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1. INTRODUCTION AND DEFINITIONS

In [2] we introduced and studied a covering dimension function for uniform
spaces which in this paper we denote by Dim. In [3] we obtained the inverse limit
theorem for Dim and applied it to deduce several results for dim, the covering
dimension function for topological spaces. Other results for Dim were given in [4].
The purpose of this paper is to present further results showing that the theory of
Dim is not only interesting in its own right but also useful as a tool for deducing
results for the covering dimension of topological spaces. We have already established
subset, sum, product, and inverse limit theorems for Dim in complete generality,
for all uniform spaces. In section 2, we show that from these results immediately
follow some useful subset and sum theorems and all existing results concerning the
covering dimension of limits of inverse sequences of topological spaces. Section 3 is
devoted mainly to the proof of theorem 5, a factorisation theorem for Dim from
which all standard factorisation theorems for dim follow and on which subsequent
developments are based. In section 4, we obtain sufficient conditions under which
the inequality dim < Dim holds. These are used in section 5 to deduce the most
general existing results for dim concerning subspaces, products and inverse limits.
Further sufficient conditions for the inequality dim < Dim are obtained in section 6,
and these have a variety of results for dim as easy corollaries. Other applications
of results recorded here appear in [5, 6].

Uniform spaces in this paper are taken to be Hausdorff and topological spaces to
be uniformisable, i.e., Tychonoff. N denotes the set of positive integers, I the unit
interval [0, 1], R the space of real numbers, X and wX denote the Stone-Cech
compactification and the weight of a topological space X, respectively, W(X) the
weight of a uniform space X and |X| the cardinality of a set X.

For standard results in General Topology and Dimension Theory, the reader is
referred to [7, 8, 22].

A subset G of a uniform space X is called uniformly open if there is an open set H
of a metric space Y and a uniformly continuous function f: X — Ywith G = f~'(H).
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It was shown in [2] that the collection of all uniformly open sets of X is a base of X
and is closed under finite intersections and countable unions. Also, the uniformly
open subsets of a subspace Y of X are precisely those of the form Yn G where G is
uniformly open in X. Complements of uniformly open sets are called uniformly
closed. Dim is defined as follows. Dim X = —1 iff X = 0 and, for n in N u {0},
Dim X < n iff every finite uniformly open cover of X has a finite uniformly open
refinement of order <n. DimX = n if DimX < n and Dim X < n — 1 does not
hold. If Dim X < n for no n, we set Dim X = oo. If every cozero subset of X is
uniformly open then Dim X = dim X. Thus this equality holds if a topological space
is equipped with its Stone-Cech uniformity (i.e. that inherited from BX) [cf.7, p.472]
or if X is a uniform space with Lindelf topology or X is a metric space (with uni-
formity that induced by its metric).

We remark that the notation adopted here is slightly different from that employed
in [2, 3, 4]. If % is the uniformity of X, the uniformly open and the uniformly closed
sets of X were, respectively, called Z-open and %-closed in X and Dim X was denoted
by %-dim X. Occassionally, it is convenient to revert to the old notation.

2. SOME APPLICATIONS

We first state the subset, sum and inverse limit theorems for Dim as we will
repeatedly refer to them in the sequel.

Theorem 1. For any subspace Y of a uniform space X, Dim Y £ Dim X [2,
proposition 3].

Theorem 2. If a uniform space X is the union of uniformly closed subspaces A;
with Dim A; £ n, i =1,2,3,..., then DimX < n [2, proposition 4].

Theorem 3. If in the category of uniform spaces and uniformly continuous
functions X is the limit of an inverse system (X,, f,5; A) with Dim X, < n for each
of a in A, then Dim X < n [3, Theorem].

The following two results will be needed in the sequel. Recall that a subspace Y
of a topological space X is said to be z-embedded in X if every cozero set of Yis of
the form Yn G for some cozero set G of X. Closed subspaces of normal spaces,
arbitrary subspaces of perfectly normal spaces and Lindel6f or cozero subspaces of
arbitrary spaces are z-embedded.

Proposition 1. If Y is z-embedded in a topological space X, then dim Y < dim X
[14, theorems 1.1 and 1.3; 12, theorem 5.16].

Proof. Let X carry its Stone-Cech uniformity and Y the induced subspace uni-
formity. Then every cozero set of Y being of the form G n Y, where G is uniformly
open in X, is uniformly open in Y. Hence dim Y = Dim Y, dim X = Dim X and,
by theorem 1, dim Y < dim X.
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Proposition 2. Let 4 = {G,,:i€N, aeA} be a o-locally finite cozero cover of
a topological space X with dim G;, < n for eachie N and « € A. Then dimX < n
[14, theorem 2.5; 12, theorem 7.3].

Proof. % is the inverse image of an open cover of a metric space under a continuous
function and hence it has a o-discrete refinement consisting of cozero sets of X,
each of which, in view of proposition 1, has dim < n. We may thus assume that
each {G,:ae A} is discrete from which it follows that the cozero set G, =

= J(G,:aeA) of X has dim < n. Let G; = ‘U‘F,-j where each F; is a zero set of X
=

and equip X with its Stone-Cech uniformity. Then each F;; is uniformly closed in X,
by theorem 1, Dim F;; < Dim G; = dim G; £ n and, by theorem 2, dimX =

ij =
= Dim X £ n since evidently X = |J F;;.
i,j=1
If a topological space X is the inverse limit of spaces X,, « € 4, a cozero cylinder
of X is a set of form n{‘(G) where 7,: X — X, is the canonical projection and G is
a cozero set of X,. The following result contains all cases of known results concerning
the covering dimension of limits of inverse sequences of topological spaces.

Proposition 3. Let X be the limit of an inverse sequence (X, f,;; N) of topological
spaces and continuous functions such that dim X; < n and each cozero set of X
is the countable union of cozero cylinders. Then dim X < n.

Proof. Let each X; carry its Stone-Cech uniformity and X the resulting inverse
limit uniformity. Since evidently cozero cylinders are uniformity open in X and
uniformly open sets are closed with respect to countable unions, then every cozero
set of X is uniformly open so that dim X = Dim X as well as dim X; = Dim X,.
Theorem 3 now implies that dim X < n.

Nagami [ 14, theorem 4.1] and Pasynkov [18, theorem 1] have proved the inverse
limit theorem for dim for perforable sequences of normal spaces, and this result
incorporates all known such results [18, corollary 1]. In a perforable sequence of
normal spaces, it is readily seen that every countable open cover of the limit space X
has a countable refinement consisting of cozero cylinders (see the proof of proposition
2 in [26]). From this and the standard properties of cozero sets, it readily follows

0

that, as noted in [18], X is normal and countably paracompact. Also, if G = |J F;
j=1

where G is a cozero and each F; a zero set of X, then, for each i, there are cozero

cylinders G;;, j € N, such that F; < |J G;; = G. Hence G = |J G;; and proposition
3 is applicable. j=1 Li=1

We conclude this section by deriving from theorem 3 Nagami’s original and most
useful result on inverse sequences [13].

Proposition 4. Let M be the limit space of an inverse sequence (M, fi;; N) of
continuous functions and metrisable spaces with dim M; < n for each i in N.
Then dim M < n.
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Proof. Since dim X = Dim X for a metric space X, theorem 3 yields the result
if we inductively equip each M;, i = 2, with a compatible metric that makes f; ;_,:
M; - M,_, uniformly continuous. M, can have any metric compatible with its
topology, and M is, of course, given the inverse limit metric.

3. SOME FACTORISATION THEOREMS

Lemma 1. Every uniformly open cover {G;: i€ N} of a uniform space X with
Dim X < n has a uniformly open shrinking {H: i € N} of order <n.

Proof. It suffices to construct a uniformly open refinement {V;: i € N} of {G;: ie N}
of order <n. For if ¢: N - N is a function such that V; c Gy(;), we may let H; =
= U (V;: ¢(j) = i)

For each i in N, there is a uniformly continuous function f;: X — I with G; =
= f71(0,1] [2]. Let f = A2 fi: X > IV and m;: IYN — I be the ith projection. The
cozero cover {r; '(0,1]: ie N} of I™ — {0} has a star-finite cozero refinement
{U;:ieN} [7, lemma 5.24]. For each i in N, N; = {j = i: U; n U, * 0} is finite,
and {f~'(U,): i e N} is a uniformly open refinement of {G;: i € N}.

For a subspace Y of X, Dim Y < Dim X < n, and so every finite uniformly open
cover of Y has a uniformly open shrinking of order <n. It follows that we can
construct by induction on i a uniformly open cover {V; ;: j€ N} of X such thatV; ; <
< Vieyjs Vo, =f'(U;), {Vi;:j€N;} has order <n and V;; = V;_, ; for j¢N,.
Finally, letting V; = V;;, {V;: i e N} is a uniformly open refinement of {G;: i e N}
of order <n.

Lemma 2. Let A be a subspace of a uniform space X with DimA < n,f: X - Y
a uniformly continuous function into a metric space Y and % an open cover off(A).
Then there exist a uniformly continuous g: X —» Y x IV such that nog = f,
where n: Y x IY — Y is the canonical projection, and an open refinement ¥~ of
order <n of the open cover n~'(U) N g(A) of g(A).

Proof. Let {U;;: ie N, A€ A} be an open refinement of % in f(A) where each
{Ui;: A€ A} is discrete. Set U; = (J (U;: A€ A4). By lemma 1, the uniformly open
cover {f"(U;)n A:ieN} of A has a uniformly open shrinking {H;:ie N} of
order <n. For each i in N, there is a uniformly open set V; of X such that H; =
= An V; [2]. Let g;: X - I be a uniformly continuous function such that V; =
=g; '(0,1] and set g = fA A, g;. If n; denotes the projection of Y x IV into its
(i + 1)th factor, then g~ 'z; *(0,1] = g7 *(0, 1] = V; and {n; '(0, 1] n g(A): ie N}
is an open shrinking of the open cover {n~'(U;) n g(A): i € N} of g(A4) of order <n.
Finally, we may let

¥ = (5710, 1] A v (U) n g(A): i€, de ).

Remark 1. In lemma 2, if 4 is a uniformly open subspace of X, we may very
well take V; = H, for each i in N. Then for each i € N and x ¢ 4, g(X) = 0and hence
n:9(X — A) - Yis a uniform embeding.
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Theorem 4. Let A be a subspace of a uniform space X with Dim A < n and
f:X > Y a uniformly continuous function into a metric space Y. Then there is
uniformly continuous function g:X — Y x IV such that Dimg(A) <n and
T o g = f, where © denotes the projection of Y x IN onto Y.

X

Y, —mooy e Y, T2y T,

Fig. 1.

Proof. By repeated application of lemma 2, we obtain the commutative diagram
of figure 1, where all functions are uniformly continuous and for each m in N,
Y, =Y,_, xI¥ Y, =Y, and =, denotes canonical projection. We also obtain
open covers %,, and ¥, of g,,(A4) such that order ¥",,< n, mesh %,,<1/m, ¥",, refines
. (%,-,) and %, refines ¥, and (m,o...om)"" (#,,) for each 1 < i < m,
where %, is the open cover of g;_,(A) consisting of open balls of diameter 1/m,
go = fand %, is any open cover of f(A).

Clearly, for each m in N, Y,, = Y x Z,, where Z,, is a copy of I¥, g,, = fA h,,
where h,: X — Z, is uniformly continuous and Y x IV is homeomorphic with

Y x [] Z,. Let g = fAAy_, h,. We assume that Y, Z,, Z,, ..., respectively carry
m=1

metrics dy, dy, d,, ... each of which is bounded above by 1, that the metric on
Y, =Y x Z, is given by

em(x’ J’) = max {do(xla l'l), dm(xz, J’z)}

and that the metricon Y x [] Z,, is given by

m=1

d(x, y) = sup b dix;, y):i=0,1,2,...}.
i+1

Then, if o, denotes the natural projection from Y X H Z,onto Y, =YX Z,,
m=1
it is readily checked that m,.6,09 = 6,9 = g,-; and that {o '(¥",) "
N g(A): me N} is a sequence of open covers of g(A4) each of which has order <n
and refines its predecessor and, moreover, lim mesh o, '(¥",) N g(4) = 0. This
suffices to conclude that dim g(4) < n [25]. ™7
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Remark 2. As in remark 1, if 4 is a uniformly open subspace of X in theorem 4,
we may assume that n: g(X — A) > Yis a uniform embedding.

Lemma 3. Let M be a subset of N, A a subspace of a uniform space X with
Dim A < n and, for each m in M, f,;: X — Y,, a uniformly continuous function

into a metric space Y,,. Then there is a uniformly continuous g: X —»([] Y,,) x IV
meM
such that Dim g(A) < n and n,, 0 g = f,, for each m in M, where m,, denotes the

natural projection from ( [] Y,) x IY onto Y,,.
meM

Proof. This is a straightforward application of Theorem 4 where we take Y =
=[] Yuandf = Af,.

meM meM

Theorem 5. Let f: X — Y be a uniformly continuous function, t© a cardinal
number with W(Y) <t and {X,: A <t} a collection of subspaces of X. Then
there exists a uniformly continuous g: X — Y x I* such that nog = f, where ©
is the projection of Y x I* onto Y, and Dim g(X;) < Dim X, for each A < .

Proof. We may assume that t is infinite and that Y = [[ M, where each M, is
a metric space [cf. 7, remark 8.2.4], for if 7 is finite, then Y is discrete and the result
is evident. Let {J;: A < t} be a partition of J, the set of all ordinals less than 7, into ©
disjoint cofinal classes. The set K of all finite and non-empty subsets of J becomes
a directed set if we define & < f to mean that « is a proper subset of . Furthermore
for each 4 <1, K; = {x e K: maxae J,} is a cofinal directed subset of K. For
aveK,let M, = [[ M, and for B < a let r,; denote the canonical projection from M,

iea
onto M. In the category of uniform spaces and uniformly continuous functions,
(M,, m,p; K) is an inverse limit system with limit Y.
For a, f in K with f < a we construct the commutative diagram of figure 2,
where all the functions are uniformly continuous, each r,, 9,, 0,, 0,; and ¢,5 denotes

M,
//
. Ma

f Mps 2 —2——s 7,

A A

Fig. 2.



projection from a product onto a subproduct, each Z, is a copy of IY with Z, =
=([12,) x I¥ and Dim g,(X;) < Dim X, when a€K,. The construction is by

induction on a]. For |a| = 1, the construction is a straightforward application of
theorem 4, where we take “f” to be 7,0 f and ,,4” to be the subspace X, of X for
which « € K,;. Now suppose that the construction has been completed for all g
with || < |af, in particular, for all 8 with f < «. Lemma 3 applied to 7, f and
0po9p B <o gives a uniformly continuous g,: X — M, x Z, such that
Dim g,(X,) < Dim X, if a€K,, 0,09, =7, of and, for B <o, gpo0,509, =
= 0p o gp- It is readily checked that g, has the required properties and the construc-
tion is complete.

Clearly, we have inverse limit systems (Z,, 0,5; K) and (M, x Z,, 6,5; K) with
respective limits Z, a closed subspace of If, and Y x Z. Also, the g,’s induce a uni-
formly continuous g: X - Y x Z such that mwog = f. Finally, for 1 < 1,
(9(X2), 6443 K;) is an inverse limit system with limit a subspace A4, of Y x Z con-
taining g(XA). By the inverse limit theorem for Dim, Dim 4, < Dim X, and,
by the subset theorem for Dim, Dim g(X;) < Dim X .

Remark 3. If for each 1 < 7, X; = A4, a uniformly open subset of X, it can be
seen that, as in remark 1 and 2, we may assume each o, to be uniform embedding
on g, (X — A). Hence = may be taken to be a uniform isomorphism on g(X — A).

Theorem 5 is a common generalisation of several known factorisation theorems
for dim. We first deduce a result that generalises theorem 3 of [1] and theorem 1
of [15], where only normal spaces are considered.

Proposition 5. Let X, X,, ... be z-embedded subspaces of a topological space X.
Let f: X — Y be a continuous function into a metric space Y. Then there exist
a metric space Z and continuous functions g: X — Zand h: Z —» Ysuch thath . g =
= f, dim g(X;) < dim X, for each i in N and w g(4) < w f(A) for every subspace A
of X with f(A) infinite.

Proof. We turn X into a uniform space, equipping it with its Stone-Cech uni-
formity. Theorem 5 with 7 = N, provides uniformly continuous functions g: X —
- Y xI¥ and n: Y x IV - Y such that f = nog and Dim ¢g(X;) < Dim X; for
each iin N. A cozero set of X, i € N, is of the form G n X for some uniformly open
set G of X. Hence every cozero set of X; is uniformly open and Dim X; = dim X;.
Since g(X;) is evidently metric, Dim g(X;) = dim g(X;), and the result follows if we
let Z=YxI¥and h = 7.

A similar argument proves the following result.
Proposition 6. Let {X,: « < t} be a collection of Lindeldf subspaces of a space X,
where 7 is a cardinal number. Let f: X — Y be a continuous function into a space Y

with w(Y) < 1. Then there exist a space Z with w(Z) < t and continuous functions
g:X —> Z and h: Z —» Y such that h o g = f, and dim g(X,) < dim X, for « < 7.
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If in proposition 5 we take X to be compact and each X, closed in X, then we obtain
theorem 2 of [ 1]. Some applications of theorem 5, proposition 4 and 5, and theorem 9
of section 6 can be found in [5].

4. THE INEQUALITY dim = Dim

It is evidently true that dim X < Dim X if X is metric or if the topology of X
is Lindelof or, more generally, if it has the monotonicity praperty with respect to
dim [3]. However, in general this inequality is false. For if X, Y are topological
spaces with X = Y and dim Y < dim X, and Y is given its Stone-Cech uniformity,
then by the subset theorem for Dim, Dim X < Dim Y = dim Yand hence Dim X <
< dim X. The following result provides a sufficient and useful condition under
which the inequality above holds. Fot this result, we adopt the notation that for
a given set A4, A* denotes the set of finite non-empty subsets of A directed by strict
set inclusion.

Theorem 6. Let X be a uniform space satisfying the condition that every finite
cozero cover of X can be refined by a o-locally finite cover consisting of uniform-
ly open sets of X with Dim < n. Then dimX < n.

Proof. Let ¥ = {G;:i = 1,2,...,r} be a finite cozero cover of X. For each
ieN, let o, = {0,: 1€ A;} be alocally finite collection of uniformly open sets of X
with Dim 0, < n, 4, < A;,; and w = |J w; a refinement of 4. For each A in

i=1

A =) A, letf;: X — I, where I, = I, be uniformly continuous with f; (0, 1] = 0,.
i=1

We construct for each o € A*

(1) a separable metric space Y, and an open subset V, of Y, with dim V, < n,

(2) a uniformly continuous surjection f,: X - Y, with f;'(V,) = 0, = N 0, and
Aea

(3) a continuous surjection m,g: Y, = Y; for B < a with mz0f, = f5 and 7
f(A) = f4(A) a homeomorphism whenever 4 N 0; = 0 for 1 ¢ B.

The construction is by induction on |z|. Assuming the construction has been
completed for all B with || < |«|, where |a] > 1, let Y =[] ¥; and f = A f,. By
p<a p<a

theorem 1, dim 0, < n and, by theorem 4 and remark 2, there is a uniformly con-
tinuous g: X — Y x I" such that dim g(0,) < n, f = 7 - g, where = is the projection
from Y x I onto Y, and n: g(4) > f(A4) is a homeomorphism if 4 N0, = 0.
Letting Y, = g(X), f, = g: X = Y, V, = f,(0,) and 7,3 = mg o m, where n;: Y > Y,
denotes canonical projection, it can be verified that (1), (2) and (3) hold. If « = {4},
A€ A, we simply apply the same construction as above taking f = f;: X — I,. Note
that the restriction m, to Yz of the projection I, x IV — I, satisfies f; = 7, o fi3.

At this point we can invoke [ 19, proposition 9] to deduce the existence of an w-map
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from X into a metric space with dim =< n, from which the result follows. For the
sake of completeness, however, we give an outline of the rest of the proof.

For each i in N, let Y; be the limit space of the inverse system (Y, m,4; A7). Let
T Y=Y, and m,2 Y, > Y, j<i, ae AY, denote canonical projections, and
fi: X - Y, the map induced by {f,: « € A]}. Let M; consist of all points of IT(I,: A€ A;)
with only a finite number of non-zero coordinates with metric d; defined by

di(x,y) = sup {|x; — y;]: Ae 4;} .

The collections {f;: A€ A;}, {r, o m;,: Ae A;} induce, respectively, g;: X — M;
and h;: f(X) > M; with h; o f; = g;. Because w; is locally finite, g, is continuous,
and h; is continuous on f;(A4) provided A intersects only a finite number of elements
of w;. Henceforth, Z; will denote the underlying set of f;(X) with topology generated
by sets of the form h;'(G) n H with G open in M; and H open in f(X).

Fixing i in N, for each a in A}, P, = {xe M;: x, + 0 for Aea} is open in M;
with g; '(P,) = 0,. For k = 0,1, 2, ..., let E, be the closed subset of M; consisting
of points with at most k non-zero coordinates. If A < h; '((E, — E,_,) n P,) and
o] = k = 1, it follows from (3) that A4, both as a subspace of Y; and Z;, is homeo-
morphic with a subspace of 0, in Y, so that 4 is metric separable with dim < n.
From the fact that {E, — E,_, n P,: ae A}, |a| = k} is a discrete open cover
of E, — E,_y, {E;:k =0,1,2,...} is a closed cover of the metric space M; and
h;: Z; - M; is continuous it can be deduced that Z; has a o-discrete cozero cover
with a o-discrete closed shrinking & every element of which other than the singleton
h7'(0) is contained in some h; '(E, — E,_,) n P, with |¢| = k > 1. Hence every
member of & is separable metric with dim < n. It follows in turn that each open
subset of Z; is cozero, Z; is perfectly normal and dim Z; < n.

For j < i, m;;: Z; > Z; is continuous and (Z;, n;;; N) is an inverse sequence with
limit space a perfectly normal space Z with dim Z < n [3, proposition 2]. We have
continuous projections n;: Z — Z; and a continuous f: X — Z induced by f;: X — Z,,
ieN.Foried, let P, ={xeM;x, +0}and Q, = n; '(h; '(P,)), where i is the
first member of N with 1€ A;. Then each Q, is open in Z with f7%(Q,) = 0,. Let
¢: A — {1,2,...,r} be a function such that 0; = Gy ;) U, = U (Q;: ¢(2) = k) and
U = U,. Thendim U < dim Z < n and U has an open cover {V: k = 1,2,...,r}

k=1
of order <n with ¥, = U,. Finally, {f~'(V,): k = 1,2, ..., r} is an open shrinking
of ¥ of order <n. Hence dim X < n.

Remark 4. The condition of theorem 6 is clearly equivalent to the requirement
that each cozero set of X is the union of a g-locally finite in X collection of uniformly
open sets of X with Dim < n.

The following result will help to sharpen theorem 6. For the rest of this section,
it is convenient to make use of the original notation of [2].

Theorem 7. For every uniformly % on a topological space X there is a uniformity
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v on X finer than % such that ¥"-dim Y £ %-dim Y for every subset Y of X and
every clopen subset of a U-open set of X is ¥ -open.

Proof. Let {(V,, U,): « < t} be the collection of all pairs (¥, U) of subsets of X
with U %-open and Va clopen subset of U, where 7 is an infinite cardinal. Let f,: X — I
be a uniformly continuous function with respect to % such that U, = f;l(O, ]] for
each o < 7, and define a continuous function g,: X — R by

fAx) if xeV,
9.x) = {—fagx; it xeV,
Note that if g, becomes uniformly continuous, then V, = g;'(O, 1] becomes uni-
formly open.

For o < 7, let ¥7, be the coarsest uniformity on X finer than % which makes
uniformly continuous every continuous function f: X — M into a metric space M
withfl Vy and f[X — V, uniformly continuous with respect to % for some 8 < «.
Assume that for Y < X, ¥ ,-dim Y < %-dim Y for all « < 8, where g < . If B is
a limit ordinal, then Vj is the inverse limit of the uniformities ¥7,, & < f, and since
by hypothesis ¥",-dim Y < #-dimY for Y < X, by theorem 3, ¥7p-dim Y <
< U-dim Y. If f = o + 1, then ¥7 is the uniformity on X whose uniform covers
are precisely those that can be refined by a cover of the form f (%), where f: X - M
is a continuous function into a metric space M withf] V,and f| X — V, uniformly
continuous with respect to ¥7, and % is a uniform cover of M. Clearly, 7", agrees
with ¥7, on both V, and X — V,, g, is uniformly continuous with respect to 77,

and V, is ¥"g-open. Let V, = ) F, where each F, is ¥"4p-closed. For Y c X, if Z =
n=1

=Y-V, or Z=YnF, neN, then ¥pdimZ = ¥ -dimZ £ %-dimZ <
< -dim Y, the last inequality being a consequence of the subset theorem for #-dim.
Hence, by the countable sum theorem for ¥74-dim, #74-dim ¥ < #-dim Y. Thus,
transfinite induction readily implies that ¥",-dim Y < #-dim Y for all Y =« X and

all & < 7. To complete the proof we need only to set ¥~ = ¥7_.

Remark 5. Let %,, %, be uniformities on topological spaces X, X,, and let
vy, V", be the corresponding uniformities constructed in the proof of theorem 7.
If f: (X,,%,) > (X,,%,) is uniformly continuous, it is readily checked that f remains
uniformly continuous as a function from (X, ¥";) to (X,, ¥7,).

The following result generalises theorem 6.

Theorem 8. Let X be a uniform space satisfying the condition that every finite
cozero cover of X can be refined by a g-locally finite cover {G,: a € A}, where for
each a€ A, G, is a clopen subset of a uniformly open set and Dim G, < n. Then
dimX < n.

Proof. Let % be the original uniformity on X and ¥~ the one provided by theorem
7. Now each G, is uniformly open with respect to ¥" and ¥"-dim G, < #-dim G, < n.
Clearly, theorem 6 applies to (X, #”) and we can conclude that dim X < n.
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Remark 6. Note that the condition of theorem 8 is equivalent to the requirement
that every cozero set of X is the union of a g-locally finite in X collection of sets
with Dim < n each of which is a clopen set of some uniformly open set of X.

5. SUBSET, PRODUCT AND INVERSE LIMIT THEOREMS
FOR COVERING DIMENSION

The following results are immediate corollaries of theorem 8. It appears that any
result providing general conditions under which the inequality dim < Dim holds
will imply corresponding results for the covering dimension of subsets, products and
inverse limits. The fact that the product theorem for rectangular products was known
as early as 1975 [17, theorem 1] while the corresponding result for inverse limits
appeared in 1984 [26, Theorem] is a point in favour of Dim.

Proposition 7. If a subset X of a topological space Yis (n, d)-regular, then dim X <
< n [20, theorem 1; 21, theorem 1].

Proof. If X is (n, d)-regular in Y, then an arbitrary cozero cover of X can be
refined by a o-locally finite in X cozero cover {V;: A€ A} of X such that, for each 1
in A, there exists a cozero set U, of Y with dim U, < n and V, clopen in U, n X.
Let Y be equipped with its Stone-Cech uniformity. Since cozero sets are z-embedded,
Dim U, = dim U, < n and by the subset theorem for Dim, Dim V, < n. Obviously,
U, n X is uniformly open in the subspace X of Y and theorem 8 applies to give
dim X < n.

A finite topological product is called rectangular (resp. piecewise rectangular)
if every finite cozero cover of it has a og-locally finite refinement consisting of cozero
rectangles (resp. clopen sets of cozero rectangles), a cozero rectangle being a product
of cozero sets [17, 20]. An inverse system of topological spaces is called cylindrical
(resp. piecewise cylindrical) if every finite cozero cover of its limit space has a o-
locally finite refinement consisting of cozero cylinders (resp. clopen subsets of cozero
cylinders) [26].

Proposition 8. If the topological product X = X x ... x X, is piecewise rectan-
gular and ron-empty, then
dimX < dimX, + ... + dim X,

[17, theorem 1 and 20, theorem 4].

Proof. Let each X; be equipped with its Stone-Cech uniformity and X with the
resulting product uniformity. Then Dim X; = dim X; and by the product theorem
for Dim [4],

DimX < dimX, + ... + dimX,.

Noting that each cozero rectangle G is uniformly openin X and if Y < X, DimY <
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< Dim X by theorem 1, we see that the condition of theorem 8 is satisfied and hence
dimX < dimX, + ... + dim X,.

Proposition 9. If an inverse limit system (X,, T, A) of topological spaces with
dim X, < n for each o€ A is piecewise cylindrical, then its limit space X satisfies
dim X < n [26, Theorem and 21, theorem 5].

Proof. For each a in A4, let X, carry its Stone-Cech uniformity and X the resulting
inverse limit uniformity. Then Dim X, = dim X, < n for each « and by theorem 3,
Dim X < n. Again, theorem 8 applies since a cozero cylinder G is uniformly open
in X and DimY £ Dim X £ nfor Y < X, and hence dim X < n.

6. FURTHER APPLICATIONS

Further applications will follow from the following result.

Theorem 9. Let f: X — Y be a perfect and uniformly continuous function and
suppose thatY is paracompact and each cozero set of Y is the union of a o-locally
finite in Y collection of clopen subsets of uniformly open sets of Y. Then dim X <
< Dim X.

Proof. Firstly, in view of theorem 7 and remark 5, we may assume that each
cozero set of Y'is the union of a o-locally finite in Y collection of uniformly open sets
of Y. Secondly, if % is a uniformity on a topological space Z, the covers of Z that can
be refined by finite Z-open covers of Z give rise to a precompact uniformity ¥~ on Z
such that a subset of Z is ¥ -open iff it is %-open [ 2, proposition 8]. We may therefore
assume that the uniform covers of X (resp. Y) are those that can be refined by finite
uniformly open covers of X (resp. Y).

Let £ denote the completion of X, i and j the identity functions on X and X
respectively and k the inclusion of X into X. Theng = (f x j)o(iAk): X » Y x X
is a uniformly continuous function and, since f is perfect, g(X) is a closed subset of
Y x X homeomorphic with X. Also, since Y is paracompact and X is compact,
then Y x X is normal and g(X) is z-embedded in Y x X. Hence, if G is a cozero set
of X, there exists a cozero set H of Y x X with g(G) = g(X) n H. Now, since the
product Y x X is rectangular [17, proposition 1], there exists a o-locally finite
in Y x X collection {G, x H,: x€ A} consisting of cozero rectangles whose union
is H. Furthermore, for each o in A, there exists a o-locally finite in Y collection
{G.p: Be B,} of uniformly open sets of Y whose union is G,. Now {G,; x H,: a € A,
BeB,} is a o-locally finite in ¥ x X ocllection of uniformly open sets of ¥ x X
whose union is H and hence {9~ '(G,; x H,): xe A, BeB,} is a o-locally finite
in X collection of uniformly open sets of X whose union is G. Recalling that, by
theorem 1, Dim Z < Dim X for every subset Z of X, we see that theorem 8 applies
and gives dim X £ Dim X.

The following corollary of theorem 9 seems to be a new result.
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Proposition 10. Let f: X — X, and g: Y — Y, be perfect maps between non-empty
topological spaces and suppose that the product X, x Y, is piecewise rectangular
and paracompact.

Then  imX x Y < dim X + dim Y.

Proof. Let X,, Y,, X, Y be endowed with their Stone-Cech uniformities and
X, x Yy, X x Y with the resulting product uniformities. Then each cozero set of
the piecewise rectangular product X, x Y, is the union of a g-locally finite in X, x Y,
collection of clopen sets of cozero rectangles, which are uniformly open sets of
X, x Y,. Hence theorem 9 applies to the perfect and uniformly continuous function
fxg:X x Y- X, xY, onto a paracompact space and gives dimX x Y <
< DimX x Y. The result follows since, by the product theorem for Dim [4],
DimX x Y<DimX + DimY = dimX + dim Y.

We describe below several situations where theorem 9 applies yielding mostly
known results for dim.

Proposition 11. If X and Y are non-empty paracompact p-spaces, then
dimX x Y<dimX +dmY [9, 16] .

Proof. If X, Y are paracompact p-space, there are perfect maps f: X — X,
g: Y- Y, into metric spaces X, Y,. Endow X, Y, with their metric uniformities,
X, Y with the finest uniformities compatible with their topology and X, x Y,
X x Y with the resulting product uniformities. Then every cozero set of X, x Y,
is uniformly open and f x g: X x Y— X, x Y, is a perfect and uniformly con-
tinuous function into a paracompact space. Hence, by theorem 9, dimX x Y <
< Dim X x Y. Now by the product theorem for Dim [4], DimX x Y< DimX +
+ Dim Y= dimX + dim Y. Hence dimX x Y < dimX + dim Y.

Proposition 12. Let f: X — Y be a perfect mapping into a completely paracompact
space Y. Then there exist a completely paracompact space Z with wZ < wY and
dim Z < dim X and perfect mappings g: X - Z and h: Z — Y such that f = h - g.

Proof. Suppose 7 = wY is infinite, consider Y as a subspace of the uniform space I*
and endow X with its Stone-Cech uniformity. Then f is uniformly continuous and
theorem 5 provides a subspace Z of I* and uniformly continuous g: X — Z and
h:Z — Y such that f = hog and Dim g(X) < Dim X = dim X. We may clearly
take Z to be g(X), in which case g and h are perfect and Z is completely paracompact
[22, proposition 2.5.9]. Finally, by [20, proposition 1], every cozero set of Y is the
union of a g-locally finite in Y collection of clopen sets of uniformly open sets of Y
and we can apply theorem 9 to h: Z — Y to deduce dimZ < Dim Z < dim X.

Remark 7. The above result can also be obtained by standard methods using the
fact that completely paracompact spaces have the monotonicity property with
respect to dim [3]. It is interesting to speculate whether the result holds when Y is
merely paracompact.
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Proposition 13. For every paracompact space X, there is a space Z withdimZ < 0
and a perfect surjection f: Z — X [24, theorem 2 and 22, proposition 6.3.15].

Proof. As fX can be embedded in a cube I', there exists a continuous surjection
f: Y- BX, where Y is a closed subset of a product of copies of the Cantor dis-
continuum. Then dim Y £ 0 and, if Z = f~!(X), f: Z — X is perfect and surjective.
If we endow X, Y with their Stone-Cech uniformities, every cozero set of X is uni-
formly open, Dim Y = dim Y < 0 and, by theorem 9, applied to f: Z — X and the
subset theorem for Dim, dimZ < DimZ < DimY £ 0.

For a paracompact space X, AX < n iff there exist a space Y with dim Y < 0 and
a continuous and closed surjection f: Y — X of multiplicity <n + 1 [22, proposition
6.3.8]. It was proved by Pears and Mack [23] that AX = ABX for X paracompact,
the inequality ABX < AX following from the fact that if a closed f: X — Y has
multiplicity <n + 1 then the same holds for its extension to Stone-Cech com-
pactifications [22, proposition 6.4.9. and 19, proposition 3]. The following result
more than establishes the reverse inequality.

Proposition 14. Let X, Y be paracompact spaces with X < Y. Then AX < AY
if either X is z-embedded in Y or X is completely paracompact.

Proof. Suppose AY < n and let f: A — Y be a closed surjection of multiplicity
<n + 1, where dim 4 < 0. Let B = f~'(X) and endow A4 and Y with their Stone-
Cech uniformities. Then Dim 4 = dim A < 0 and, by the subset theorem, Dim B <
< 0. Also, f: B— X is perfect and uniformly continuous and theorem 9 applies,
giving dim B < Dim B < 0. Since also f: B — X has multiplicity <n + 1, then
AX £ n.

The class of spaces that satisfy the conditions of the following result includes all
finite-dimensional quotient spaces of locally compact groups [ 19, section 5]. A similar
result was announced without proof by Leibo [11, theorem 3 and corollary 3].

Corollary. If f: X — M is a closed continuous surjection from a paracompact
space X into a metrisable space M with dim f = 0, then dim X = Ind X = AX.

Proof. AX < ABX by proposition 14, ABX =< dim X by [19, theorem 12] and
the result follows since dim X < Ind X < AX for all paracompact spaces X [22].

Several other applications of theorem 9 exist and we will give two in which every
cozero set of the range of f is uniformly open. For such situations it is sufficient for f
to be continuous and closed and to have Lindelof fibers. It is convenient to call
such a function almost perfect. It is not hard to see that inverse images of Lindelof
spaces under almost perfect maps are Lindel6f and composites of almost perfect
maps are almost perfect.

Theorem 10. Let f: X — Y be an almost perfect uniformly continuous function
into a (paracompact) space Y with the property that every open cover of Y has
a o-locally finite refinement consisting of clopen sets of uniformly open sets. Then X
is paracompact and dim X < Dim X.
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Proof. Let 4 be an open cover of X. For each y in ¥, since f~!(y) is Lindeldf
and uniformly open sets constitute a base for X, there are uniformly open sets

®
G,,. Gy, ... such that f7'(y) = G, = | G,, and each G,, is contained in some
i=1

member of 4. Since f is closed, there exists an open neighbourhood ¥V, of y with
f7U(V,) = G,. Let {V,:ae A} be a o-locally finite refinement of the open cover
{V,: y e Y} of Y where each V, is a clopen set of some uniformly open set of Y, and
for each « fix a point y(«) of Y with V, = V,,,. It is straightforward to verify that
{f7'(V,) n G,: ae A, i e N} is a o-locally finite refinement of ¥ each member of
which is a clopen set of some uniformly open set of X. It follows that X is para-
compact and the condition of theorem 8 is satisfied so that dim X < Dim X.

The following result strengthens [16, corollary 3] and [10, corollary 1.2].

Proposition 15. Let (X,, n,p; A) be an inverse system of topological spaces with
limit space X. If dim X, < n for each a in A and, for some f € A, X, is paracompact
and the canonical projection ng: X — X, is almost perfect, then dim X < n.

Proof. Endow each X, with its Stone-Cech uniformity and X with the resulting
inverse limit uniformity. Then for each «, Dim X, = dim X, < n so that by theorem
3, Dim X < n. Now theorem 10 applies to 7;: X — X; and gives dim X <
<DimX < n.

We digress here to give a related result whose proof we base on proposition 9 and
which generalises [ 10, theorem 1.1].

Proposition 16. Let X be the limit space of an inverse system (X,, T, A) of
normal spaces with dim X, < n and surjective canonical projection n,: X — X,
for each ain A. Then X is normal and dim X =< n if, additionally, for some B € A,
Xy is |A!-paracompact and my is closed and satisfies

(*) for each x € X; and each open cover {G,: « € A} of X with G,, = G,, whenever
®, < a,, there exists some a € A with 7; '(x) < G,.

Proof. Let {G;: i e M} be a finite open cover of X and for each i e M and a € 4,
let G,, be the biggest open set of X, with n; '(G;,) = G;, G, = U (G, i e M) and H,
the biggest open subset of X, with n; '(H,) = n; '(G,). In view of (*) and the fact
that m, is closed, {H,: « € A} is an open cover of the |A|-paracompact space X, and
so it has an open locally finite shrinking {Va: xe A}, which, since X is normal, has
a closed shrinking {F,: a € A}. For < a, since 7, is surjective {n,'(F,) N G,: i e M}
is an open cover of n;,,l(F,) which, since X, is normal has a closed shrinking {E_,:
:ie M} so that we can insert a cozero set U,, of X, between E;, and n,,'(V,) N G,,.
It is readily verified that {rn; '(U,): ie M, B < a} is a locally finite refinement of
{G;: i € M} consisting of cozero cylinders. It follows that X is normal and the inverse
system is cylindrical so that, by proposition 9, dim X < n.

Remark 8. The condition (*) holds if 7, is perfect or m, is almost perfect and each
countable subset of A has an upper bound in A.
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The following example shows that the restrictions of paracompactness in proposi-
tion 15 and |A[-paracompactness in proposition 16 are not redundant.

Example. Let M be a subspace of [0, ,) x I" withdim M = nand loc dim M =
= 0 [22, proposition 5.4.5], where w, is the first uncountable ordinal. For each
o < oy, let M, be the closure of M n [0, a] x I"in M and X, = M, U [0, w,) x
x {0}. For B < a, let m,5: X, — X, be the unique map whose restriction to M n X,
sends (y, x) to (7, 0) if § < y < « and to itself otherwise. Then (X, m,4; [0, @,)) is an
inverse limit system, each X, is countably paracompact and normal with dim X, = 0
and each m,; is perfect. For the limit space, however, X = () X, we have dim X =
=dimM = n since M <« X < M. x<on

We quote one last corollary of theorem 10. This generalises theorem 4 of [19],
where the definitions of bwX, compact weight of X, and uwX, metric weight of X,
were introduced. We call a space X an almost paracompact p-space if there is an
almost perfect map from X onto a metric space.

Proposition 17. Let f: X — Y be a continuous function into an almost paracompact
p-space. Then there exists an almost paracompact p-space Z with bwZ < bwy,
wwZ < pwY and dim Z < dim X and continuous g: X — Z and h:Z —» Y with
f=hog.

Proposition 17 is a special case of [6, proposition 1]. Several other applications of
results presented in this paper can be found in [5, 6].
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