)e C(i x R", R") and let the equation (16) have the
following properties:

(a) there is a point ty € i such that for each vector x, € R” there exists a unique
solution x(t) on i to the initial-value problem (16),

(18) x(to) = xo
(this solution will be denoted by x(t, x,)) and
either

(b) the problem (16), (17) has at most one solution for each r € R",
or
(c) for each solution x(t) or (16), (18) the following implication is true:

if F(x) = kx(to), x(to) + 0, then k = 0,
or
(d) for each solution x(t) of (16), (18) the following implication holds:

if F(x) = kx(ty), x(t;) + 0, then k < 0.

Then in the case (a), (b) a necessary and sufficient condition, and in the case
(a), (c) or in the case (a), (d) a sufficient condition that there exist at least one solu-
tion of the problem (16), (17) for each r € R is that the following compactness
condition be satisfied:

(e) if {x,} is an arbitrary sequence of solutions of (16) on the interval i such
that {F(x,)} is bounded, then there is a subsequence {x,q,} of {x;} such that {x,q}
is convergent in C(i, R").

Proof. First we consider the mapping G: R* —» C(i, R") such that G(x,)) = x(*, xo)
for each x, € R". By the Kamke convergence lemma, G is continuous. Then the
composite mapping f = F o G is, on the basis of the assumption on F, a continuous
mapping from R" into R". The problem (16), (17) has a solution for each reR"
iff f is surjective. To show the surjectivity of f we shall use Theorem 6.
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The condition f(x,) = kx, is equivalent to the equality F(x) = k x(t,) and hence
the conditions (c), (d) imply that the conditions (14), (14’) with x, = 0 of Theorem 6
are satisfied. The condition (3) of that theorem means that the f-preimage of each
bounded set in R" is bounded in R".

Suppose that {x,0} is a sequence in R". As f(x,0) = F(x,) where x;, = x(*, X;0),
the condition (3) is equivalent to the condition

(F) if x, = x(*, x0), k = 1,2,..., is an arbitrary sequence of solutions of (16)
such that {F(x,)} is bounded, then the sequence {x,} is bounded.

This in turn is equivalent to the condition

() if x, = x(*, x40), k = 1,2, ..., is an arbitrary sequence of solutions of (16)
such that {F(x;)} is bounded, then there is a convergent subsequence {X;mo} of the
sequence {Xyo}-

By the Kamke convergence lemma the condition (g) is equivalent to the com-
pactness condition (e). Hence we have that in the case (), (c), (¢) or in the case (a),
(d), (e), f satisfies the conditions of Theorem 6. By this theorem f(R") = R" and
therefore (16), (17) has a solution for each r € R".

Further, if each problem (16), (17) has at most one solution, then both mappings
F [G(Rn, and G are injective which implies that f is an injective, continuous mapping
from R" into R". With respect to Remark 1, Theorem 1 gives that in this case f (R") =
= R"iff f satisfies the condition (3). Hence, if (a), (b) are supposed, the problem (16),
(17) has a unique solution for each r € R" iff the compactness condition (e) is fulfilled.
The proof of the theorem is complete.

Remark 6. Under the conditions (a), (b), (¢) f is not only surjective, but even
homeomorphic. Since G is also homeomorphic, F ‘G(Rn) as well as its inverse function
(F|omm) ™" is homeomorphic, too. Hence, in this case the problem (16), (17) is well
posed, since the existence, uniqueness and continuous dependence of the solution
to this problem on r is guaranteed.

Remark 7. From the proof of Theorem 7 we see that the condition (e) in this
theorem can be replaced by the ,,apriori estimate” (f) or by the condition (g).

Now consider a linear nonhomogeneous system of differential equations
(19) x' = A(t) x + b(z),
where A(f) is an n x n real continuous matrix function on i, b(f) is an n-dimensional
continuous vector function on i, and suppose that

(20) F is linear .

It is known (see [7]. p. 585, for the case of a compact interval i, but in the case of
a noncompact interval the same considerations yield the result) that the problem
(19), (17) under the hypothesis (20) has a unique solution for any r € R" iff the cor-
responding homogeneous linear differential system

(21) x' = A(t) x
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with the generalized boundary-value condition
(22) F(x)=0

has only the trivial solution. Since for (19) the assumption (a) in Theorem 6 is fulfilled
at each point ¢, € i, the following corollary to Theorem 7 is true.

Corollary 6. If under the condition (20) the problem (21), (22) has only the trivial
solution, then for the differential system (19) the following compactness condition
is true:

If {x,} is an arbitrary sequence of solutions of (19) (on i) such that {F(x,)} is
bounded, then there is a subsequence {x,.,} of the sequence {x,} such that {x,}
is convergent in C(i, R").

The next result follows from the preceding corollary.

Corollary 7. Suppose that Fy: C(i, R") - R" is a continuous functional such that

1. there exists a linear continuous functional F: C(i, R") — R" with the following
properties:

() |F1(x)| > lF(x)l for each x e C(i, R"),

(ii) the problem (21), (22) has only the trivial solution;

2. either the problem (19),

(23) Fyx)=r
has at most one solution for each r € R",
or

there is a point t, € i such that for each solution x of (19), (23)
the following implication is true:
if Fy(x) = kx(t,), x(t;) * 0, then k = 0;
Orthere is a point tyei such that for each solution x of (19), (23)
the following implication holds:
If Fy(x) = kx(t,), x(to) % 0, then k < 0.
Then for each r € R" there exists at least one solution of the problem (19), (23).

Proof. Clearly it suffices to check the compactness condition (e) in Theorem 7.
In view of the assumption (i), if {F,(x,)} is bounded, then {F(x,)} is bounded, too
and by Corollary 6 it follows that (e) is satisfied. Then the result is a consequence
of Theorem 7.

Remark 8. By looking through the proof of Theorem 7, we see that this theorem
remains valid if F is supposed to be continuous only on the set G(R") of the solutions
x(+, xo) of (16) for all x, € R". The same remark applies to Corollaries 6 and 7.

Example. Suppose that f = f(t,x): {a,b> x R —» R is a scalar continuous
function such that
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(i) each complete (i.e. noncontinuable) solution of the equation (16) exists on
{a, b) and there is a t, € {a, b) such that for each x, € R there exists a unique solu-
tion x(¢) on <a, b) of the problem (16), (18),

(i) £(1,0) = 0 in <a, b).

Then for each r > 0 there exists a pair of solutions x,, x, of (16) with x,(t5) 2 0,
x5(to) < 0 such that

folx(t)|dt=r, i=1,2.
Indeed, consider the mapping F: C(<a, b), R) — R defined by
(24) F(x) = sgn x(to) |5 |x(1)] dt,
where as usual sgnu =1 for u > 0, sgn0 =0, sgnu = —1 for u < 0. Then F is
continuous at each function x € C(<a, by, R) with x(ty) % 0 or x{to) = 0, x(t) = 0
in <a, b, and it is discontinuous at any function x such that x(to) = 0, x(r) % 0
in {a, b). In view of the assumptions (i), (ii), there is no nontrivial solution of (16)
satisfying x(t,) = 0, and hence the restriction of F to the set of all complete solutions
of (16) is continuous. The assumptions (a) and (c) of Theorem 7 are clearly satisfied.
As for the assumption (e), suppose that {x,} is a sequence of solutions of (16) on
<a, b) such that [?|x,(t)|dt £ M for an M > 0. Consider the sequence {x,(,)}.
Two cases may occur. In the first, the sequence {x,(f,)} contains a bounded sub-
sequence and hence also a convergent subsequence {x((fo)}. By the Kamke con-
vergence lemma there is a subsequence {X;,,} of the sequence {x;} which is uniformly
convergent in <{a, b) and the compactness condition is satisfied.

In the second case, lim |x,(to)| = 0. Hence either there is a subsequence {x,(fo)}

k=0

of {x,(to)} such that lim x,;(#) = oo, or a subsequence tending to —co as [ — 0.
1=

Let us consider only the first possibility, since the second can be dealt with in a similar

way. Without loss of generality we may assume that {x,,(f)} is an increasing se-

quence. By the uniqueness of the initial-value problem at #, and by (ii), if 0 < ¢; < ¢,

and x(, ¢;) is the solution of (16) satisfying x(fy) = ¢;, i = 1,2, then 0 < x(¢, ¢;) <

< x(1, ¢;) for a <t < b. Hence the sequence {x,,} of solutions is nondecreasing

and by the Beppo Levi theorem the finite lim x,;(f) = (1) exists a.e. in <a, b).
1=

Choose a point t; € {a, by, t, * t,, at which y(¢) is finite. Then with respect to (i)
again by the Kamke convergence lemma lim x,(f) = x() uniformly in {a, b),
=00

where x is the solution of (16) satisfying x(f;) = y(t;). Hence lim x,;(to) = x(to)
1=

which contradicts the fact that this limit is infinite. By this contradiction the latter
case cannot occur and thus the assumptions of Theorem 7 are satisfied. By this
theorem, which can be applied in view of the last remark, for each r € R there is
a solution of (16) satisfying (17) where F is given by (24). When r = 0, this condition
is satisfied by the trivial solution. For r > 0 (r < 0) there exists a solution x of (16),
(17) with x(t,) > 0 (x(t,) < 0) and this implies the statement given above.
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4. COMPARISON THEOREM

Now we shall compare the boundary value problem (16), (17) with a scalar linear
problem. The existence of all solutions to the linear problem implies the existence of
a solution to the problem (16), (17) for each r € R™.

Suppose that the interval i has the form {ty, b) or (t,, b) with —o0 < t, < b <
=< oo. Then the following theorem is true.

Theorem 8. Suppose that the differential equation (16) satisfies the condition (a),
and the problem (16), (17) fulfils the condition (b) or the condition (c) or the con-
dition (d) of Theorem 7. Further, let there exist functions a; € C(i, R), b, € C(i, R)
such that a,(t) > Oini, by(t) = 0in i, and

(25) |£(t, )| < a,(1) |x| + by(t), tei, xeR".

Let there exist a linear, continuous and positive functional Fy: C(i,R) - R
such that ‘

(26) |F(x)| = Fy(|x|) forall xeC(i, R")

(the positivity means that Fy(y) = 0 for all y 2 0, y e C(i, R)). Finally, let the
problem

(27) y = _al(t)y > Fl(J’) =0,

have only the trivial solution.

Then for each r € R" there exists a solution of the problem (16), (17).

Proof. It suffices to show that the compactness condition (e) in Theorem 7 is
satisfied. Hence, let {x,} be a sequence of solutions of (16) on the interval i for which
the sequence {F(x,)} is bounded in R". Two cases may occur.

Either there is a bounded subsequence of the sequence {xk(to)} and then, by means
of the Kamke convergence lemma, we get that there exists a subsequence {x,;} of
{x,} which is convergent in the space C(i, R") and thus, the condition (e) being
satisfied, Theorem 7 guarantees the result. Or, {x,(f,} contains no bounded sub-
sequence and hence we may assume that hm lxk to)l = 00. In this case we proceed
as follows.

Let y(t) = |xk(t)i, tei, k=1,2,.... Then for each t € i where v,(tf) > 0, on the
basis of (25) and the Schwarz inequality we have

o(t) = O, £t xl1)) o _ v0) £ (e x(0)] _
v(t) a v(1)
lf(t xk(t))l —a(t) v(t) — by(1),

where (-, *) means the scalar product in R". Hence the functions v,(t) satisfy the
inequality ‘
v 2 —ay(t)v — by(1)

i
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at each t € i where v,(t) > 0. Let y, be the solution of the problem
(28) Y = —a(t)y = by(t),
W(to) = v(to) -
Then we assert that
(29) v(t) = y(1) forall tei.

Indeed, this is true on the interval {to, t;) < i where v,(t) > 0. If v,(t,) = 0, then
yi(t;) < 0 and by the direction field of (28), we have that y,(t) < 0 for all t €,
t 2 t;. On the other hand, v,(f) = 0in i and thus (29) is true.

By virtue of (26), (29) and the positivity of F; we have that

(30) |F(x)| = Fy(o) = Fi(ye), k=1,2,3,...,

and hence, the sequence {F,(y,)} is bounded from above. As v,(to) = oo for k — oo,
we can extract an increasing subsequence vk(,)(to) tending to co which we denote
again as v(ty). Thus yy(to) < y5(tp) < ... > o0 and by the uniqueness of the
initial-value problem for (28) we also have y,(f) < y,(t) < ya(t) < ... for all tei.
Thus

(31) Fi(yo) = Fy(y1), k=1,2,3,...,

and (30) together with (31) imply that the sequence {F,(y,)} is bounded. Corollary 6
then gives that there is a subsequence yj;, which is convergent in C(i, R). But this
implies that {y,u(to)} as well as {v,(t)} are convergent. Hence there is a sub-
sequence {Xpum(to)} of {Xxu(fo)} Which is convergent, but this contradicts the as-
sumption that {x,(,)} contains no bounded subsequence. Therefore the second
case cannot occur and the proof of the theorem is complete.

5. SOME BOUNDARY VALUE PROBLEMS

Boundary value problems for ordinary differential equations will be now investi-
gated. This requires to consider instead of the space C(<a, b}, R") the space E =
= {(x(1), x'(¢), ..., x*"(1)): x(t) € C*"*({a, by, R)} provided with the norm
I(x(t), x'(t), ... x("‘”(t))l = max [ sup lx(t)| sup Ix’(t)l, ..., sup |x("“")(t)|]. This
space is a Banach space. astsh agtsh ast=b

First we shall consider the boundary value problem which is similar to the Bitsadze-
Samarskij problem ([4], [5])

(32) x" = f(t,x, %),
(33) x(a) = A, x(b) — x(to) = B,

where a < to < b, A, B are real numbers and f € C((a, b> x R?, R). The following
theorem is true.

Theorem 9. Suppose that
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(i) each complete solution of the equation (32) exists on {a, b), and each initial
value problem for this equation at the point a has a unique solution in {a, b);
(ii) there is a constant M > O such that '

f(t,x,9)>0 for x=2M, y=2M
and
f(t,x,9) <0 for x<—-M, y< —-M;

(iii) either

for each point (A, B) € R? there exists at most one solution of the boundary value
problem (32), (33),
or

the solution x of (32) satisfying x(a) =0, x'(a) % 0, fulfils the inequality
() [x(b) — x(10)] 2 0.

Then for each couple (A, B) € R? there exists at least one solution of the problem
(32), (33).

Proof. The assumption (i) implies that the condition (a) in Theorem 7 is satisfied
at the point a. By the assumption (iii) either the condition (b) or the condition (c)
of the same theorem is fulfilled. Indeed, the first part of (iii) guarantees the con-
dition (b). Let x be a solution of (32) in <a, b). Since the equality F(x) = k x(t,)
from Theorem 7 now means two equalities

x(a) = k x(a), x(b) — x(t,) = kx'(a),
we have to consider two cases. Either x(a) # 0 and then k = 1 = 0, or x(a) = 0.
In the latter case, by the second part of the condition (iii), we have x(b) — x(to) = 0
(x(b) — x(to) < 0) if x'(a) > 0 (x'(a) < 0) and again k = 0.

Consider the condition (e) in Theorem 7. Let {x,} be a sequence of solutions of
(32) in <a, b) such that both sequences {x,(a)}, {x,(b) — x,(to)} are bounded,
say by a constant K > 0. We may assume that K = max (M, (b — t) M). Consider
the function x, with k arbitrary but fixed. We shall show that

(34) |x(1)| < K + s K t (t — a) foreach te<a,b).
Since ’
(35) |xk(b) - xk(to)l =K,

by the Mean value theorem there exists a t,, to < t, < b, such that ‘x,"(t,‘){ =
< K/(b — 1,). If (34) does not hold, then there is an s, @ < s, < b, such that

kO <K+ K

(t—a), ast=<s
Iy
and

K

lxk(t)l > K + P

(t—a), si<t<s +e,
where ¢ > 0 is sufficiently small.
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Suppose that

(36) %) = K+ = ().

(The case x(s;) = —[K + K(s, — a)[(b — ta)] would proceed similarly). Then
xi(si) = K[b — 1) = M, x,(s,) = K = M and, by the assumption (ii), xi(s,) > 0.
We can easily show that xj(¢) > 0 in {5, b) is true and therefore

(37) X0 > X5 2 K in (b,

0

which implies that t, < t, < 5, < b. Thus

K
(38) |xi(to)] = K + (to — a).
b—t,
By (36), (37) we have
K
xi(b) = xi(se) + [0 x'(1)dt > K + P (s — a) +
—to
K K
+ b—s)=K+ b —a),
b — to( %) b — to( )

and in view of (38),

wlb) = xdte) > K + —% (b—a)—[K+—K (to—-a):|=K.
b— 1t b— 1o

This contradicts the inequality (35) and hence (34) is true. By this inequality the
sequence {xk} is uniformly bounded in <{a, b). So we have three bounded sequences.
The sequence {f,} with the meaning given above, f, <, < b, k =1,2,..., the
sequence {x,(t,)} and the sequence {x;(t,)} which is bounded by K/(b — t,). Therefore
there exists a subsequence {f,(;} of the sequence {f,} such that there exist finite
lim ¢y = T € {1, b, lim x,y(ty) = %3, 1im x3()(try) = X,. Since each complete
- - 1=

solution of the equation (32) exists on the whole interval <{a, b}, the Kamke con-
vergence lemma guarantees that there is a subsequence {x,} of the sequence
{xup)} of solutions of (32) on <a, b, which together with the sequence {x;(,,} is

uniformly convergent on {a, b). Consequently, all assumptions of Theorem 7 are
satisfied. Theorem 9 follows.

Remark 9. By Theorem 1.2 in [5], p. 124, if f(¢, *, y) is nondecreasing in R for
each (1, y) € (a, by x R, and for each r > 0 there is an L, > 0 such that |f(t, X, y) —

- f(t, x, z)l < L,Iy - zl for any two points (¢, x, y), (1, x, z) € {a, b) x {—r,7) X

x {—r,r), then there exists at most one solution of the problem (32), (33) for every
couple (4, B) e R%.
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Now we shall consider the boundary value problem
(39) x® = f(t, x, x', ..., x""D)
(40) &,(x (1)), xI* (L), . X)) = a;, j=0,1,...n—1,
where a =ty < t; < ... < t,_, = b are real numbers, f € C(<a, b) x R", R).

Theorem 10. Suppose that
(i) there is a point t,e {a,b) such that each initial value problem for the
equation (39) at that point has a unique solution in {a, b),
(ii)llim |€(x, @115 .. ay_y)| = 0 uniformly in (ajy, ..., a,-,) on compact
x| =00

subsets of R"" 17 j=0,1,...,n — 2,
and

lim |%,-,(x)| = o,

|x] =0

(iii) the boundary value problem (39), (40) for each n-tuple (ao, ay, ..., Go—y)
has at most one solution,
and

(iv) there is a ky > O such that

Xpo1 St X0, Xq, oevy Xyeq) 2 0
for each t € {a, by, (Xo, Xy, ..., X,—5) € R"? and |x,_| > k.

Then for each (ay, ay, ..., a,_1) € R" there exists a solution of the boundary
value problem (39), (40).

Proof. By the assumptions (i), (iii), the conditions (a) and (b) of Theorem 7 are
fulfilled. Suppose now that {x,} is a sequence of solutions of (39) such that
G (xty), Xty X)) = ajp, j=0,1,..,n—1, k=1,2,..., and
the sequences {a;,}y=1, j = 0,1,...,n — 1, are bounded. Then the last condition
in (i) implies that there is an N,_; such that |x{"~"(t,_;)| £ N,_, for all k =
=1,2,.... By the assumption (iv) for each solution x, the following alternative
holds: either |x{"~"(t)| < k; in {a, b) or there is the first point (the smallest point)
te<a, b) at which |x{"~ ()| Z ky. Then for all £, < t < b, the function |x{"~"(¢)|
is nondecreasing and hence |x{"~"(t)| < [x{"~"(t,-1)| £ N,—,. Thus in both cases

(41) |x¢"~(1)| < max (ky, N,—;) foreach teda, by and k=12,....

The sequence {x{"~ ", , is uniformly bounded in <a, b)>. Now by the condition
lim |%,,_2(x, a,,_l)| = oo uniformly in a,_; on compact subsets of R and in view
5%2;7), we have that there is an N,_, > 0 such that
(42) X" ty-s)| < Nyop forall k=1,2,....
By (41), (42) we get that

[x{"=2(f)] £ Nuoz + (b — a) max (ky, Ny—y) = N ,, teda, by,

k=1,2,....
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0 .

Proceeding in this way we obtain that all sequences {x{’}{%,,j =n — 1,n — 2,...
..., 1,0, are uniformly bounded on {a, b). By the continuity of f, this implies that
{x{"}, is uniformly bounded on {a, b), too. Hence {x{’}, j =0,1,...,n — 1,
are equicontinuous on {a, b). Therefore, on the basis of the Ascoli lemma, there is
a subsequence {x,;} of the sequence {x,} which is convergent in the space
C*~({a, by, R) provided with the norm Ix cm-n = max { max !x(")(t)|}. The

j -1 <t<b

=0,1,...,

condition (e) in Theorem 7 is satisfied, and the result follows.
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