## Czechoslovak Mathematical Journal

## Ján Jakubík

On lattice ordered groups having a unique addition

Czechoslovak Mathematical Journal, Vol. 40 (1990), No. 2, 311-314

Persistent URL: http://dml.cz/dmlcz/102382

## Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# ON LATTICE ORDERED GROUPS HAVING A UNIQUE ADDITION 

JÁn Jakubík, Košice

(Received July 8, 1988)

Lattice ordered groups with unique addition (for definitions, cf. below) were investigated by P. Conrad and M. Darnel [1]. The case of linear ordered groups having this property was dealt with by T. Ohkuma [2].

In [1] the following open question was proposed:
(*) If $G$ is a lattice ordered group such that the positive cone has a unique addition, then does $G$ have a unique addition as well?

It was remarked in [1] that the answer is yes if $G$ is a linearly ordered group.
In the present paper it will be shown that the answer is positive also in the general case.

## 1. PRELIMINARIES

Let us recall the following definition (cf. [1]).
A lattice ordered group $G_{1}=\left(G ; \leqq,+_{1}\right)$ is said to have a unique addition if, whenever $G_{2}=\left(G ; \leqq,+_{2}\right)$ is a lattice ordered group such that the neutral element of the group $\left(G ;+_{1}\right)$ is the same as the neutral element of the group $\left(G ;+_{2}\right)$, then the operation $+_{1}$ coincides with the operation $+_{2}$.

As usual, the positive cone of a lattice ordered group $G_{1}$ will be denoted by $G_{1}^{+}$; it is a lattice ordered subsemigroup of $G_{1}$ with the underlying set $\left\{x \in G: x \geqq 0_{1}\right\}$, the partial order being inherited from the partial order in $G$; the symbol $0_{1}$ denotes the neutral element of $G_{1}$.

Analogously to the above definition, the positive cone $G_{1}^{+}$of a lattice ordered group $G_{1}$ will be said to have a unique addition if, whenever $G_{2}=\left(G ; \leqq,+_{2}\right)$ is a lattice ordered group with $0_{1}=0_{2}$ (where $0_{2}$ is the neutral element of $G_{2}$ ) and $0 \leqq x \in G, 0 \leqq y \in G$, then $x+{ }_{1} y=x+{ }_{2} y$.

In what follows, $G_{1}=\left(G ; \leqq,{ }_{1}\right)$ is a lattice ordered group. The lattice $(G ; \leqq)$ will be denoted by $L\left(G_{1}\right)$.
1.1. Lemma. Let $H_{0}=\left(H ; \leqq,+_{0}\right)$ be a lattice ordered group such that the lattice $L\left(H_{0}\right)$ is isomorphic to $L\left(G_{1}\right)$. Assume that the positive cone $G_{1}^{+}$of $G_{1}$ has a unique addition. Then the positive cone $H_{0}^{+}$of $H_{0}$ has a unique addition as well.

Proof. By way of contradiction, assume that the positive cone $H_{0}^{+}$of $H_{0}$ fails to have a unique addition. Then there is a lattice ordered group $H^{*}=\left(H ; \leqq,+^{*}\right)$ such that
(i) the neutral element of $\left(H ;+_{0}\right)$ is the same as the neutral element of $\left(H ;+^{*}\right)$ (this neutral element will be denoted by 0 );
(ii) there are $x, y \in H$ such that $0 \leqq x, 0 \leqq y$ and $x+{ }_{0} y \neq x+* y$.

From the fact that $L\left(G_{1}\right)$ is isomorphic to $L\left(H_{0}\right)=L\left(H^{*}\right)$ it follows that there exists an isomorphism $\varphi$ if $L\left(G_{1}\right)$ onto $L\left(H_{0}\right)$ such that

$$
\begin{equation*}
\varphi\left(0_{1}\right)=0 \tag{1}
\end{equation*}
$$

We define two binary operations $+_{2}$ and $+_{3}$ on $G$ by putting, for each $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
& g_{1}+{ }_{2} g_{2}=\varphi^{-1}\left(\varphi\left(g_{1}\right)+{ }_{0} \varphi\left(g_{2}\right)\right), \\
& g_{1}+{ }_{3} g_{2}=\varphi^{-1}\left(\varphi\left(g_{1}\right)+* \varphi\left(g_{2}\right)\right) .
\end{aligned}
$$

Then $G_{2}=\left(G ; \leqq,+_{2}\right)$ and $G_{3}=\left(G ; \leqq,+_{3}\right)$ are lattice ordered groups. According to (1) we have $0_{1}=0_{2}=0_{3}$, where $0_{2}$ and $0_{3}$ have the obvious meaning. Next, the condition (ii) yields that

$$
\begin{align*}
& 0_{1} \leqq \varphi^{-1}(x), \quad 0_{1} \leqq \varphi^{-1}(y), \quad \varphi^{-1}(x)+{ }_{2} \varphi^{-1}(y) \neq  \tag{2}\\
& \neq \varphi^{-1}(x)+{ }_{3} \varphi^{-1}(y) .
\end{align*}
$$

From (2) we infer that we have either

$$
\varphi^{-1}(x)+_{1} \varphi^{-1}(y) \neq \varphi^{-1}(x)+_{2} \varphi^{-1}(y),
$$

or

$$
\varphi^{-1}(x)+{ }_{1} \varphi^{-1}(y) \neq \varphi^{-1}(x)+{ }_{3} \varphi^{-1}(y) .
$$

Hence the positive cone $G_{1}^{+}$of $G_{1}$ fails to have a unique addition, which is a contradiction.
1.2. Lemma. Assume that the positive cone $G_{1}^{+}$of $G_{1}$ has a unique addition. Then $G_{1}$ is abelian.

Proof. By way of contradiction, suppose that $G_{1}$ fails to be abelian. Since for each $x \in G$ there are $y, z \in G$ with $0 \leqq y, 0 \leqq z$ such that $x=y-z$, it follows that $G_{1}^{+}$fails to be abelian as well. For each $u, v \in G$ we put $u++{ }_{2} v=v+{ }_{1} u$. Then $G_{2}=\left(G ; \leqq,+_{2}\right)$ is a lattice ordered group with $0_{2}=0_{1}$. The operation $+_{2}$ on the positive cone of $G_{1}$ does not coincide with the operation $+_{1}$, which is a contradiction.

## 2. UNIQUE ADDITION IN $G_{1}^{+}$

In this section we assume that the positive cone $G_{1}^{+}$of $G_{1}$ has a unique addition. Thus in view of $1.2, G_{1}$ is abelian. Let $G_{2}=\left(G ; \leqq,+_{2}\right)$ be a lattice ordered group such that $0_{1}=0_{2}$.

For each $g \in G$ and each $x, y \in G$ we put

$$
x+{ }_{i}^{g} y=x-{ }_{i} g+{ }_{i} y \quad(i=1,2) .
$$

We have obviously
2.1. Lemma. Let $i \in\{1,2\}$. Then $G_{i}^{g}=\left(G ; \leqq,+_{i}^{g}\right)$ is a lattice ordered group with the neutral element $g$.
2.2. Lemma. Let $i \in\{1,2\}$. Then the positive cone $\left(G_{i}^{g}\right)^{+}$of $G_{i}^{g}$ has a unique addition.

Proof. This is a consequence of 1.1.
Let us denote by $G^{+}$the underlying set of $G_{1}^{+}$; it is, at the same time, the underlying set of $G_{2}^{+}$. Next let $G^{-}$have a dual meaning.
2.3. Lemma. Let $x, y \in G^{-}$. Then $x+{ }_{1} y=x+{ }_{2} y$.

Proof. Let $\leqq$ be the partial order on $G$ which is dual to $\leqq$. Then $G_{1}^{\prime}=$ $=\left(G ; \leqq{ }^{\prime},+_{1}\right)$ and $G_{2}^{\prime}=\left(G ; \leqq{ }^{\prime},{ }_{2}\right)$ are lattice ordered groups having the same neutral element. Next, the lattice $L\left(G_{1}^{\prime}\right)$ is isomorphic to the lattice $L\left(G_{1}\right)$. Hence in view of 1.1 , the positive cone of $G_{1}^{\prime}$ has a unique addition. Since $0 \leqq{ }^{\prime} x$ and $0 \leqq y$, we obtain that $x+{ }_{1} y=x+{ }_{2} y$.
2.4. Lemma. Let $x \in G$ such that either $x \geqq 0$ or $x \leqq 0$. Next let $n$ be a positive integer. Then the symbol $n x$ has the same meaning for both $G_{1}$ nad $G_{2}$.

Proof. This follows by induction from the fact that $G_{1}^{+}$has a unique addition, or from 2.3, respectively.
2.5. Lemma. Let $x \in G$. Then $2 x$ is the (uniquely determined) relative complement of the element $0_{1}$ in the interval $\left[2\left(x \wedge 0_{1}\right), 2\left(x \vee 0_{1}\right)\right]$ of the lattice $(G$; $\leqq)$.

The proof can be established by a routine calculation; it will be omitted.
The lemmas 2.4 and 2.5 yield:
2.6. Lemma. Let $x \in G$. Then the symbol $2 x$ has the same meaning in both $G_{1}$ and $G_{2}$.
2.7. Lemma. Let $z \in G^{-}$. Then $-{ }_{1} z=-{ }_{2} z$.

Proof. Denote $x=-{ }_{1} z, y=-{ }_{2} z$. Then $x \geqq 0_{1}$ and $y \geqq 0_{1}$. Hence $2 z \leqq x$. Clearly $2 z \leqq z$. Thus in view of 2.1 and 2.2 we have

$$
\begin{equation*}
x+{ }_{1}^{2 z} z=x+{ }_{2}^{2 z} z . \tag{1}
\end{equation*}
$$

According to 2.6 we obtain

$$
\begin{aligned}
& x+{ }_{1}^{2 z} z=x-{ }_{1} 2 z+{ }_{1} z=x-{ }_{1} z=x+{ }_{1} x=2 x, \\
& x+{ }_{2}^{2 z} z=x-{ }_{2} 2 z+{ }_{2} z=x-{ }_{2} z=x+{ }_{2} y .
\end{aligned}
$$

Hence (1) yields that $2 x=x+{ }_{2} y$ and therefore $x=y$.
2.8. Lemma. Let $x \in G^{+}$. Then $-{ }_{1} x=-{ }_{2} x$.

Proof. Denote $-_{1} x=z$. Then $z \leqq 0$ and $-{ }_{1} z=x$. According to 2.7 we have $-{ }_{2} z=x$, whence $-{ }_{2} x=z$.
2.9. Lemma. Let $a_{1}, b_{1} \in G^{+}, a_{1} \wedge b_{1}=0_{1}$. Then $a_{1}-_{1} b_{1}$ is the (uniquely determined) relative complement of the element $0_{1}$ in the interval $\left[-{ }_{1} b_{1}, a_{1}\right]$ of the lattice ( $G$; $\leqq$ ).

The proof consists in applying standard calculations; we omit it.
2.10. Lemma. Let $a_{1}$ and $b_{1}$ be as in 2.9. Then $a_{1}-_{1} b_{1}=a_{1}-{ }_{2} b_{1}$.

Proof. This is a consequence of 2.8 and 2.9.
2.11. Lemma. Let $a, b \in G^{+}$. Then $a-1 b=a-{ }_{2} b$.

Proof. Put $a \wedge b=u$. Then $u \geqq 0_{1}$. Denote $a_{1}=a-{ }_{1} u, b_{1}=b-{ }_{1} u$. We have $a_{1} \in G^{+}, b_{1} \in G^{+}$, whence $a=u+{ }_{1} a_{1}=u+{ }_{2} a_{1}, b=u+{ }_{1} b_{1}=u+{ }_{2} b_{1}$. Thus $a-{ }_{1} b=a_{1}-{ }_{1} b_{1}$ and $a-{ }_{2} b=a_{1}-{ }_{2} b_{1}$. Clearly $a_{1} \wedge b_{1}=0_{1}$. Therefore in view of 2.10 we obtain $a-{ }_{1} b=a-{ }_{2} b$.
2.12. Proposition. Let $a, b \in G$. Then $a+{ }_{1} b=a+{ }_{2} b$.

Proof. Denote $a_{1}=a \vee 0_{1}$ and $a_{2}=a \wedge 0_{1}$. Let $b_{1}$ and $b_{2}$ have analogous meanings with respect to $b$. Then

$$
a_{1}+{ }_{1} a_{2}=a=a_{1}+{ }_{2} a_{2}, \quad b_{1}+{ }_{1} b_{2}=b=b_{1}+_{2} b_{2} .
$$

Hence

$$
a+{ }_{1} b=\left(a_{1}+{ }_{1} a_{2}\right)+{ }_{1}\left(b_{1}+{ }_{1} b_{2}\right)=\left(a_{1}+{ }_{1} b_{1}\right)+_{1}\left(a_{2}+_{1} b_{2}\right) .
$$

Because $a_{1} \geqq 0_{1}$ and $b_{1} \geqq 0_{1}$, the relation $a_{1}+{ }_{1} b_{1}=a_{1}+{ }_{2} b_{1}$ is valid. Next, since $a_{2} \leqq 0_{1}$ and $b_{2} \leqq 0_{1}$, in view of 2.3 we have $a_{2}+{ }_{1} b_{2}=a_{2}+{ }_{2} b_{2}$. Also, $a_{2}+{ }_{2} b_{2} \leqq 0_{1}$, whence according to 2.7

$$
-{ }_{1}\left(a_{2}+{ }_{2} b_{2}\right)=-{ }_{2}\left(a_{2}+{ }_{2} b_{2}\right) .
$$

Therefore

$$
\begin{aligned}
& a_{1}+{ }_{1} b=\left(a_{1}+{ }_{2} b_{1}\right)-{ }_{1}\left(-{ }_{1}\left(a_{2}+{ }_{2} b_{2}\right)\right)= \\
& =\left(a_{1}+{ }_{2} b_{1}\right)-{ }_{1}\left(-{ }_{2}\left(a_{2}+{ }_{2} b_{2}\right)\right) .
\end{aligned}
$$

Now by applying 2.11 we obtain

$$
\begin{aligned}
& a_{1}+{ }_{1} b=\left(a_{1}+{ }_{2} b_{1}\right)-{ }_{2}\left(-{ }_{2}\left(a_{2}+{ }_{2} b_{2}\right)\right)= \\
& =\left(a_{1}+{ }_{2} a_{2}\right)+{ }_{2}\left(b_{1}+{ }_{2} b_{2}\right)=a+{ }_{2} b .
\end{aligned}
$$

Proposition 2.12 shows that the answer to the question (*) above is 'YES'.

## References

[1] P. Conrad, M. Darnel: $l$-groups with unique addition. Algebra and Order. Proc. First Int. Symp. Ordered Algebraic Structures, Luminy-Marseille 1984, Helderman Verlag, Berlin 1986, 15-27.
[2] T. Ohkuma: Sur quelques ensembles ordonnés linéairement. Fund. Math. 43, 1955, 326-337.

Author's address: 04001 Košice, Grešákova 6, Czechoslovakia (Matematický ústav SAV dislokované pracovisko).

