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NATURAL DYNAMICAL CONNECTIONS 

ALEXANDR VONDRA, ВгПО 

(Received November 12, 1990) 

1. INTRODUCTION 

This paper is a continuation ofthe author's previous works [11], [10], [12] which 
try to generalize the well-known results concerning the properties and the role of 
various connections in the autonomous mechanics of higher-order on TrM ([5], 
И ' M ' M ) o r ш t n e n o n autonomous mechanics of the first order on R x TM 
([4], [1]). Our approach was introduced for the time-dependent higher-order 
mechanics on general fibred manifolds with one-dimensional base. 

Making use of the identification of the semispray distribution of type (r — 1) 
on Jrn with the connection oforder (r 4- 1) on n we have proved in [11] the existence 
and uniqueness of the so-called characteristic (Euler-Lagrange) connection on n 
whose paths arejust the extremals ofthe given regular lagrangian or, more generally, 
of regular equations. The paper [10] is devoted to the description of the conditions 
for connections on 7ГГГ_! to be associated to the connection mentioned above, i.e. 
to have the same paths. These results made it possible to give another geometrical 
characterization of the regular equations through the so-called strong and weak 
horizontal distributions. 

In this paper we show the whole class of the connections on пГгГ_і (and of the 
corresponding / ( 3 , — 1) structures on Jrn) canonically associated to the given con
nection of order (r + 1) on n as a generalization of the corresponding objects on 
R x TM (see [12]). As is to be expected, all structures are intrinsically related to the 
geometry of underlying jet bundles, more precisely to the special class of natural 
affinors (see [7] for R x TrM and [8] for Jrn), consequently they are generated 
by the volume forms on the base ofthe fibred manifold. 

The structure ofthis paper is as follows. In Sec. 2 we introduce the notation used. 
Sec. 3 sets up the known basic notions and the results of [11], [10] necessary for 
Sec. 4, where we present the new results. For the sake of brevity we restrict our 
exposition to the connections, their relation to the higher-order mechanics can be 
foundin [11] and [10]. 
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2. NOTATïON 

Throughout the paper, (У, n,X) is a fibred manifold with d i m Z = 1, dim Y = 
— 1 + m; ( і гя, 7Trs, J'rc) and (Jr7r, 7гг, Z) are the obvious jet bundles induced by 7г, 
J°n = У respectively. By (K, ^ ) , ^ = (ř, g") we mean the fibre coordinates on 
Vcz У, фг = (r, g", g ^ , ..., g^r)) are the adapted coordinates on 7г~0

1(К) с Jrrc, i.e. 

ď -*ŠL 
«с» - dí* • 

КЯг Дігя) and Vnr(Jrn) are the 7rrs-vertical and 7rr-vertical subbundles of TJrn, respec
tively. SLr(n) is a module of local sections of n on U while J^(L7) is a module of local 
real functions on U. Jry: U ^ Jrn denotes the r-jet prolongation of y and (d/di) Jry 
means the curve oftangent vectors to Jry. The Lie derivative ofa (1, 1) tensor field S 
with respect to C is denoted by d^S. Finally, all structures and mappings are supposed 
smooth and the summation convention is used. 

3. VARIOUS CONNECTIONS AND RELATED STRUCTURES 

A connection of order (r + 1) on я, r ^ L, is a section 

Г: Уп^ Jr+Ìn 

of the bundle nr+Xr. Using a canonical bundle imbedding ^ r + 1 7 i Q Jxnr we can 
consider Г as a connection on nr. Owing to this fact the horizontalform of Г is 

hr = (~ + lV;+u 7T- + Ç+i) ~ i ® dř, 
\ 5 / y-o dq{j) dqU 

where Га
(г+Х) є .¥(Jrrì) are the components of Г. The dual notion to hr is a vertical 

form of Г, given by 

ür = / - fc,. , 

where I = ITJrn is the identity endomorphism. Consequently, 

«V = ' l T ^ - ® (<%) - q'u+1) dt) + ~ ® (d< r ) - Г?,+ 1) df) . 
j = o öqU) öq(r) 

Hence the one-dimensional 7r,-horizontal distribution Im hr = ker vr is just the 
semispray distribution A ' _ , [ r ] generated locally by semisprays of type (r — 1) 
on J'n. Thus Г yields the decomposition 

ТГп = И , г Л Є А н [ Г ] . 

The set of such connections is denoted by Г г + 1 г . A section у є Sv(n) is called a path 
o f r e r r + 1 . r i f 

j'+*y = r0Jry 
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on U. It turns out that y is a path of Г if and only if Jry is an integral mapping of 

K-xin 
By a dynamical connection on 7гя we mean a connection Td on 7ггг_ l s i.e. a section 

Fd: Jrn ^> Jlnr^x . 

The horizontalform oïFd is locally given by 

v - = (ž + / T " o 'á) e d ' + 

+У Ґ— 
+ÀUû 

л 

® d<ft> + rTr,j)x 7 7 ® d*ü) • 
u) da(r) 

where r ^ o ) , r ^ j t ^ e J ^ ( J ^ ) , 0 ^ A: ̂  r — 1, are the components of jTd. Con
sequently, r d can be identified with the (rm + l)-dimensional 7r r r_ rhorizontal 
distribution Hpd = Im hFd. A section у є S (̂7u) is called a (dynamical) path of Fd if 

7 ^ = tfr,. 
Qt 

An endomorphism F: TJrn^> TJrn is called an / ( 3 , —1) structure on Jrn if 
F 3 — F = 0. There is a canonical direct sum decomposition on TJrn induced by 
any such F. The eigenspaces corresponding to the eigenvalues 0, —1, + 1 are 
Im(F 2 - / ) , I m ( F 2 - F), I m ( F 2 + F), respectively. The / ( 3 , - 1 ) structure is 
called dynamical and is denoted by Fd if 

F* = Ы^ rr "?*&+!) r v i ® dt + 
V ^ ( r ) J = 0 oqU)/ 

= ' Z ЯЛ" ® d<y) - T ^ ® dgfr> + 
j = o dq(j) dqir) 

+ ІПм^г®ае> 
fc = o dq{r) 

in any fibre coordinates. The functions F°r0), F°ftk)X є žř(Jrn), 0 ^ A: ̂  r — 1, are 
called the components ofFd. It can be demonstrated that Im (Fd — Fd) = ѴПг r_{Jrn. 
The rm- and (rm + l)-dimensional eigenspaces Im (F2

d + Fd) = : # F d and HFd © 
© Im (F2. — /) = : H'Fd are called strong and weaA: horizontal, respectively. 

There is a one-one correspondence between the set of all dynamical / ( 3 , — 1) 
structures and the set ofdynamical connection on Jrn. Any such Fd and Fd are called 
associated if 

Я Г * = # F d 

which locally means 

* ( r , k ) X = J Mr,fc)A 
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for 0 й к й r - 1 and 
r - l 

M r , 0 ) = M r . O ) + 2 ^j ^(r,fc)A#(fc 
+ 1) 

k = 0 

Let now rd be a dynamical connection on Jrn associated to Fd. The connection 
Г e Г г + 1 г , determined by its components 

r - l r-\ 

Mr+1) : = = M r , 0 ) + 2u*(r,k)*Q(k+i) = M r . O ) + A_jF(r,k)kQ{k+l) > 
fc = 0 fc = 0 

is then called associated to Fd(Fd). This coordinate expression globally means just 

A L , [ r ] = tf,_, 

and any dynamical Td associated to Г has the same paths. Tn addition, Г generates 
through any such Td or Fd the direct sum decomposition 

TJ'n = V^_^n@A:_,[r]eH^, 

where Ar,-t[r] ® HPd = H'Fd = Hrd. 

4. NATURAL DYNAMICAL CONNECTIONS 

Although our main purpose is to describe the situation in the most general case, 
we will first discuss the very limpid contingency of (R x M, n, R) with n = prt, 
where M is an arbittary m-dimensional manifold. 

Let us present (in accordance with [7]) all natural affinors (vector-valued one-
forms) on Jrn = R x TrM. They create a linear subspace in the space of all tensors 
oftype (1, 1) on Jr7T, i.e. ofall endomorphisms on TJrn. An arbitrary natural afflnor 
has a form 

£ k^r + £ ktf2, ® dř + k2r+1iT,M + k2r+2iR, 
i=l i = r+l 

where к-, є &'(R); ITrM and 

^ = ' l ^ 8 ^ - D 
j = l ^ ( i + y - i ) 

for 1 ^ / ^ r are the unique natural affinors on TrM; 

д 
j = — 0 dt, 

dt 
and finally 

cco,-f ' (*+;- i)y_*_ for !< ,< , . 
A (;-!)! *<"otf,̂ _,, 

are the absolute vector fields (or generalized Liouville vector fields) on T rM (see 
also [5]). With regard to our purpose, the following objects are of particular im-
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portance: 

jv = b~-®4j-n 
y - i dqu) 

and 

cr = iWn^. 
j = i dqU) 

Definition 1. An affinor 

S<') = J<r) - C[r) ® df 

will be called the natural dynamical affinor on R x TrM. 

The meaning of this affinor is substantiated by the following assertion. 

Proposition 1. Let £ be a semispray oftype (r — 1) on R x TrM, locally expressed 
by 

с ^ + ій+і)Я4 + ^ я 4 ^ 
ô/ ;=o Ô4fU) ^ ( г ) 

where C(°r) є <̂ (jR x TrM). Let Г є Г г + 1 г Ье ffte associated connection to С, z.e. 

йг = С ® df. Then 

Fd=~^[(r-ì)vr-2d^] 
r + 1 

is я dynamicalf(3, —1) structure on R x ГГМ associated to Г. 
Proof. By direct calculation in coordinates. • 

Corollary 1. v4nv semispray £ oftype (r — 1) on R x ГГМ generates in a canonical 
way the associated dynamical connection Td on R x TrM. The components of 
this Fd are 

_ k + i a%, 
( r ' fc)A ~ ; 1 a <r 

Г + 1 ^ ( f c + l ) 
/ o r 0 ^ A: ^ r - 1, яш/ 

г - 1 
r° _ r* _ V Vа na 

1 (r,0) — b(r) 2- 2 (r,fc)A^(fc + 1) • 
k = 0 

Definition 2. The / ( 3 , — 1) structure Fd and the connection Td from the previous 
assertions will be called the natural dynamicalf(3, —1) structure and the natural 
dynamical connection associated to £, respectively. 

Remark that the case r = 1 is described in [12]. 
Let again (Y,n,X) be an arbitrary fibred manifold with one-dimensional base. 

Let Q be a volume form on X\ locally 

Q = codt 
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with œ e ,W(X). Then one can define (according to [8]) a natural dynamicai affinor 
°f type Q on Jrn, compatible with the bundle structure. This vector-valued one-form 
is locally expressed by 

r-\ j + / + 1\ djaj д 
s < r ) = j , . . . M ^ ^ L - . ^ ( d ^ ^ d i ) , 

y+i=o \ » / d/y dq(j+i+i) 

where /,7 are non-negative integers and d°w/dř° = co. Let ГєГг+1г; (K ^ i , ^ = 
= (ř, gff) any fibred chart on Y. Let £ є А£_,[Г] be any local semispray on an open 
subset Wcz ті~ѵ(Ѵ). This means 

=f(t)(i + i^u^+n^*). 
\dt y = o dqU) dq(r)) 4J) 

Then 
-cXS^=fcoG^, 

where the (l , 1) tensor field G^) contains derivations of œ by ty but it is independent 
of/, hence also ofthe choice ofthe semispray £. 

Proposition 2. Ли endomorphism 

^ [ і 2 ] = _ Ц [ ( г _ 1 ) Г г + 2С£>] 
r + 1 

/5 í/íe dynamicalf(3, —1) structure on Jrn associated to Г. 

Corollary 2. y4ttj' connection Г oforder (r + 1) on n generates in a canonical way 
the whole class of the associated dynamical connections on Jrn. For any volume 
form Q on X, the components of Td[f2] are 

-r-k- 1 

Г = ^ — Г~У ' (k + ; + l\ — gr^+1» 
,г-ш r + i L À v ; + 1 / « c^+ ,+1) 

-(^i.)^<] 
for 0 й к й r - 1 and 

rff — Га 4-
i ( r . 0 ) — l (r+ 1 ) ^ Г + 1 

-teC:i)T^-AX(.i.)'^^]-
Definition3. T h e / ( 3 , —1) structure Fd[£>] and the connection Г(/[£2] from the 

previous assertions will be called the natural dynamicalf(3, — 1) structure of type Q 
and the natural dynamical connection of type Q associated to Г, respectively. 

Remarks , (i): Let r = 1. Then the components of the natural dynamical con-
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nection rd[í2] on JlK associated to the connection Г of order 2 on n are 

n-№-i',] 
2 \ ^ (

я
п dr w / 

and 
l / d * l . _ ^ 2 , я \ 

i - l ( 2 ) + l <7(1) T T ^ ^ ( 1 ) 1 ' 
2 \ d i a> d#(1) ) 

which can be compared with the analogous result of Saunders in [9] and [8]. 
(ii): it is apparent that using a canonical volume form dt on R one obtains the 

situation on R x TM; thus S(r) = S$? etc. 
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