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All lattice ordered groups dealt with in the present note are assumed to be abelian.

The partially ordered set of all convergences of a lattice ordered group G will be
denoted by Conv G (cf. [2], [3]). Similarly, Conv B denotes the partially ordered
set of all convergences of a Boolean algebra B (cf. [8]). In general, neither Conv G nor
Conv B need be a lattice; Conv G is a lattice iff it possesses a greatest element and
in such a case it is a complete lattice. An analogous result holds for Conv B.

In [7] it was shown that the existence of the greatest element in Conv G depends
merely from the lattice properties of G and that the class of all lattice ordered groups
having the largest convergence is a radical class (in the sense of [5]).

The following results were proved in [6] and [8]:

(A) If G is a completely distributive archimedean lattice ordered group, then
Conv G is a complete lattice.

(B) If B is a completely distributive Boolean algebra, then Conv B is a complete
lattice.

In the present note these results will be sharpened as follows:

(Ay) If Gisan (N, 2)-distributive lattice ordered group, then Conv G is a complete
lattice.

(By) If B is an (N, 2)-distributive Boolean algebra, then Conv B is a complete
lattice.

The notion of bounded convergence in a lattice ordered group was introduced
in [7]. Let Conv, G be the set of all bounded convergences in G.

If 0 < ee G and e is a singular element, then the interval [0, e] of G is Boolean
algebra. Put [0, e] = B. It will be shown that if e is, at the same time, a strong unit
in G, then the partially ordered sets Conv, G and Conv B are isomorphic. Next,
Conv B is a complete lattice if and only if Conv G is a complete lattice.
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1. THE CASE OF LATTICE ORDERED GROUPS

Let G be a lattice ordered group. We recall briefly the basic notions concerning
sequential convergences in G.

Let N be the set of all positive integers and let G, = G for each n € N. We denote
[ Luen G, = G™. The elements of G¥ (denoted, e.g., by (g,)) are called sequences in G.
If g€ G and g, = g for each n e N, then we denote (g,) = const g.

Let o be a convex subsemigroup of the semigroup (G¥)* such that the following
conditions are satisfied:

(I) If (g,) € a, then each subsequence of (g,) belongs to a.

(IT) Let (g,) € (G¥)*. If each subsequence of (g,) has a subsequence belonging
to «, then (g,) € o

(1I1) Let g € G. Then const g belongs to « if and only if g = 0.

Under these assumptions « is said to be a convergence in G. The system of all
convergences in G (partially ordered by inclusibn) will be denoted by Conv G.

For a.e Conv G, (g9,) € G” and g € G we put g, —, ¢, if (|9, — g]) e .

A sequence (g,) € (GN)* is said to be regular if there exists o € Conv G such that

(g,) € .
From the convexity of o in (GV)* and from (II), (III) we obtain immediately:

1.1. Lemma. Let (g,) be a regular sequence in G and let (g,,) be a subsequence
of (g,)- Then Ag,, = 0.
Next, from the lemmas 3.2, 3.3 and 2.4 of [7] we obtain:

1.2. Lemma. Let G be a lattice ordered group. The following conditions are
equivalent:

(i) Conv G has no greatest element.

(ii) There are regular sequences (g,), (h,) in G and 0 < ce G such that g, v
v h, = ¢ for each ne N.

1.3. Lemma. Let G be (N, 2)-distributive. Then Conv G possesses the greatest
element.

Proof. By way of contradiction, assume that Conv G has no greatest element.
Then in view of 1.2 there are sequences (g,) and (h,) in G such that the condition (ii)
from 1.2 is satisfied. Put g, = ¢ A g, and h,, = ¢ A h, for each ne N. Then
€ = guo V hyo for each n e N. Hence in view of (N, 2)-distributivity of G we obtain

(1) 0<c=1(g10 Vv hyo) A(gao Vv hag) A ...
Let I be the set of all mappings t; of the set N into Upey {gno» fuo} such that for each
neN we have t,(n) € {g,0, hyo}. Let us write t,, instead of ,(n). Let i € N be fixed.
Then some of the following conditions is valid:

(a) the set {j e N: 1;; = g;} is infinite;

(b) the set {j e N: 1;; = h;} is infinite.
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According to 2.1, in both the cases (a) and (b) we have
tig Atia Atia A L. =0,
hence
(2) Vier(tig A tia Atz A ) =0,
The relation (1) and (2) show that G is not (X, 2)-distributive, which is contradiction.
From 1.3 and from [4] we infer that (A;) holds.
Let us remark that if G is (NO, 2)—distributive, then it need not be archimedean
(e.g., it suffices to take a non-archimedean linearly ordered group).

2. THE CASE OF BOOLEAN ALGEBRAS

Let B be a Boolean algebra. For each ne N let B, = B. The direct product (in
lattice-theoretic sense) of lattices B, (n e N) will be denoted by BY. The elements
of BY are denoted, e.g., as (b,) and they will be called sequences in B.

The notion of sequential convergence in B was introduced in [8] (Definition 1.1).
Let Conv B be the system of all sequential convergences in B; this system is partially
ordered by inclusion.

For ae Conv B we denote by «, the set of all (x,) e« such that x, -, 0. Let
Conv, B be the set of all oy, where o runs over the system Conv B. The set Conv, B
is partially ordered by inclusion. In [8] it was shown that the mapping a — o,
(« € Conv B) is an isomorphism of Conv B onto Conv, B. The elements of Conv, B
are called 0-convergences in B.

From 1.5 in [8] it follows that for a subset B of BY the following conditions are
equivalent:

(i) B e Conv, B.

(ii) B is an ideal of the lattice BY such that the condition (I), (II)and (III) are
satisfied (where o and G are replaced by B or B, respectively).

Since Conv B and Conv, B are isomorphic, by proving (B,) it suffices to prove
the corresponding assertion for Conv, B.

A sequence (x,) in B will be called regular in B if there is p € Conv, Bsuch that
(x.) € B.

The assertion of Lemma 1.1 remains valid if G is replaced by B (let us denote this
modified assertion as 2.1). Similarly, we can formulate the assertion 2.2 which is
analogous to 1.2.

2.2. Lemma. Let B be a Boolean algebra. The following conditions are equivalent:

(i) Conv, B has no greatest element.

(i) There are regular sequences (g,) and (h,) in B and 0 < ce€ B such that
g, V h, = c for each neN.

Proof. The implication (ii) = (i) is obvious. The implication (i) => (ii) is contained
in the proof of 3.4 in [8].
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Next, by replacing 1.1 and 1.2 in the proof of 1.3 by 2.1 and 2.2 respectively we
obtain that the following assertion analogous to 1.3 holds:

2.3. Lemma. Let B be (N, 2)-distributive. Then Conv B possesses the greatest
element.

The above lemma and Theorem 3.6 of [8] yield that (B,) is valid.

The equation whether the (N, 2)-distributivity of B is necessary for Conv B
to be complete remains open. The corresponding question for lattice ordered groups
remains open as well.

3. SINGULAR STRONG UNIT

Again, let G be an abelian lattice ordered group, G + {0}. We recall the following
definitions (cf. [1]):

An element 0 < x e G is called singular if, whenever ye G, 0 < y < x, then
(x=yyay=0.

Let 0 < e € G. The element e is said to be a weak unit in G, if whenever 0 < y € G,
then e A y > 0. Next, e is called a strong unit in G if for each y € G there is ne N
such that y < ne. Every strong unit in G is a weak unit in G.

It is easy to verify that an element 0 < x € G is singular if and only if the interval
[0, x] of G is a Boolean algebra.

A subset a; of (GM)* will be called regular if there exists « € Conv G such that
a; S a. Analogously we define the regularity of a subset of BY, where B is a Boolean
algebra.

3.1. Lemma. Let 0 < e € G such that (i) e is a weak unit in G, and (ii) e is singular.
Denote B = [0, e] and let oy < B™. Then the following conditions are equivalent:

(a) a4 is regular with respect to G.

(b) a, is regular with respect to B.

Proof The equivalence (a) <> (b) follows from 1.2 and 2.2. -

Let Conv, G be the set of all « € Conv G having the property that whenever
(x,) € @, then (x,) is bounded in G. The set Conv, G is partially ordered by inclusion.

3.2. Proposition. (Cf. [7], Theorem 4.8.) The following conditions are equivalent:
(i) Conv G has a greatest element.
(ii) Conv, G has a greatest element.

Let e and B be as in 3.1 and let «; € Conv, B. We denote by T/(«,) the least element
of Conv G which is larger or equal to «,; such an element does exist in view of 3.1.
Then we have

3.3. Lemma. Let (x,) €(G")*. Under the above assumptions and denotations,
the following conditions are equivalent:

(i) (xn) € T(ory).
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(ii) There are me N and (z,) € «; such that x, < mz, for each ne€N.

Proof. The implication (ii) = (i) is obvious. Let (i) ve valid. By similar reasoning
as in the proof of Lemma 2.5 in [ 7] we obtain that there are m,; € N and (y}), (¥2), ...
..y (%) € oy such that

x, < my(yy + 2+ ...+ yi) foreach neN.
Thus in view of Lemma 2.4 in [7] there is m € N such that
X, Em(yr v y2v ... v yi) foreach neN.
Since (yy vV ¥2 Vv ... v yEYea,, it suffices to put z, =y v y2 v ... v yh

Throughout this section, the above denotations will be applied.

3.4. Corollary. Let ay € Convy B. Then T(a,) € Conv, G.

Proof. Let (x,) € T(x;) and let m be as in 3.3 (ii). Then x, < me for each n e N,
hence (x,) is bounded in G.

3.5. Lemma. Let x, y € [O, e], meN, x < my. Then x < y.

Proof. By way of contradiction, assume that x £ y. Then (since [0, e] is a Boolean
algebra) there is x, € [o, e] such that 0 < x; < x and x; A y = 0. Hence x; A
A my = 0, which is a contradiction.

3.6. Lemma. Let o, f; € Convy B. Then we have
o = By T(oy) = T(By)

Proof. The implication o; < f; = T(a;) < T(B,) is obvious. Hence it suffices
to verify that if o; £ B, then T(a;) £ T(B,).

Assume that o; £ B,. Hence there exists (¢,) € «, \ §,. Clearly (t,)eT(x;). We
shall show that (t,) does not belong to T(f,). By way of contradiction, suppose that
(1,) € T(By). Thus in view of 3.3 there are m € N and (z,) € B, such that

t, < mz, foreach neN.
By applying 3.5 we obtain that
t, <z, foreach neN.
Hence (t,) € B, which is a contradiction.
From 3.4 and 3.5 we obtain:
3.7. Theorem. Let 0 < e€ G be a singular weak unit in F. Then the mapping

o, = T(oy) (where o, runs over Conv, [0, €]) is an isomorphism of the partially
ordered set Conv, [0, e] into the partially ordered set Conv, G.

3.8. Lemma. Let 0 < ee G be a singular strong unit in G. Let « € Conv, G.
Put «; = an BY, where B = [0, e]. Then o, € Conv, B and T(a,) = a.

Proof. The verification of the relation a, € Conv, B is easy. Since o; S o, we
have T(a;) € T(x) = a. Let (x,) € o. Because of x e Conv,(G), there is 0 < g€ G
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such that x, < g for each n € N. Next, e is a strong unit in G and thus there is me N
such that g < me. Therefore

X, < me foreach neN.

Let n be fixed. There are x,, X5, - .., X, in G such that

(1)0=x,,<e for j=1,2,...,m,

(2) Xy = X0 + Xpp + oon F Xy
Thus according to Lemma 2.4, [7] there is m; € N such that

(B) Xy S my(x, V X V oot V Xp)-
In view of (1) and (2) we have (x,;), (X,2), .., (X.s) € 2y, Whence (z,) € a;, where
Zy = Xpy V X, V ... V x,, for each n € N. Thus (3) yields that (x,) belongs to T/, ),
completing the proof.

The following theorem is a consequence of 3.7 and 3.8.

Theorem 3.9. Let 0 < e G be a singular strong unit in G. Then the mapping
ay = T(ay) (where o runs over Conv, [0, e]) is an isomorphism of the partially
ordered set Conv, [0, e] onto the partially ordered set Conv, G.

Next, 3.9 and 3.2 yield:

Corollary 3.10. Let 0 < e € G be a singular strong unit in G. Then Conv, [0, e]
is a complete lattice iff Conv G is a complete lattice.
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