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On a groupoid (G, +) a compatible tolerance ¢ is a reflexive and symmetric relation
which is a subalgebra of G x G (¢ £ G x G). If all compatible tolerances of G are
congruences, then G is called tolerance-trivial, a class ¢ of groupoids is tolerance-
trivial iff all G € % are tolerance-trivial.

According to the Findlay-Werner’s theorem [1], [3], tolerance-trivial and congru-
ence permutable (Mal’cev) varieties coincide but a variety generated by a single tole-
rance-trivial algebra is not necessarily Mal’cev.

The theory of tolerance-trivial algebras was introduced by I. Chajda and B. Zelinka.
In particular they studied tolerance-trivial semigroups. Some main results:

The tolerances-trivial commutative semigroups with at least 3 elements are
groups; tolerance-trivial semigroups with at least 3 elements have no bilateral
ideal (B. Zelinka [9], [8]; I. Chajda [4]). In his paper [7] B. Pondéli¢ek characterised
tolerance-trivial periodic semigroups. Other results containing tolerance-trivial
algebras obtained J. Duda, I. Gy. Maurer and other autors [10].

The aim of this article is to study tolerance-trivial groupoids and their classes in
order to generalise the above results.

In this article we define and use the notions: left (right, bilateral ideal, proper
(left) ideal, maximal, minimal left (right, bilateral) ideal, principal left (right) ideal
generated by a, denoted (a),, in the same way as in the case of the semigroups — and
they have analogous properties too. (For example: 4 < G left ideal if for all a e A
and for all g€ G: g . a € A, proper left ideal if it is different from G an @, — The
union and intersection of arbitral system of left ideals are left ideals too.)

For the sake of brevity in the rest of the paper we always write T.-trivial instead
of tolerance-trivial.

1. COVERING OF THE GROUPOIDS WITH LEFT (RIGHT) IDEALS

Lemma 1. A covering of a groupoid with a system of proper left (right) ideals
{A;}ia I * 0 generate a compatible tolerance.

Proof. The requied relation is defined as follows: a g b<>3iel, such that
a,beA;(*).
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Then g is clearly reflexive and symmetric. We can write ¢ = |J A7 and thus o is
a subgroupoid of (G, +) whence compatible. e

Lemma 2. Let G be a T.-trivial groupoid, A, and A, proper left (right) ideals
of G such that G = A, u A,. Then:
(i) 4,0 4, = 0.
(ii) A, and A, are at the same time maximal and minimal proper left ideals.
(iii) G has no proper left (right) ideals different from A, and A,.
(iv) Each proper left (right) ideal of G is principal. :
(v) Either A, and A, are isomorphic or they are invariant under an arbitrary
automorphism f.

Proof. (i) Let ¢ be the relation induced by the covering {A4,, A,} according to (*).
On applying Lemma 1 we find that ¢ is a congruence, since G is T.-trivial. Pick
aa,e Ay \NA,anda, € A, \ A,. Suppose now that exists z € A; N 4,, then (a,, z) € o,
(z, a,) € ¢ but (ay, a,) ¢ ¢ by the choice of a; and a,. This is in contradiction with
transitivity of ¢ and so A, n 4, = 0.

(ii) Suppose A, is not maximal, then there exists a proper left ideal 4 = 4,
A *+ Ay, Since {A, A,} is also a covering A N A, = 0, which contradicts the fact
ANA; € AN A,. A, is also maximal by symmetry.

Suppose now that A4, is not minimal, i.e. it properly contains a nonvoid left ideal B.
But then B u A, is proper left ideal containing A, and B + A, contradicting the
maximality of 4,. A, (by symmetry) is minimal too.

(iii) Let B a proper left ideal of G. Clearly BN A, #+ 0 or Bn A, + 0. Suppose
BN A, + 0 then by minimality of 4, we have Bn A, = A,, whence 4, < B.
Since A4, is also maximal B = A,. The case BN A, + 0 is treated similarly.

(iv) Obvious.

(v) Let f be an automorphism of G. Since f(G) = G we have that f(A,) and f(4,)
are proper left ideals. Now by (iii) either 4, and A, are invarianted or f(4,) = A4,
which implies 4, ~ A4,.

Corollary 1. If G is T.-trivial and has a finite covering by proper left ideals,
then G has exactly 2 proper left ideals. These form a proper covering and Lemma 2
holds.

Proof. The assumption implies that G has also a minimal proper covering, write
it {A,, 4,,..., A}, ke N. Since the ideals of covering are proper k = 2. Let now
B, =A,and B, = A,uU A3 U ... U 4,. Then B, and B, proper left ideals and follows
G = B, U B,. Since G is T.-trivial, Lemma 2 holds and according to (iii) G has only 2
proper left ideals.

Theorem 1. If (G, +) is a T.-trivial groupoid and {A;},.;, I * O is a covering of G
with proper left ideals, then the induced relation ¢ by (x) is either the total relation
on G orI = {1,2} and {A,, A,} satisfies the conclusion of Lemma 2. Further if o
is the total relation, then for all a, b € G there exists ¢ € G such that a, be (c),,
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Proof. In Lemma 1 we proved that the relation induced according to (x) is a com-
patible tolerance and since G is T.-trivial ¢ is a congruence. Denote the classes of ¢
by {E;}jes-

Obviously J + 0, E; + 0 for all je J. According to Ju. A. Sreider result [2],
page 193, the tolerance blocks of a tolerance generated by a covering can be obtained
from members of the given covering, using the operations N and U only. This means
that the E -classes are nonvoid left ideals.

Suppose ]J] = 2, follows E, U E, = G and Lemma 2 holds. Now suppose that J
contains more than 2 elements i.e. for all j,eJ, J\{j,} has at least 2 elements.
It follows that there exists Jy,J, & J such that J, nJ, = {j,} and J, U J, =
=J. In consequence B, = N{E;|jeJ,}, B, ={E;|jeJ,} are proper left
ideals. Moreover B,u B, = {E;|jeJ} =G, but B,nB,2E; 0 which
contradicts (i) of Lemma 2. Therefore J has at most 2 elements. If J has only one
element, then E; = G which means that the congruence g is the total relation of G.

If {A;} ;s generates the total relation, since 4; + G, for all i e I, I is infinite. Taking
in our consideration Coroilary 1 it follows that no covering of G contains 2 left
(right) proper ideals. By what has been said it is clear that any proper covering
generates the total relation. In particular the covering G = (J{(g), | g € G}consisting
of all principal left ideals generates the total relation, which means that for all
a, b € G there exists a ¢ € G such that a, b € (c),.

Corollary 2. If (G) is T.-trivial then there exist the following possibilities:
1) G has two proper left ideals and Lemma 2 holds.

2) All coverings of G with proper left ideals contain infinite members.
3) There exists a g € G such that (g), = G.

Proof. We note that 1) and 2) follows from Theorem 3 and Corollary 1. If both
1) and both 2) is not satisfied on G it means that G has not a cover of proper left
deals. In particular (J{(g), | g € G} is not a proper cover of G, so that there exists
a g € G with the property (g), = G.

Remark. It seems that in general case 2) in Corollary 2 can be omitted. The problem
is that an infinite covering of G consisting of proper left ideals need not have a minimal
subcovering. (e.g. the union of a chain of proper left ideals:

G = U'{Ai|Ai<'LG}, A;c Ajfori <.

If the congruence induced by the covering (as in Theorem 1) has more than one class
then there exists a minimal covering since the classes themselves are disjoint ideals.

But a restriction on the structure of G also can exclude case 2. Probably this hap-
pens in the case of semigroups — but the author can neither prove nor disprove it.
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2. BILATERAL IDEALS IN T.-TRIVIAL GROUPOIDS

Theorem 2. If (G, *) is a T.-trivial groupoid with at least 3 elements then either
it has no proper bilateral ideals or it has an ideal A which satisfies the following
properties:

(1) GNA = {u} and u* = u;

(ii) A is maximal and minimal,

(iii) A is the only proper bilateral ideal of G;

(iv) for any a € A, {u, a} generates G and (u), = G, (u)z = G;

(v) G is direct irreducible (i.e. it can not be presented as a direct product).

Proof. (i) If A = G an ideal, the (G x A)U (4 x G) is also a bilateral ideal
in G x G.

Write A = {(9.9)| g€ G} and R = A¢ U (G x A) U (4 x G). Now R is a sub-
groupoid of G x G and by definition it is reflexive and symmetric, so R is a compatible
tolerance. Since (G, *) is T.-trivial, R is a congruence.

Suppose x, y€ G\ A4, x #+ y, then foralla € A: (x,a) e R, (a, y) € Rbut (x, y) ¢ R
which contradicts the fact that R is a congruence therefore G \ A4 has a single element
which we denote by u. In [5] I. Chajda proved that in a T.-trivial algebra (4, F)
for all a € A there exists f € F such that a = f(ay, ..., a,) for some a,, ..., a,€ A.
In our case this means that there exists u,, u, € G such that u; . u, = u. But u,, u, ¢
¢ A implies u; = u, = u, thus u? = u.

(ii) The fact that 4 is maximal is obvious. To see that it is minimal, let A’ = 4
be an ideal of G. Then G\ A’ has a single element (namely the same u) by (i). Thus
A" = A and so A4 is minimal.

(iv) If G, is a subgroupoid of G such that GouU A = G, then © = Gj U A7 is
a congruence on G.

Indeed, by definition = is reflexive and symmetric and n = (G, x G,) U (4 x A)
is a subgroupoid of G x G. Since G is T.-trivial = is a congruence. If there exists
z€ Gy A, then for all ue G and ae A\G,, we have (u,z)emn, (z,a)en but
(u, a) ¢ .

There are two possibilities to evite the contradiction; either Gy N A = @ or
A < G,. In the first case G, = {u} and in the latter G, = G. Now let a € A, and put
G, = <a, u). We find that {a, u} = G. Consider now G, = (u),. Since (u), N A *
+ 0, (for all ae A, a - ue(u), N A) we have: (u), = G. Symmetrically we obtain
(u)e = G.

(iii) Let A’ be another ideal of G. Since A’ & A, we have u € A’ by (i). We obtain
A 2 (), =

(v) For an arbitrary congruence 0 and for the idempotent u of G, [u] is a sub-
groupoid (see I. Chajda [4]). By the proof of (iv) we find that either 0[u] = {u}
or O[u] = G. In the first case 0 < {(u, u)} U (4 x A), (where {u} = G\ A), while
in the latter 0 = G x G. It is well-known that G can be presented as a product of
two (non-trivial) groupoids G, and G, iff there exist the non-total congruences 0,
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and 0, such that 0, v 0, = G x G and 0, A 0, = A;. The fact that 0, and 0,
are non-total implies 0, = {(u,u)} U (A x A), ie{l,2}; but then 0, v 0, =
< {(u,u)} U (A4 x A) — a contradiction.

Next we list a few consequences. The first we have already verified in the course
of proving (iv):

Corollary 1. If (G, *) is a T.-trivial groupoid containing a proper bilateral ideal A,
and a subgroupoid G,; then Gy U A = G implies either Gy, A = 0 or G, = G.

Corollary 2. If (G, *) cannot be generated by 2 elements and (G, *) is T-trivial,
then G has no proper bilateral ideals.

Corollary 3. If (G, +) is a T.-trivial groupoid and further G has a neutral element,
then G either has a single proper ideal which is a maximal and minimal sub-
groupoid of G at the same time or (G, +) has no proper ideal at all.

Proof. Let e be the neutral element of the T.-trivial groupoid G, and A a proper
bilateral ideal of G, obviously e ¢ 4 (otherwise A = G). According to (i) of Theorem
we have G\ 4 = {e} so A is a maximal subgroupoid.

Let ge A, then {g) < A. Since e-{g) = {g)-e={g), G, ={e}ug) is
a subgroupoid and G, U 4 = G, while G, " A = {g) + 0. But then by Corollary 1
of Theorem 2 it follows that G, = G, and so {g) = A. Since g is an arbitrary element
of 4, we find that A is a minimal subgroupoid of G.

Corollary 4. If both (G, +) and (G x G, +) are T.-trivial G has no proper bilateral
ideal.

Proof. If G has a single element, the claim is obvious, if G has at least two ele-
ments G x G has at least 4 and so (i) and (v) of Theorem 2 can be applied.

Theorem 3. Let (G, *) be a T.-trivial groupoid with at least 3 elements and assume
that G is covered by subsemigroups, each of cardinality >1, than G has no proper
bilateral ideal.

Proof. Let’s suppose that G has a proper bilateral ideal 4. According to (1) of
theorem 2, G\ A has a single element say u. Denote by S, the subsemigroup of G
which contains u. Since S, has at least 2 elements S, 4 + @ and so S, = G by
Corollary 1 to Theorem 2. Thus (G, +) is a semigroup. Since u? = u and ,,*” is
associative (u), = G-u and (u)z = u-G. But according to (iv) of Theorem 2,
G=G-u=u-G, ie. for all xe G there exist k, /€ G such that x = k-u and
x = u - l. But in this case x - u = u - x = x whence u is a neutral element of G.
By applying Corollary 3 to Th. 2 we find that {(a) = A in consequence A has no
subgroupoid which is proper left or right ideal of 4. It means that (4, ) is a group.
Denote by e the neutral element of this group. Then {e} = (e} = 4 and so G =
= {u, ) which contradicts the assumption that G has at least 3 elements.

Corollary 5. If (G, *) is a T.-trivial semigroup with at least 3 elements, G has no
proper bilateral ideal.
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Proposition. If (G, *) is a T.-trivial groupoid with at least 3 elements and G has
a congruence with only 2 classes which are also subgroupoids, then there are 2
possibilities:

Case 1. These classes are at the same time maximal and minimal unilateral
ideals which satisfy the conclusions of Lemma 2.

Case 2. One of them has only one element and the other is a bilateral ideal
which satisfies the conclusions of Theorem 2.

Proof. Let ¢ be the congruence with classes E; and E,. Let a, € E; and a, € E,.
Then either a, -a, € E, or a, - a, € E,. Suppose a, - a, € E,. Since E, is a con-
gruence class, according to Malcev’s result ([6] page 3) for all algebraic functions ¢
on G either #(E;) < E, or t(E;)n E, = @ (in our case the second relation means
t(E,) < E,). In particular it holds for the t5(x) = a, - x. Since to(a,) € E, we have
to(E;) < E, so that a, - x € E, for all x € E,. Consider now the algebraic function
t.(y) = y - x and the class E,; since a, - x € E, for an arbitrary but fixed x € E, it
follows that t(y)e E, for any ye E,. Thus y-x€E, for all ye E, and x€ E,.
Moreover, since (E,, ) is subgroupoid y-xeE, for all ye G and x€ E,, i.e. E,
is left ideal.

If a, - a, belongs to E, on changing the roles of a; and a, we can show that E, is
a left ideal. Then the system {E,, E,} satisfies the hypotheses of Lemma 2 and so
the case 1 occurs.

If a, - a, is also in E, then by a symmetrical argument as before we can show E,
is a right ideal. Thus E, is bilateral and case 2 occurs.

Corollary 6. Let (G, -) be a T--trivial idempotent groupoid with at least 3 elements
which satisfies:

(i) G has no proper bilateral ideal.

(i) The number of maximal or equivalently minimal one-sided ideals of G is not

equal to 2.

Then all congruences different from G x G on G have at least 3 classes.

Proof. If ¢ is a congruence on (G, +), since (G, *) is idempotent all classes of ¢
are subgroupoids. Now the claim follows by the proposition.

3. COMPATIBLE TOLERANCE ON CLASSES OF GROUPOIDS

In what follows by C(%) we mean the system of subgroupoids of the class ¥ of
groupoids.

Theorem 4. Suppose that the class 9 of groupoids satisfies:
(1) % is T-trivial.

(i) For every G € 9, any subdirect square of G is T.-trivial.
Then no G € 4 contains proper left or proper right ideals.
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Proof. Let be Ge & and A4 a proper left ideal of G. It is easy to see that the left
ideal B = (G x A)u (A4 x G) of G x G is subdirect square of G. Thus B is a T.-
trivial groupoid. But G x 4 and A x G are proper left ideals of B and (G x A) N
N (A x G) = A x A + 0, which contradicts (i) of Lemma 2.

Corollary 1. If % is a Mal’cev variety then no G € 9 contains proper left or right
ideals.

Theorem 5. Let 4 be a class of groupoids which satisfies:

(1) % is T-trivial.

(i) C(%) = 9.

Then for every G € 9(G # ) precisely one of the following conditions holds:

1) The left ideals of G form a chain.

2) G has exactly 2 disjoint left ideals A, and A,; apart from them the left
ideals of G form a chain and moreover, for each left ideal A + 0 of G different
from Ay and A, we have Ay U A, = A. The lattice-structure of the left (right)
ideals of G is given by: G

3) G has no proper left ideal.

Proof. Let A, and A, be two nonvoid left ideals of G ¢ %. If neither A; < A4, nor
A, € A, then for the T.-trivial groupoid B = A4, U A,, A; and 4, form a covering.
But according to (i) of Lemma 2: A, n A, = @ and according to (ii) of Lemma 2.
A, and A4, are minimalin G. (If A<, G and A < B, then A is also a left ideal of B.)
In conclusion if G has no 2 minimal left ideals, case 1 or case 3 occurs.

G cannot contain more then 2 disjoint left ideals: Let A,, A, and A be pairwise
disjoint left ideals. then B = A; U A, U A is a T.-trivial subgroupoid with a covering
of 3 proper left ideals in contradiction with Corollary 2 of Lemma 2.

Assume now, that G contains 2 minimal left ideals, namely 4, and A4,. For a given
left ideal A4 of G(A #+ A;, A + A,) we have either 4, = A4 or A, = A or both.
Suppose 4, < A but A, £ A4, then 4, and A are disjoint since @ + AN A, + A,
contradicts 4, is minimal. So applying Lemma 2 to the T.-trivial subgroupoid
B, = A U A, follows that A, is minimal. Thus 4, = A contradicting the choice of 4.
The case 4, < A but A; ¢ A is treated similarly.
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We have verified that 4, U 4, < A. Now let 4 and B be 2 proper left ideals
different from A,, A, and each other. Then An B2 A, UA4, +0,So0D=AUB
is also a T.-trivial groupoid. Repeating the above arguments we get either A < B
or B = A. In conclusion case 2 occurs.

Observation. Let ¥ satisfy the conditions of the Theorem 5 and assume that
G € 9 has only a finite number of left (right) ideals. Further, let A, and A, be as
in the statement of the theorem (i.e. there are minimal left ideals). Then the
following holds: ‘

(i) Each proper left ideal of G is a principal left ideal except A; L A,.

(i1) Every left ideal of G is invariant under any automorphism of G except

possibly A, and A,.

Proof. (i) Since A, and A, are minimal left ideals it is well-known that they are
principal left ideals. Let B be a proper left ideal of G different from 4, U 4,, A,
and A,. Then A; U A, < B. Since G has a finite number of left ideals, there exists
a maximal left ideal of G with the property 4 & B. Pick a € B\ A. Then (a), < B,
but (a), &£ A. From Theorem 5 it follows that A < (a), whence (a), = B and thus B
is principal.

(i1) If G contains two disjoint minimal left ideals 4, and 4, we have that f(A4,)
and f(A,) are also minimal and disjoint, for all fe Aut G. Thus either f(4,) = 4,
and f(A4,) = A, or f(4,) = A, and f(A,) = A,. In both cases: f(4; U 4,) =
= A,V A,.

Now let 4 be a left ideal of G different from 0, 4, and 4,. We want to show f(4) =
= A. According to Theorem 5 we have f(A) = A or A < f(A). Assuming the latter
we find A4 = f(A) since f induces a strictly orderpreserving map of the finite chain
of left ideals containing A into itself (i.e. the identity map). If we assume f(4) < 4
the above argument applies to f 1.

If the ideals of G form a finite chain, any automorphism f induces also an order-
preserving bijection of the chain onto itself (i.e. the identity map) and the claim
follows.

4. STRONGLY T.-TRIVIAL GROUPOIDS

Definition. We call a groupoid (G, -) strongly T.-trivial iff all subgroupoids of G
including (G, -) itself are T.-trivial.

Observation 1. If (G, ) is a finite strongly T.-trivial groupoid, then G satisfies
the conclusions of Theorem 3 and Observation (§ 3).

Observation 2. If G is strongly T.-trivial then any direct decomposition of G as
a direct product of groupoids contains at most one groupoid which has a proper
left (right) ideal.

Proof. Let G = A, x A, x ... x A,. If B; and B, are proper left ideals of two
different factors, without loss of generality we may assume that B, <a; A4, and
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B, <, A,. But then B; x A, x ... x 4,, and A, x B, x ... x A, are also left
ideals with non-empty intersection, and certainly neither of them contains the other-
contradicting theorem S.

Theorem 6. If a strongly T.-trivial groupoid G with at least 3 elements contains
a neutral element e then:

(i) For all g € G with the property e ¢ {g>, {g)> is a minimal subgroupoid of G.
(i) For all x, y € G which do not belong to the same minimal subgroupoid:
ec{x, y).

(iii) G contains at most one proper left ideal (right ideal, bilateral ideal) and
that is a minimal subgroupoid in G.

(iv) 1f G contains both proper left ideal and proper right ideal, then they are
equal and form a single bilateral ideal of G, which satisfies Corollary 3
of Theorem 2.

Proof. (i) Let G, + 0 a subgroupoid of G, then {e} U G, is also a subgroupoid
of G and G, is bilateral ideal in {e} U G,. So 2 cases are possible: e € G, or e ¢ G, —
in the last case Corollary 3 of Theorem 2 implies that G, is a minimal subgroupoid.
If G, = {g) fora ge G, e¢ (g> we get the statement (i).

(ii) If G, = <x, y), and {x) * <{p)> then G, cannot be minimal subgroupoid of G
so that e e (x, y).

(iii) If B is a left (right, bilateral) proper ideal of G then e ¢ B (otherwise B = G).
If B, denote the union of all proper left ideals of G, then e ¢ B,. Since e¢- B, =
= B, ‘e = By, By is a proper bilateral ideal in {e} U B,. If B, has at least 2 elements,
B, is minimal subgroupoid. (If B, has only one element it is obvious). Since By, is
also a minimal left ideal (right, bilateral ideal), G has no more than a single left ideal
(right ideal, bilateral ideal).

(iv) If G contains a proper left ideal B and a proper right ideal J then they are
minimal subgroupoids. Since for all be B and for all je J we have b-je Bn J,
B n J is also a nonvoid subgroupoid, which follows, B=BnJ = J.So B and J
form a bilateral ideal, and the hypotheses of Theorem 2 are satisfied.

Corollary. If (G, *) is a groupoid with a neutral element which belongs to a Mal’cev
variety, for all the g € G we get: e € {g).

Proof. Put G, = {g) in the proof of (i) of Theorem 6. Supposing that e ¢ (g,
we get: (g) is a bilateral ideal in the subgroupoid {e} U {g)>. Since it belongs also
to a Mal’cev variety, this case is impossible according to Theorem 4.
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