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Czechoslovak Mathematical Journal, 40 (115) 1990, Praha 

ON LATTICE ORDERED GROUPS HAVING A UNIQUE ADDITION 

JÁN JAKUBÍK, Košice 

(Received July 8, 1988) 

Lattice ordered groups with unique addition (for definitions, cf. below) were in
vestigated by P. Conrad and M. Darnel [1]. The case oflinear ordered groups having 
this property was dealt with by T. Ohkuma [2]. 

In [l] the following open question was proposed: 

(*) If G is a lattice ordered group such that the positive cone has a unique addition, 
then does G have a unique addition as well? 

It was remarked in [ l] that the answer is yes if G is a Hnearly ordered group. 
In the present paper it will be shown that the answer is positive also in the general 

case. 

1. PRELIMINARIES 

Let us recall the following definition (cf. [l]). 

A lattice ordered group Gt = (G; ^ , + J is said to have a unique addition if, 
whenever G2 = (G; ^ , + 2) is a lattice ordered group such thattheneutralelement 
of the group (G; +х) is the same as the neutral element of the group (G; + 2), then 
the operation + t coincides with the operation +2 . 

As usual, the positive cone of a lattice ordered group Gt will be denoted by G* ; 
it is a lattice ordered subsemigroup of Gt with the underlying set {x є G: x ^ 0 j , 
the partial order being inherited from the partial orderin G; the symbol 0t denotes 
the neutral element of Gv 

Analogously to the above definition, the positive cone Gj" of a lattice ordered 
group Gx will be said to have a unique addition if, whenever G2 = (G; ^ , +2) is 
a lattice ordered group with 0X = 02 (where 02 is the neutral element of G2) and 
0 ^ x e G, 0 ^ y e G, then x + 1 y = x + 2 y. 

In what follows, Gi = (G; й, +i) is a lattice ordered group. The lattice (G; ^ ) 
will be denoted by L{G^). 

1.1. Lemma. Let H0 = (#; ^ , +0) be a lattice ordered group such that the 
lattice L(H0) is isomorphic to L(Gx). Assume that the positive cone Gf of G± has 
a unique addition. Then the positive cone H^ ofH0 has a unique addition as well. 
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Proof. By way of contradiction, assume that the positive cone H^ of H0 fails 
to have a unique addition. Then there is a lattice ordered group # * = (Я; ^ , +*) 
such that 

(i) the neutral element of ( # ; + 0 ) is the same as the neutral element of ( # ; +*) 
(this neutral element will be denoted by 0); 

(ii) there are x, у є H such that 0 ^ x, 0 ^ y and x + 0 y =j= x + * j . 
From the fact that L(G^ is isomorphic to L(H0) = L(#*) it follows that there 

exists an isomorphism <p if L(G t) onto L(# 0 ) such that 

(1) cp(0,) = 0 . 

We define two binary operations + 2
 агк* + 3 on G by putting, for each gl9 g2 є G, 

9l + 2 02 = ^ " 4 ^ l ) + O<P(02))> 

01 +3 02 = C>"4<K#l) + * <P(9l)) • 
Then G2 = (G; g , + 2) апс* ^з = (Ф = > +з) are lattice ordered groups. According 
to (1) we have OjL = 02 = 03, where 02 and 03 have the obvious meaning. Next, the 
condition (ii) yields that 

(2) 0t ^ q>-*(x) , 0, й 9~\У) , q>'*(x) + 2 <p'\y) * 

Ф cT*(x) +3 9 " 1 ^ ) -
From (2) we infer that we have either 

q>-\x) +t cp-\y) Ф q>-*(x) + 2 cp''(y) , 
or 

cp-\x) +± q>~\y) Ф q>-'(x) +3 çT 1 ^) . 

Hence the positive cone G* of Gt fails to have a unique addition, which is a contra
diction. 

1.2. Lemma. Assume that the positive cone G^ of G1 has a unique addition. 
Then Gx is abelian. 

Proof. By way of contradiction, suppose that Gx fails to be abelian. Since for 
each x є G there are y, z e G with 0 S y, 0 g z such that x = y — z, it follows that 
Gj" fails to be abelian as well. For each u, v є G we put u + + 2 t? = v +x u. Then 
G2 = (G; ^ , + 2 ) is a lattice ordered group with 02 = 0^ The operation + 2

 o n t n e 

positive cone of Gt does not coincide with the operation + 1 5 which is a contradiction. 

2. UNIQUE ADDITION IN Gf 

In this section we assume that the positive cone Gj" of Gx has aunique addition. 
Thus in view of 1.2, Gi is abelian. Let G2 = (G; ^ , + 2 ) be a lattice ordered group 
such that 01 = 02. 

For each g e G and each x, y e G we put 

x +\y = x ~tg +іУ (i = 1 , 2 ) . 
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We have obviously 

2.1. Lemma. Let i e { l , 2 } . Then G? = (G; ^ , +f) is a lattice ordered group 
with the neutral element g. 

2.2. Lemma. Let ie{l,2). Then the positive cone(G^)+ of G? has a unique 
addition. 

Proof. This is a consequence of 1.1. 
Let us denote by G+ the underlying set of Gx ; it is, at the same time, the underlying 

set of G\. Next let G~ have a dual meaning. 

2.3. Lemma. Let x, у є G~. Then x +1 y = x + 2 У-
Proof . Let g ' be the partial order on G which is dual to ^ . Then G\ = 

= (G; 2g', + i ) and G'2 = (G; ^ ' , + 2 ) are lattice ordered groups having the same 
neutral element. Next, the lattice L(Gi) is isomorphic to the lattice L(GX). Hence in 
view of 1.1, the positive cone of G\ has a unique addition. Since 0 ^ ' x and 0 ^g' y, 
we obtain that x + x y = x + 2 j . 

2.4. Lemma. Leř x є G swcfo řftaí either x ^ 0 or x й 0- Nexí teč n be a positive 
integer. Then the symbol nx has the same meaningfor both Gx nad G2. 

Proof. This follows by induction from the fact that Gf has a unique addition, 
or from 2.3, respectively. 

2.5. Lemma. Let x e G. Then 2x is the (uniquely determined) relative complement 
of the element 0X in the interval [2(x л Qx), 2(x v 0X)] of the lattice (G; ^ ) . 

The proofcan be established by a routine calculation; it will be omitted. 

The lemmas 2.4 and 2.5 yield: 

2.6. Lemma. Let x e G. Then the symbol 2x has the same meaning in both Gx 

and G2. 

2.7. Lemma. Let z e G~. Then —x z = —2 z. 
Proof . Denote x = - t z, y = - 2 z. Then x ^ 0j and y ^ 0X. Hence 2z ^ x. 

Clearly 2z ^ z. Thus in view of2.1 and 2.2 we have 

(1) x +izz = x + 2
z z . 

According to 2.6 we obtain 

x +\zz = x - ! 2z + j z = x - i z = x + j x = 2x , 

X ~T~ 2 Z === X 2 ^ ^ "г" 2 ^ =3 X 2 ^ = = X *4- V 

Hence (l) yields that 2x = x + 2 y and therefore x = y 

2.8. Lemma. Let x e G+ . TAen — x x = — 2 *• 

Proof. Denote - , x = z. Then z ^ 0 and - , z ^ x A c c o r d i n g t o 2.7 we have 
— 2 z = x, whence —2 x = z. 
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2.9. Lemma. Let a1,b1eG + , at л Ъх = Ox. Then a± —1bí is the (uniquely 
determined) relative complement of the element 01 in the interval [ - i & i , a i ] 
of the lattice (G; <^). 

The proof consists in applying standard calculations; we omit it. 

2.10. Lemma. Let ax and bx be as in 2.9. Then a1 —x b1 = at —2 bx. 

Proof. This is a consequence of 2.8 and 2.9. 

2.11. Lemma. Let a, b є G+ . Then a — t b = a — 2 °. 
Proof. Put a л b = w. Then u ^ 01# Denote ax = a — j w, bx = Ь — x u. We have 

^i є G+ , bj є G+ , whence a = w + t ax = u + 2 a l 9 b = u + x òx = w + 2 b t . Thus 
a —! Ь = a t —x bx and я —2 b = ax — 2 bt. Clearly a1 л b1 = 0t. Therefore in 
view of 2.10 we obtain a —x b = a — 2 °-

2.12. Proposition. Let a, b e G. Then a +x b = a + 2 b. 
Proof. Denote ax = a v 0X and a2 = a л 0Х. Let Ьг and b2 have analogous 

meanings with respect to b. Then 
al + 1 fl2 = ö = al + 2 fl2 ? °1 + 1 Ь2 ~ Ь = b t + 2 Ò2 . 

Hence 
a + i Ь = (fl! + ! a2) + i ( & ! + i b2) = (a t + г Ьх) + t ( a 2 + x Ь 2 ) . 

Because a t ^ 0i and bj ^ 0 l 5 the relation ax + x b1 = aj + 2 ^i is valid. Next, 
since a2 й 0X and b2 S 0l9 in view of 2.3 we have a2 +t b2 = a2 + 2 b2. Also, 
a2 +2 °2 = Оь whence according to2 .7 

-t{a2 +2 b2) = - 2 ( a 2 + 2 ò 2 ) . 
Therefore 

a1 + t fo = (a± +2 bx) - J ( - i ( a 2 + 2 b2)) = 

= («1 + 2 & l ) - l ( - 2 ( a 2 + 2 ^ 2 ) ) . 

Now by applying 2.11 we obtain 
ai +1 b = (аг + 2 Ъг) - 2 ( - 2 ( a 2 + 2 b 2 ) ) = 

= (fli + 2 a2) + 2 (bx + 2 b2) = a + 2 Ь . 

Proposition 2.12 shows that the answer to the question (*) above is 'YES'. 
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