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SMALLNESS OF SETS OF NONDIFFERENTIABILITY OF CONVEX 
FUNCTIONS IN NON-SEPARABLE BANACH SPACES 

LuDEK ZAJÍČEK, Praha 

(Received June 26, 1989) 

INTRODUCTION 

There exist many papers which investigate Asplund (or weak Asplund) spaces — 
Banach spaces in which each continuous convex function is Frechet (or Gateaux) 
differentiable at all points except those which belongto a first category set (cf.e.g. [6]). 

It was shown e.g. in [ l ] , [9], [8] that in some separable Banach spaces theabove 
mentioned exceptional sets are not only of the first category but are small in some 
more restrictive senses. 

The problem of finding the most strict sense of smallness was solved for Gateaux 
difTerentiability in separable Banach spaces in [9]. 

The case of Frechet differentiability in Banach spaces with a separable dual was 
considered in [7] and [8], where it was proved that in this case the exceptional set 
is angle small. There is a reason tc say (cf. [8]), that this result is close to the best 
possible one which is not known in the present time. Note that Problem 1 from [8] 
was solved in negative by S. V. Konjagin [4]. 

In the present article we obtain some results concerning the smallness of sets of 
nondifTerentiability of continuous convex functions in some non-separable Banach 
spaces. 

In the case of Frechet difTerentiability we obtain in a general Asplund space a result, 
which is only slightly weaker than the one obtained in [8] in separableAsplund spaces. 
The proofuses ideas contained in [3] and [8]. 

In the case of Gateaux difTerentiability we ate not able to obtain results in general 
weak Asplund spaces, but only in Asplund spaces and in spaces with a strictly convex 
dual. In these spaces we prove that the exceptional set is cr-cone supported. Also this 
result is not the best possible, but in the case of a separable space it is not too far 
from the best possible result of [9]. The proofs use the ideas of Kenderov's articles 
[2] and [3]. 

As usual, we have generalized our results to theorems concerning general multi­
valued monotone operators. 
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DEFINITIONS 

In the sequel we consider real Banach spaces. If X is a Banach space, a є X and 
M cz X, then we put a + M = {a + x : x є M]. If P is a metric space, then the 
open ball with the center x e P and the radius r > Ois denoted by B(x, r). 

Definition 1. Let P be a metric space, M cz P, x e P, R > 0. Then we denote the 
supremum of the set of all r > 0 for which there exists z є P such that P(z, r) cz 
cz B(x, R) — M by y(x, P , M). The number lim sup y(x, Ä, M) R1 is called the 

K^0 + 

porosity of M at x. If the porosity of M at x is positive we say that M is porous at x. 
A set is said to be porous if it is porous at all its points. A set is termed o-porous if 
it can be written as a union of countably may porous sets. 

It is easy to see that any porous set is nowhere dense and therefore any cr-porous 
set is a first category set. On the other hand, in an arbitrary Banach space there exists 
a first category set which is not cr-porous (cf. [11]). 

Definition 2. Let X be a Banach space. If x* є X*, x* + o, and 0 < a < 1, define 

C(x*,a) = {xeX: a||x|| ||x*|| < <x,x*>} . 

We say that a set M cz X is a-cone porous at x e X (where 0 < a < 1) ifthere exists 
R > 0 such that for each r > 0 there exist z є B(x, r) and о ф x* є X* such that 

M n P(x, Д) n (z + C(x*, a)) = 0 . 

A subset o fX is said to be ot-cone porousifitis a-cone porous at all its points. A set 
is termed d — a-cone porous ifit can be written as a union of countably many a-cone 
poroussets.Asetissaidtobeccme-sma//ifitiscx — a-coneporousforeachO < a < 1. 

In the following definition, it will be convenient to use an another definition of 
a "cone". 

Definition 3. Let X be a Banach space. If v eX, \\v\\ = 1, and 0 < c < 1, define 

A(v, c) = {x: x = Xv + w, X > 0, ||w|| < cX) = U Щѵ, c). 
X>0 

A set M czX is said to be cone supported at x e M if there exist R > 0, veX, 
\\v\\ = 1 and 0 < c < 1 such that 

M n B(x, R) n (x + A(v, c)) = 0 . 

A subset of X is said to be cone supported if it is cone supported at all its points. 
A set is termed cr-cone supported if it can be written as a union of countably many 
cone supported sets. 

N o t e 1. It is easy to prove that each "cone" C(x*, a) contains a "cone" A(v, c). 

N o t e 2. In [8], the following terminology is used. A set M cz X is said to be 
a-angle porous if for every x e M and every e > 0 one may find z e B(x, e) and 
x* e P such that M n (z + C(x*, a)) = 0. A set is said to be angle-small if, for 
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every a positive, it can be written as a countable union of a-angle porous sets. It is 
easy to see that each a-angle porous set is a-cone porous and each angle-small set is 
cone-small in an arbitrary Banach space. It is easy to prove that the notions of angle-
small sets and cone-small sets coincide i fX is a separable Banach space. It seems to 
be probable that these notions do not coincide in non-separable spaces. 

N o t e 3. I f X is a separable Banach space then M c X is a-cone supported iff M 
is a sparse set (it follows easily from Lemma 1 of [l2]). A set is said to be a sparse 
set [10] if it can be covered by a countable union of Lipschitz hypersurfaces. Note 
that M c X is a subset of a set of points of Gateaux non-differentiability of a con­
tinuous convex function/if and only if M is a d.c.-sparse set [9]. A set is said to be 
d.c.-sparse [10] if it can be covered by countably many of Lipschitz hypersurfaces 
such that each of them is determinated by a Lipschitz function which is a difference 
of two convex Lipschitz functions. 

N o t e 4. Every сг-cone supported set is obviously cr-porous. Also every cone-small set 
is clearly cr-porous. In finite-dimensional spaces it is easy to prove that each cone-small 
set is a-cone supported. In R2 there exists a <x-cone supported set which is not cone-
small (it follows easily from Remark 1 of [8], p. 221). It seemstobeprobable thatin 
allinfinite-dimensionalspacesthesetwo notionsareuncomparable. Note that the set L 
(a subset of a separable Hilbert space) constructed in the proof of Theorem 2 from 
[4] is cone-small but is not cr-cone supported. 

LEMMAS 

The proofs of our results have the following ingredients. 

(i) Ideas of Kenderov's proofs from [2] and [3]. 
(ii) Lemma 1 and Lemma 2 which deal with monotone operators. Lemma 1 is 

implicitely contained in the proof of Theorem 1 from [8]. Lemma 2 is possibly new. 
(iii) An indirect method based on Corollary 1 and Corollary 2. In [3] (and in 

many other proofs) the fact that an "exceptional" set E is of the first category is 
proved indirectly. Supposing that E is of the second category it is proved that an 
appropriate subset of S is dense in a ball, and from the latter fact a contradiction is 
deduced. Our results on generalized porosity, which are proved by a well-known 
topological method (namely the Montgomery operation (cf. [5]) is used), enable us 
to use the analogy to the indirect proof described above also for proofs that a set 
is "cr-porous" in a sense (e.g. cone-small or сг-cone supported). The important fact 
is that Corollary 1 and Corollary 2 hold also in non-separable spaces where the direct 
method of [8] does not work. 

Lemma 1. Let X be a Banach space and let T: X н^Х* be a monotone operator 
with an arbitrary domain D(T) = {x: T(x) + 0] . Let 0 < Ъа < A, xeX and 
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N cz D(T) be given such that 

(1) lim diam T(B(x, Ô) n N) < a 
<5^0 + 

and 

(2) lim diam T(B(x, o)) > A . 
<5^0 + 

Then N is 3a|A — cone porous at x. 

Proof. On account of (1) we can choose R > 0 such that 

(3) diam T(B(x, R) n N) < a . 

If T(B(x, R) n N) = 0, then the assertion of the lemma is obviously satisfied. In the 
opposite case choose / є T(B(x, R) n iV) and consider an arbitrary r > 0. On account 
of(2) we can find z є B(x, r) and Tz e T(z) such that || Tz - f\\ > A|2. To show that N 
is 3a|A — cone porous at x it is sufficient to prove that 

B(x, R) n N n {yeX: <j; - z, Tz - / > > 

>(3alA)\\Tz-f\\\\y-z\\}=0. 

Suppose on the contrary that there exists у є N n Б(х, R) for which 

<y - z, Tz - / > > (За/Л) ||T, - / | | | b - z|| 

and choose Ty e T(y). Since (3) implies Цг, — f\\ < a we obtain, using the monoto-
nicity of T, the following inequalities: 

a\\y - z|| £ <y - z, Г, - / > = <y - z, T, - Tzy + 

+ (y - z, T._ - / > ^ <У - z, Tz - / > > 

> (3a|A) \\TZ - / | | \\y - z|| ^ (За/Л) (Л/2) | | , - z|| £ a||y - z|| . 

This is а contradiction which completes the proof. 

Lemma 2. Let X be a Banach space and let T: X -^ X* be a monotone operator 
with an arbitrary domain D(T) = {x: T(x) ф 0}. Let H c D(T), х є Я , veX, 
\\v\\ = 1, c є R, s > 0, K > 0, y є T(x), 

(i) <u, j> > c* + e and 
(ii) lim diam Т(Б(х, 5) n Я) < K . 

ĉ >0 + 
T/ien there exists g > 0 such thatfor every 

x є B(x, g) n Я n (x + A(v, s|K)) and y є T(x) 

ífre inequality (v, y} > c holds. 
Proof. By (ii) we can choose Q > 0 such that 

(4) \\y - y\\ ^ K whenever x e B(x, g) n Я and у є T(x) . 

Suppose that x є Б(х, £>) n Я n (x + A(v, s|K)) and y є T(x) are given. By Definition 
3 we can find Я > 0 and w e I , ||>v|| < As|K such that x = x + Xv + w. Mono-
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tonicity of T implies 

(5) 0 й <* - x, y - j> = (Xv + w, y} - {lv + w, y} . 

Using (5), (i) and (4) we obtain <Au, y} ^ <>b, j> + <w, y — v> > X{c + є) — 
— ||vv|| К > À(c + e) — 2.8 = Xc. Consequently (v, y} > с. 

Since we need some facts both for the cr-ideal of cone-small sets and for the cr-ideal 
of cr-cone supported sets, we shall formulate our lemmas in an abstract way using the 
following notion of o — F-porous sets. 

Definition4. (cf. [11], p. 333.) Let P be a metric space and let V= V(x,A) be 
a relation between points x є P and sets A c= P. We say that Fis a porosity relation 
if: 

(6) if A c B and V(x, B), then V(x, A) ; 

(7) V(x, M) iff there is r > 0 such that V(x, M n B(x, r)) ; 

(8) V(x,A) ifT V(x,A). 
We say that A is V-porous at x if F(x, Л) holds. The notions of F-porous and a — V-
porous sets are defined in the obvious way. 

The following lemma states that a set is o — K-porous wheneverit is locally 
a — F-porcus. 

Lemma 3. Let (P, g) be a metric space and let Vbe a porosity relation. Let M c P 
and letfor each x e M there exists òx > 0 such that M n B(x, Sx) is a — V-porous. 
Then M is a — V-porous. 

Proof. Let us order the points of M to a transfinite sequence {xa; 0 ^ a < ß). 
Put Ga = B(xa, ôXa) and Ka — Ga — U Gr For each natural number n define 

t|<CC 

G<*,n = {x: dist (x, P - Ga) ^ l/n} and M a / J = M n Xa n Ga>n. Obviously M c 
00 00 

с у Ga = U Ka and Ga = U Gan . Consequently U ^a,n = M n ^ a and 
a<ß a<ß n-1 n=l 

00 00 

U U Man = U U Man = M. Thus it is sufficient to prove that, for each fixed n, 
a<ß л = 1 и = 1 a < 0 

the set Mn: = (J Man is cr — F-porous. By the definition of Ga and (6), each M a n is 
a<ß oo 

сг — K-porous. Choose F-porous sets Ма>пД, fc = 1, 2 , . . . , such that М а и = U Mank. 
00 fc=l 

Consequently we have M„ = U U^«,«,k- Now observe that dis t( jK^nG^, , 
fc=la<ß 

Kç n Gçt„) ̂  \\n and consequently also 

(9) dist {МПіПік, Mçt„fk) ^ l/n whenever n Ф £ . 

In fact, suppose that rç < £, xeKnnG^fn and j / e ^ n G ^ . Since j e ^ and 
^eG, ,n , we obtain y^G^ and d i s t (x ,P — G^) ^ l/n. Therefore ^ (x , j ) ^ l/n. 

Using (9) and (7) we obtain that (J Ma>„tfc is F-porous. Consequently Ми is a — V-
porous. a<ß 
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Lemma 4. Let (P, g) be a metric space and let V be a porosity relation. Suppose 
that M c P is not a — V-porous. Then there exists 0 Ф N <= M such that N is 
V-porous at no point ofN. 

Proof. Let S be the set of all points x e M for which there exists r > 0 such that 
M n B(x, r) is a — F-porous. Using (6) we obtain that S is locally a — F-porous 
and consequently it is, by Lemma 3, a — F-porous. Put M* = M — S. Obviously 
M* Ф 0 and 

(10) M* n Б(х, r) is not a — F-porous whenever x є M* and r > 0 . 

Now let Tbe the set of all points x e M* at which M* is F-porous. By (6) Tis a V-
porous set and consequently N: = M * — Tsi nonempty by (10). Moreover, 

(11) N is dense in M* . 

To prove (11), suppose that there is an open set G c P such that G n N = 0 and 
G n M* ф 0. Then 0 ф G n M* c T which contradicts to (10). Now consider an 
arbitrary x eN. By the definition ofiV, M* is not F-porous at x. Consequently (11) 
and (8) imply that also JV is not F-porous at x. 

Corollary 1. Let X be a Banach space. Suppose that M a X is not o-cone sup­
ported. Then there exists 0 ф N c M such that N is cone supported at no point 
ofN. 

Corollary 2. Let X be a Banach space and let 0 < a < 1. Suppose that M a X 
is not a — a-cone porous. Then there exists 0 Ф N c M such that N is oc-cone 
porous at no point ofN. 

THEOREMS 

Theorem 1. Let X be an Asplund space and let T: X ^> X* be a locally bounded 
monotone operator with an arbitrary domain D{T) = {x: T(x) ф 0}. Then there 
exists a o-cone supported set A c D{T) such that T is single-valued at each point 
of D{T) - A. 

Proof. Suppose on the contrary that 

A : = {x e D[T): Tis not single-valued at x} 
oo 

is not a-cone supported. We can obviously write A = f| An where 
n = l 

An := {x e D(T): diam T(x) > l|n} . 

Consequently we can choose a positive integer n such that An is not cr-cone sup­
ported. By Corollary 1 there exists a set 0 Ф N c= An which is cone supported at no 
its point. Choose xeN. Since T i s locally bounded, there exists r > 0 such that 
T(B(x, r)) is bounded. Putting H : = N n B(x, r), we easily see that 0 Ф H is cone 
supported at no point of H and T[H) is a bounded subset of X*. Choose K > 0 
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such that \\y\\ < K for each у є T(H). Since X is an Asplund space, every nonempty 
bounded subset ofX* admits weak* slices ofarbitrary small diameters (see e.g. [6]). 
Consequently there exist v e X, \\v\\ = 1 and c > 0 such that the weak* slice of T(H) 

S:= { х * б Г ( Я ) : ( м * ) > c) 

is nonempty and has diameter less than i|n. Since S ф 0, we can choose x є H and 
y e S n T(x). Choose s > 0 such that <u, y} > c + s. By Lemma 2 there exists 
g > 0 such that for each x e B(x, g) n H n (x + A(v, s|2K)) and y e T(x) the ine­
quality (v, y} > c holds. Since H is not cone supported at x we can choose x є 
є B(x, g) n H n (x + A(v, s|2K)). Since H cz An we have diam T(x) > l|n. But 
T(x) cz S and diam S < l/w, a contradiction. 

As an immediate corollary we obtain the following theorem. 

Theorem 1*. Let X be an Asplund space, G cz X an open convex set and let f 
be a continuous convex function on G. Then there exists a o-cone supported set 
A cz G such thatf is Gateaux differentiable at each point of G — A. 

Theorem 2. Let X be a Banach space which admits an equivalent norm whose 
dual norm is strictly convex. Let T : X ^ X * be a maximal monotoneoperator 
with a domain D(T) — {x: T(x) ф 0} which has a nonempty interior G = Int D{T). 
Then there exists a o-cone supported set A cz G such that Tis single-valued at each 
point of G — A. 

Proof. Assume that the norm in X* is strictly convex. Since T i s maximal, we 
know that T(x) is convex for each x e D[T). Therefore, for each x e G at which Tis 
not single-valued, there exist y, z є T(x) such that \\y\\ ф ||z||. Consequently 

A = U {Ac: c-rational} , 

where A = {x є G: Tis not single-valued at x} and Ac = {x e G: ||z|| < c < \\y\\ for 
some y, z e T(x)}. It is sufficient to prove that each Ac is cone supported. To this 
end, consider an arbitrary x є Ac. Choose y, z e T(x) such that ||z|| < c < \\y\\ and 
veX, ||u|| = 1, e > 0 for which <tf, уУ > c + г. Further choose K > 0 such that 
lim diam T(B(x, o)) < K (it is possible since Tis monotone and consequently locally 

0^0 + 

bounded in C) and apply Lemma 2 with H = D{T). Thus we obtain Q > 0 such that 
for each x e B(x, g) n D[T) n (x + A(v, e|K)) and y e T(x) the inequality <t;, y} > c 
holds. It is now sufficient to prove that B(x, g) n Ac n (x + A(v, s|K)) = 0. Suppose 
on the contrary that there exists 

x e Б(х, g) n Ac n (x + A(v, e|K)). 

Since x e Ac, we can choose y e T(x) such that \\y\\ < c. But <^, y} > c, which is 
a contradiction, since \\v\\ = 1. 

As an immediate corollary we obtain the following theorem. 

Theorem 2*. Let X be a Banach space which admits an equivalent norm whose 
dual norm is strictly convex. Letf be a continuous convexfunction defined on an 
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open convex set G. Then there exists a o-cone supported set A c G such thatf is 
Gateaux differentiable at each point of G — A. 

Theorem 3. LetX be an Asplund space and let T: X ^ X* be a maximal monotone 
operator with a domain D{T) = {x: T(x) Ф 0} which has a nonempty interior 
G = Int D(T). Then the set A of all points x є G at which T is single-valued but is 
not norm-to-norm upper semicontinuous is cone-small. 

Proof. Suppose on the contrary that A is not cone-small. Then there exists 
00 

0 < a < 1 such that A is not a — a-cone porous. Obviously A = (J An, where 
n = l 

An = {x eA: lim diam T(#(x, S)) > l|n} . 
<5^0 + 

Consequently we can choose a positive integer n such that An is not a — a-cone 
porous. By Corollary 2 there exists a set 0 + N c An which is a-cone porous at no 
point of N. Choose x є N. Since T is locally bounded at each point of G we can 
choose r > 0 such that T(B(x, r)) is bounded. Since X is an Asplund space, every 
nonempty bounded subset of X* admits weak* slices of arbitrary small diameters. 
Consequently there exist veX, \\v\\ — 1 and c > 0 such that the weak* slice of 
T(B(x, r) n N) 

S : = {x* e T(B(x, r) n N) : {v, x*> > c] 

is nonempty and has diameter less than а/Зл. Since S ф 0. we can choose x є B(x, r) n 
n N such that <y, T(x)> > c. (Here T(x) e X*, since Tis single-valued at x є N c A). 
Since {x*: <p, x*> > c) is weak* open and since T is norm-to-weak* upper semi-
continuous, there exists d > 0 such that Б(х, d) cz B(x, r) and T(B(x, d)) c 
c {x*: <t?, x*> > c]. Consequently T(J3(x, d) n iV) cz S and therefore 

lim diam T(B(x, d) n JV) ^ diam 5 < а/Зл . 
«5^0 + 

Since x eN cz An, we have lim diam T(B(x, S)) > l|n. Using Lemma 1 with x = xy 
5^0 + 

A = [|n, a = а/Зп we obtain that iV is а-cone porous at x, which is a contradiction. 
As immediate consequences of Theorem 1 and Theorem 3 we obtain thefollowing 

results. 

Theorem 4. Let X be an Asplund space and let T: X ^ X* be a maximal monotone 
operator with a domain D{T) which has a nonempty interior G. Then there exist 
a a-cone supported set A c G and a cone-small set B cz G such that T is single-
valued and norm-to-norm upper semicontinuous at each point of G — (A u B). 

Theorem 4*. Let X be an Asplund space and letf be a continuous convexfunction 
defined on an open convex set G. Then there exist a a-cone supported set A c G 
and a cone-small set B cz G such that f is Frechet differentiable at each of G — 
- (A u B). 
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Note 5. I fZis a separable Asplund space, then we can [8] choose A = 0 in Theo­
rem 4. It is probable that Theorem 4 can be improved in this way also in the general 
case. 
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