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SVAZEK 8 (1963) APLIKACE MATEMATIKY CisLo 2

THREE-DIMENSIONAL STREAM FUNCTION IN TERMS
OF QUATERNIONS

M. Z. v. KrzywosLockl, H. RoTH

(Received May 17th, 1962.)

The present work demonstrates the application of quaternions to problems
in inviscid fluid flow theory. A method is developed for obtaining a three-
dimensional quaternion stream function and a corresponding quaternion
complex velocity potential. The method of development is made to closely
parallel the two-dimensional case (i. e. the complex variable method). The
equation of the stream surfaces and of the body are obtained. For ilustrative
purposes the method developed is applied to a flow around a sphere.

CHAPTER 1. OUTLINE OF THE PROBLEM

1.1 The Two Dimensional Complex Velocity Potential

The equations of continuity and irrotationality for the two-dimensional flow of an
incompressible fluid are respectively given by:

(1.1.1) divv=
Ix 0y
and
(1.12) curl V=0, or #_® _4
Jdy  0x

where V = ui + vj is the velocity vector and x and y are orthogonal Cartesian
coordinates. The stream function ¢ = ¥(x, y) and the velocity potential ¢ = ¢(x, y)
defined by:
(1.1.3) __le W e W

0x dy dy ox
identically satisfy equations (1.1.1) and (1.1.2), respectively.

As a consequence of the alternative conditions (i. . substituting for ¢ in eq. (1.1.1),
etc.):

3o 0%
2 2y
(1.1.4) Vo= ST m0 Vo,
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The complex velocity potential w is defined by:
(1.1.5) w= 0 + iy,
where i = \/—-1.

Definition 1.1.1. — [10, p. 27] — If a function:
(1.1.6) w= ¢+ iy = f(z) = f(x + iy),
is defined, single valued and differentiable throughout a region R then w is said
1o be a regular (analytic) function of z in R. The region R, is called the region of
regularity of w.

It is a well known theorem of complex variables thet w is a regular function of z
in R if and only if ¢ and y (the real and imaginary parts of w) are related by equations
(1.1.3) (these relations are called the Cauchy-Riemann equations) [ 10, pp. 29 — 30, and
others]. A dircct consequence of the Cauchy-Riemann equations is that both ¢ and ¥
satisfy Laplace’s differential equation (1.1.4) [10, p. 31].

In the following sections a method similar to the one outlined above will be develop-

ed for the three-dimensicnal case. Before prcceeding along these lines, the current
approach to three-dimensional flow will be discussed.

1.2 The Present Methods For Treating Three-Dimensional Flow

For the three-dimensional case, the equations of continuity (eq. (1.1.1)) and irrota-
tionality (eg. (1.1.2)) become:

(1.2.1) div,v:@+?ﬁ+@:0,
ox dy 0z

and

(122)  curlv= (2 Y (O (0 Gy
dy 0z 0z  0x dx 0y

Equation (1.2.2) is, of course, equivalent to the following three scalar equations:

(1.2.3) dw v u_ow o v o
dy 0Oz dz  Ox ox 0dy
The three-dimensional potential function @ = ¢(x, y, z) satisfying equation (1.2.2)

identically is given by:

ép . Jdo. Jo
1.2.4 V=—-grad. o= — —-i—- 2 j— "k
( ) Ox oy g 0z

where by virtue of equation (1.2.1):

) o 9% 0%
1.2.5 div. (grad. ¢) = —% + — + —L = V?p = 0.
(1.2.5) (grad. ¢) o Ty o p
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The similar selection of a single scalar stream function ¢ = y(x, y, z) identically
satisfying equation (1.2‘1) had, however, not been accomplished. A scalar stream
function can be defined for the case of axially symmetric motion (i. . motion which
is the same in any plane passing through a given line called the axis of symmetry and
for which there is no flux of fluid across these planes) ([12], pp. 125~126] and [13,
pp. 406—407]).

If the axis of symmetry is taken as the x-axis then the position of points where the
same flow picture exists is specified by two coordinates, x and o = (y* + z2)"/? and,
therefore, Y, = ¥(x, ). The stream function ¥, (Stokes’ stream function) is given by:

(1.2.6) U= — —1—, s g = 2

w 0w @ ox

where u and ¢ are the velocity components in the x and w-directions, respectively.
The equation 1, = constant is the cquation of the streamlines in the x, a-plane. The
functions ¢ and ¥, are of different dimensions and therefore a complex velocity poten-
tial cannot be defined as in section one ([12, p. 126] and [13, pp. 407—408]).

The problem of finding Stokes’ stream function for flow around bodies of revolution
is treated in standard text books on hydrodynamics [12, 13, ete.]. Knowing ¢, we
may use cquations (1.2.6) and:

(1.2.7) u=-22 4= _22
0x Ow
to obtain ¢ and V. Similarly, if cither ¢ or ¥V are known, i, may be obtained.
We consider now another approach to the problem. A general solution of the
equation of continuity (eq. (1.1.1)) can be found in terms of two functions ¢ and @
[ 18, p. 68], such that:

(1.2.8) y - R0 B&@l’ v = Do, @),
D(y, z) D(z, x) D(x, y)
where:
(1.2.9) Do, 0) _ |9 b0
o D(xy, x;)  |0x; Ox,
2 20
ox; 0x,

If ¢ and @ are known then equations (1.2.4) and (1.2.8) can be used to find ¢ and V.
However, the inverse problem of finding ¢ and © when either ¢ or Vis known involves
the solution of three partial differential equations (eq. (1.2.8)) in two unknown
functions. As with the previous method, a complex velocity potential has not yet

‘been defined. :

In the following sections a complex velocity potential will be developed for three
dimensional flow. It will involve the use of quaternions (defined in the following
section) rather than complex variables.
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CHAPTER II. THE QUATERNION STREAM FUNCTION y/

2.1 Basic Definitions

Definition 2.1.1. — [1, p. 161, 162, 236, and 2, p. 403] — A quaternion, g, may be
defined as a quadruple of real numbers (a, b, c, d) obeying the following proper-
ties: (1) Two quaternions g = (a, b,c,d) and g’ = (@', b, ¢, d') are equal if and
onlyifa=a,b="b,c=c andd=d'.(2)If Ais any real number then Ag =

= (Za, ab, Ac, Ad) = gA. (3) The sum of two quaternions, g = (a, b, c, d) and g’ =
=(a',b,c,d")isgivenbyg +g' =(a+a,b+ b, c+c,d+d)
The quaternion {—g) [2, p. 403] is defined by:
(2.1.1) —g=(-1)g.
The four quaternion units are {l, p. 166 and 2, p. 404]:
(2.1.2) 1=(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0).
k=(0,0,0,1).

The zero quaternion is 0 = (0, 0,0, O).
Any quaternion q = (a, b, c, d). is evidently expressible as:

(2.1.3) g={(ab,c,d) =al + bi + ¢j + dk,

where a, b, ¢, and d are any real numbers.

Definition 2.1.2. — [1, p."236] — The product, gg’, of any two quaternions is
distributive with respect to addition and associative where:

(2.1.4) 2=jt=k*=—1I, ij=k
(therefore jk =i, ki=j, ji= —k, kj = —i, ik = —j).

The unit 1 is thus seen to act as an identity. Dickson [3, p. 46] takes the four units
as the matrices:

(2.1.5)1:(10),1-:(\/-1 *\?_1),13( 01),k=( 0 J—l)),

01 0 -10 J-1 0

and defines a quaternion as any linear combination of these units with real coeffi-

cients.
An alternative to Dickson’s procedure is to take the four units as the matrices

[16, p. 472]:
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(2.1.6) I= /1 0 0 0\, j= 0 0 0 1\,
0O 1 0 0 0 0 1 0
0O 0 1 O> 0-1 0 O
0 0 0 I, -1 0 0 0
j= 0 0 t 0\, k= 0 1 0 0\,
0 0 0 -1 -1 0 0 0
-1 0 0 0 0 0 0 1
0O 1 0 o0 0 0 -1 0

and to define a quaternion, g, as any linear combination of these units with real
cocfficients.

Some authors [2, p. 405] treat the quaternion ¢ as the sum of a scalar (or scalar
matrix) d and a vector v = ai + bj + ck where i, j, k is an orthogonal triple of unit
vectors in the usual sense of vector analysis. In particular, from the above remarks
and equation (2.1.6), a vector V = ui + vj + wk may be represented as a quaternion:
(2.1.7) V=0I4+ui+ v +wk = 0 w v u

-w 0 u —v
—v —u 0 w
~u v —-w 0

Definition 2.1.3. — [3, p. 46] — The quaternions g = al + bi + ¢j + dk and
C(g) = al — bi — ¢j — dk are called conjugates. The product:

(2.1.8) gC(g) = Clg) g = (a® + b> + ¢* + d*)1 = N(g)I .

Definition 2.1.4. — [3, p, 46] — The quantity N(g) defined by equation (2.1.8)
is called the norm of g.

The quantity N(g), however, is not the norm of g in the sense of Definition (1.1.5)
of Part 1.

2.2 The Complex Velocity Potential O and the Condition of Right-Regularity

The quaternion operator 4 is defined by [16, p. 473]:

o 8 0 o 5\
(2.2.1) A:.—f-l+fﬁ—i+ij+ﬁk=/ o e 9
0x, x, 0x, 0x5 0xy  O0x3;  O0x, 0x,
8 9 4 _ 3
0x3 0x, Ox, Ox,

J d @ 0
B (sz N 5;1 ax: 0x,
d i) 0 d
B 5;1 0x, Oxy3 0x,/

where the units I, i, j and k are defined by equation (2.1.6).
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Let x,, x,, X3, be the orthogonal Cartesian triple x, y, and z and set 8/dx, = 0. The
quaternion stream function = OI + (i + ¥,j + Y3k and the quaternion velo-
city V= OI + ui + vj + wk are respectively given by:

(2'2'2) '// = 0 1/’3 l//z ‘/’1 ,
-¢; 0 Wy =Y,
~Y ~y O Wy
.“//1 '1’2 —‘//3 0 /

and equation (2.1.7).

The quaternion equation (egs. (2.1.7), (2.2.1) and (2.2.2)):
(2.2.3) Ay =V,

is equivalent to the four scalar equations:

(2.2.4) Wiy W Wy gy gy, =0,
dx dy 0z
(2.2.5) u = % - _6_:,0“% =Y3, — V2.,
dy 0z
A
(22.6) v = ‘o‘l!ii - % = ‘pl.z - l!13,x7
0z ox
a 0
(227) W = ﬁ - i = ‘llz,x - l//l ¥
0x dy

Equation (2.2.4) and equations (2.2.5) through (2.2.7) are respectively equivalent
to the following vector equations:

(2.2.8a) div. ¢ =0,

(2.2.8b) curl. y =V,

where ¥ = ;i + y,j + Yk Equation (2.2.8b) satisfies the equation of continuity
{eq. (1.2.1)) identically. The additional condition given by equation (2.2.8a) will be
discussed later in this section.

These are the same results (except for sjgn) as arc obtained in an entirely different
manner in reference [17]. A similar correspondence will be found between some
of the other results of the above cited reference and those of the present paper.
It should also be noted that the vector ¢ defined by equation (2.2.8b) bears an obvicus
resemblance to the vector potential B defined by ([13, p. 489] and [19, p. 185]):

(2.2.9) cur. B =V,
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Substitution of equations (2.2.5), (2.2.6) and (2.2.7) (or eq. (2.2.8a)) into the equation
of irrotationality (eq. (1.2.2)) gives ([12, pp. 208 —209] and [19, pp. 185—186]):

(2.2.10) curl. V = curl. (curl. y) =
- [i (div. ¥) — vzw,] i+ [—‘7- (div. ¥) — vzwz]j +
ox dy -

+ [ai (div. ¥) - vzlp,]k —0.

Equations (1.2.5) and (2.2.10) are, by virtue of equation (2.2.8a), equivalent to the
following four scalar equations:
(2:2.11) Vip =0, V3, =0, V2, = 0, VZy, = 0.

If the quaternion (or vector) stream function  (eq. (2.2.2)) is added to the scalar
(or scalar matrix) potential function ¢ then a quaternion three-dimensional complex
velocity potential, @, is given by (see eq. (2.1.6) and the above remarks):

(2.212)  Q = @l + Yyi + Yoj + Y3k = oI + § = ¢ 23 PR
— s @ v~y
=W =, P s
-, Yo — @

Combining equations (1.2.4), (2.2.3) and (2.2.12), we obtain (see also eqs. (2.2.5),
(2.2.6) and (2.2.7) for notation):

(2.2.13) Ay — V=AY + 0 P @y 0\ = A + @I) = 40 = 0.
-, 0 Px — Qs
'_(pay — Py 0 ®,z
@ Py —0, 0

If, as in the complex variable case, the complex velocity potential Q = @I + ¥ is
taken as a function F of the coordinate quaternion g = x,0 + x,i + x,j + x3k
(for the present case x, = 0, x; = X, X, = y, Xy = z), 1. e.

(2.2.14) Q = F(g) = @l + Wi+ Y,j + ¥sk,

where @, ¢y, ¥, and 5 are real valued functions of the x’s of class C" (¢ z 2) then
equation {2.2.13) is, by definition, a necessary and sufficient condition that Q be
a right-regular function [6, p, 310]. For the three-dimensional case x, = 9/dx, = 0
whereas for the two-dimensional case x, = x, 8/0x, = 8/0x, and one of the other
three x's is equal to y. The remaining two x’s and their derivatives are equal to zero.
It is casily verified that, for the two dimensional case, the quaternion equation
(2.2.13) reduces to the Cauchy-Riemann equations [6, p. 310].

The property of right-regularity is treated in references [6], [7], [8] and [9] in an
analogous manner to the treatment of regularity of a complex variable in the literature

(see, for example, [10]).
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A direct consequence of the right-regularity condition is that the four components
@, Yy, Y, and Y5 of Q separately satisfy Laplace’s equation in three-dimensions,
(2.2.11) [6, p. 3111 If f = OI + i + Y,j + Y3kis known, then equations (2.2.5),
(2.2.6) and (2.2.7) can be used to find V and therefore ¢ can be found from equation
(1.2.4).

The inverse problem of finding ¥ from either ¢ or Yinvolves the solution of a system
of four partial differential equations (egs. (2.2.4) through (2.2.7)) in three unknown
functions, ¥, ¥, and yr4. Similarly, finding ¥ for irrotational flows requires the solu-
tion of four partial differential equations (eq. (2.2.4) and (2.2.11)) in the three unknown
functions ¥, ¥, and 5.

2.3 The Equation of the Stream Surfaces (Surfaces of Flow)

Every streamline lies in a surface called a stream surface o(x, y, z) = constant.
The family of stream surfaces are orthogonal to the family of potential surfaces
qo(x, ¥, z) = const. Normals to ¢ = const. and w = const. are respectively given
by [(4, p. 87] and [20, p. 116]):

' dp . Jp . 0o
N, =grad. ¢ = — i+ —j+ —k,
v =8 0x ayJ 0z

and
‘ Ox ady 0z

From orthogonality, N, . N, = 0, and therefore:

(2.3.2) 0p do  Op dw | 0¢ 0w _
Ox 0Ox dy dy 0z 0z

Equation (2.3.2) could obviously have been obtained from the condition of tan-
gency of the celocity ¥V and the system of surfaces m(x, A z) = constant since this is
equivalent to the condition that the velocity ¥ = ui + vj + wk is perpendicular
to the surface normal N,, (eq. (2.3.1)). Using equation (1.2.4), this condition can be
stated as:

(2.3.3) V.N,=tu—+v— 4w

_ (e et 0y dw)
dx ox oy dy 0z oz

which is merely equation (2.3.2).
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From equations (1.2.4), (2.2.5), (2.2.6) and (2.2.7), equation (2.3.2) can be written as:

, dw Jw 0w
(234) ('11/2,2 - l/’J,y) — + (¢3,x - lpl,z) — + (lpl,_v - l/IZ,x) — =
dx dy oz
R Y
ox oy 0z

Equation (2.3.4) is a linear partial differential equation whose solution @(x, y, z) =
= constant gives the stream surfaces. This type of equation is treated in standard texts
on differential cquations [5, and others]. The subsidiary equations, which can be
deduced directly from the tangency of the velocity vectors and the surfaces @ = const.
are given by [5, p. 361]:

dx dy dz _ _dx = dy = dz

(2.3.5)

F, - F, F, u v w
If two independent integrals of equation (2.3.5) are given by:
(2.3.6) Uy =a, u,=="o,
then the solution of equation (2.3.4) is given by the arbitrary functional relation
[5, p. 361]:
(2.3.7) iy, uy) = 0.

2.4 A Possible Line of Generalization

The technique developed in Chapter II may provide a method for treating com-
pressible fluids. Tt is, for example, possible to relate  to ¢ and V by the quaternion
equation:

(2.4.1) Ay =o(I + V) =ol + oui + ovj + owk =T,

where 4 is defined by equation (2.2. 1) with x,, x,, X5 as before denoting the orthogonal
Cartesian triple x, y and z and x, denoting time t. The quaternion Vis defined by
equation (2.1.7) and Tis therefore quaternion which, from equation (2.1.6)‘ may be
represented as:
(2.4.2) T=o(I +ui+uvj+wk)=p 1w v u

-w 1 u —v

-v —u 1 w

—u v —w 1

Equation (2.4.1) is equivalent to the following system of four scalar equations:

(2.4.3) 0 = (Ve + oy + ).
ou UZWIE o T P
oy = lﬁ'z,: + ‘l’l,z - ':03,;( s
oW = w3,t + '1//2,:( - ll’l,y

i
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which identically satisfies the continuity equation:

(2.4.4) o, + (ou), + (0v),, + (oW),; = 0.

A listing of other stream functions is given in reference [ [1].

CHAPTER IIl. AXIALLY SYMMETRIC FLOW

3.1 Conditions on { Due to Axial Symmetry

If the velocity vector lies completely in the meridian plane certain simplifications
are possible. With no loss of generality the axis of symmetry may be chosen as the
X-axis.

Since the velocity vector lies in the meridian plane the vector ¢ defined by equation
(2.2.8) can be chosen perpendicular to the meridian plane [13 pp. 35—36 and 494].

If for example the meridian plane is chosen as the x, y-plane then the z-axis is
perpendicular to the meridian plane and therefore V = ui + vj + wk = ui + vj. Since:

(3.1.1) V=curly=|i j k|,
o 0 @
ax dy oz
PR PR

it follows that:

(3.1.2) w2

dx a0y

which is satisfied for , = ¢, = 0, whence ¥ = ;k is perpendicular to the x, y-
-plane.

The axis of symmetry (the x-axis) lies in each meridian planc and therefore ¥ is
always perpendicular to the x-axis so that:

(3.1.3) i, =0.
From equations (2.2.4) (2.2.8a) (2.2.6) (2.2.7) respectively (see also eq. (1.2.4)):
(3.1.4) divip =y, , + 3. =0; Ya,=—v=0,; Y. =w= —0,,

where [12,p. 126] ¢ = o(x, y* + z%) = o(x, R). It, therefore, follows from equation
(3.1.4) that:

(&

(3.1.5) ¢, = — f{p(x, R),,dx + Fy(y,z) = — zJé(p(X, R),p dx + Fy(y, 2),

Yy = J}p(x‘ R),, dx + Fy(p, 2) = yj2<p(x, R).x dx + Fy(y, z) .



From equation (3.1.5) and the condition that div. ¢ = 0:

(3.1.6) Fyy+ Fy,=0.
Since F, and F5 are otherwise arbitrary, let:
(3.1.7) F, = zG(R), Fy= — yG(R),
whence:
(3.1.8) Y, =1z [G(R) - 2‘[(,0()@ R),r dx] = zxz(x, R},

(3.1.9) 3= —y I:G(R) - 2jgo(x, R),x dx} = —~ ya(x, R),

which are the results stated in reference [17]. It is shown in reference [17] that equa-
tion (2.2.5) and the above results imply that:

nz my

(3.1.10) bo=fo+ o Uy =fs -

vtz y? ooz’
where f, and f5 are any particular solutions to equations (2.2.5), (3.1.8) and (3.1.9)
respectively and m is an arbitrary constant.

The complex velocity potential Q (eq. (2.2.12)) for axially symmetric flow is there-
fore given by (see eqgs. (3.1.8) and (3.1.9)):

(3.1.11) Q =@l + i + y,j + Y3k = ol + alx, R)[zj — yk].

Due to the structure of ¥/, and /; (see eqs. (3.1.8) and (3.1.9)) the system of equations
given by (2.2.11) reduces to two equations, VZ¢ = 0 and V?§, = 0. Having the
desired solution ¥, of Vi, = 0, we may use equations (3.1.8) and (3.1.9) to deduce
first o and then 3. As in the general case, equations (2.2.5), (2.2.6) and (2.2.7) can
be used to find ¥ and therefore ¢ can be found from equation (1.2.4).

3.2 Boundary Conditions

The arbitrary constant m in equation (3.1.10) allows the imposition of one¢ boun-
dary condition. An obvious condition is that ¢ due to a finite disturbance (e. g. a body
in a uniform stream) vanishes as one moves infinitely far away from the disturbance.
1f we deal with flow past a body then: )

(3.2.1) Y=Y, as r-— oo,

where r is the distance from the body and y, refers to the incoming stream.

Another boundary condition which follows directly from the nature of ¥ is given
by the following theorem.
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Theorem 3.2.1. For axially symmetric flow past a body, ¥ = Oon the body whose

form is in turn given by the equation a(x, R) = 0 provided that o 4, & , and o _ (egs.
(3.1.8) and (3.1.9)) are finite for y = z = a = 0.

Proof. Consider the family of surfaces:
(3.2.2) ¥,(x, y, z) = constant .
The normals to ¥, = constant are given by:
(3.2.3) N,, = grad. ¥, = Yo .0 + Vo ,j + Y2 k.
The scalar product of N, and the velocity vectors:
(3.2.4) Ve=ui+ o+ wk=
= (Y3, = V2) i — ¥ad + V2K,

is given by:

(3-2-5) N./u V= Wz,x(‘/fs,y - ‘f/z,z) - ‘f/z,y',["a.x +
+ l/IZ,zl:bZ,x = sz.xlf/s,y - l//2,):‘/"3;: .

If equations (3.1.8) and (3.1.9) are combined with equation (3.2.5) the following
result is obtained:

(3.2.6) Ny, V=4, s, — Wb = — za (e + ya,) +

+ ZCZ:),(_V(Z,X) = o 20,y = — l/’za:x -

Similarly, the scalar product of the normal to a surface ¥; = constant, N, and ¥
is given by:

(3.2.7) Ny, .V = o, = — Y,

Obviously the scalar products in equations (3.2.6) and (3.2.7) vanish for y, = ¢, =
= 0. Therefore the velocity is tangent to the surfaces y, = 0 and ;3 = 0 since, from
equations (3.2.6) and (3.2.7), the velocity is perpendicular to the normals to these
surfaces.

From equations (3.1.8) and (3.1.9) ¢, = ¢, = 0 when a(x, R) = 0 and therefore
the surface #(x, R) = 0 is part of both of the above surfaces; ax, R) = 0 is there-
fore also tangent at every point to the velocity vector, i. e. «(x, R) = 0is also a stream-
surface. The surface a(x, R) = 0 could obviously have been considered from the
start rather than ¥, = 0 and yy; = 0. The equation of the body of revolution is there-
fore given by a(x, R} = 0 (i. e. a(x, R) = 0 along and only along the body given by
that equation). In case the body is finite or semi-infinite o # 0 in those regions where
the body does not exist 1. e. upstream and downstream of the body. Since the velocity
must be tangent to both Y, = 0and y; = 0and since « = 01is part of the x, y, z-space
common to these two surfaces the balance of the stream-surface in question would
have to contain the intersection of ¥, = 0 and ¢y = 0 off the body a = 0. If ¥, =
= ;3 = 0 but o %= 0 then y = z = 0 which is the equation of the x-axis. Therefore
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a streamline comes up to the body along the x-axis, encompasses the body and (for
a finite body) leaves along the x-axis.

If y = z = 0 then R = 0. If in addition «(x, R) = 0 then:
(3.2.8) o(x, R) = o(x,0) = a(x) = 0.

Equation (3.2.8) is satisfied for particular values of x, the algebraic roots of the
equation. These roots will, from the discussion above, give the points of intersection
of the surface a(x, R) = 0 and the line y = 0, z = 0. It remains to show that the
points of intersection (y = z = « = 0) are stagnation points.

From equations (3.1.3), (3.1.8), (3.1.9) and (2.2.5) and the assumed finiteness of o
o, and a,, (where y=z=o0o= 0):

(3.2.9) =y - Y. = = [(ya), + (20)..] =
= — [20 + yoa, + 2z, ] =0+ 0+ 0=0,

X9

v=—¢3,x=y0‘,~x=0; W:wz,x:Zdax:()s

and therefore the points of intersection are indeed stagnation points. Since & = 0
specifies the body, Y, = 5 = 0 on the bedy and therefore W = Yr,j + Y3k =0
on the body (including the approaching streamline) and the theorem is thus proved,
Q. E.D.

3.3 Equations of the Stream-Surfaces and the Relation of i to

The following theorem gives the equations of the stream-surfaces without speci-
fying which is to be chosen as the body.

Theorem 3.3.1. The equations of the stream-surfaces for axially symmetric flow
are given by:

(3.3.1) z{¥, — yY¥; = constant.

Proof. For axially symmetric flow the partial differential equation describing
the stream-surfaces w(x, y, z) = constant (eq. (2.3.3)) becomes:

Jw Jdw dw
(332) (¢2.z - II’S.)') -— + ‘/’3,:: T T lI/Z,x —=0.
0x ay oz
However, from the axial symmetry o(x, y, z) = w(x, y> + z?) = o(x, R) =
= constant and equation (3.3.2) can, therefore, be written as (see egs. (3.1.8) and

(3.1.9)):
(333) [(z0).. + (y0)o] 0 = 203> + 2%) sy =
= 2(0( + Ra’R) Wy — 2R, = 2(aR)’R W,x — z(aR)!x w,g =03
or
(aR)’R @yx — ((XR)U Wyg = 0.
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However, o(x, R) = const. and therefore:
(3.3.4) w,; dx + w,zg dR = 0.
Combining equations (3.3.3) and (3.3.4) gives:

(3.3.5) Wy 4R _ (4R)..
W,g dx  (aR),x

and therefore:

(3.3.6) (Ra),, dx + (Ra),g dR =0

or

Ra = (y* + z°) a = z, — yy; = const. ,

is the equation of the stream-surfaces. Q. E. D.

1t is to be noted that if ¥ is independent of x then, from equations (3.1.8) and (3.1.9),
«, = 0. From cquations (3.2.6) and (3.2.7) every surface y, = const. or /5 = const.
is then a stream-surface. This condition, o, = 0, is true when the stream-surface
#(x, R) = 01is a cylinder afy, z) = const. The special casc where the cylinder reduces
to the x-axis will be investigated further in the next chapter.

The equations of the stream-surfaces for axially symmetric flow were discussed
in Section 1.2. The following theorem is suggested by the dual manner in which
these surfaces may be defined (either by zyy, — y; = constant or by ¥, = constant).

Theorem 3.3.2. The (quaternion) stream-function W = i + W,j + Y3k for
axially symmetric flow (i, = 0) is related 10 Stokes’ (scalar) stream-function i,
(eq. (1.2.6)) by the formula:

(3.3.7) Ro =z, — yy = Y, + constant .
Proof. From equations (2.2.5), (3.1.8) and (3.1.9):
(3-3'8) u= l»[’3‘y - '//2.2 = = [(yu)’y + (Za)*ZJ =
= — [2a + yo,, + z0,,] = ~ 2(Rat) g -

!

Since R = y* + z* = * (eq. (1.2.6) and the preceding remarks), equation (3.3.8)
becomes:

~

. dw 1
3.39 u= — 2ARa),~ — = — = (Ra),~ .
(339) (R 2 = = L (Ro);
Comparison of equations (3.3.9) and (1.2.6) shows that:
(3.3.10) R =, + f(x).
From equations (3.1.4) and (3.3.10):
(33113) V= — l1[133: = (ya)’x = j‘é[ws,x +f,(x)] >
(3.3.11b) W= Yo, = (), = ';%[d/s,x +f(x)].

L)
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Since g (eq. (1.2.6)) is the velocity component in the w-direction:

1 +
(33.12) g=(2+ w)t= {E [bie + 1/(x) Q¥ + f ’(X))]} =

- é [V, + £(%) (20sx + S

It can be deduced from equations (1.2.6) and (3.3.12) that:

: { 1 (5 ,
(3:3.13) R R N R AL LY TN}
w? w ©
Equation (3.3.13) implies that either:
(3.3.14) f(x) =0; f(x) = constant,
or
(33]5) zw.&.x + fl(x) = 0 N ll,s,x = - %fl(x) .
Intcgrating equation (3.3.15) gives: )
(3.3.16) Y, = — 2 f(x) + Ga?),

where G is an arbitrary function of m>.

It is however required that equation (3.3.13) be true for‘all’ axially symmetric
flows and not only thosc satisfying equation (3.3.16) and therefore, in general,
() =0,

Substituting equation (3.3.]4) into (3.3.10) gives equaticn (3.3.7) and the theorem
is thus proved. Q. E. D.

Evidently Theorem 3.3.2 can be used to deduce  frem , for axially symmetric
flow cases where 1/, is known. The work previously discussed, however, provides an
independent method of finding y which will be illustrated in the next chapter.

CHAPTER 1V. SOME PARTICULAR FLOW EXAMPLES

4.1 The Complex Velocity Potential for a Uniform Stream Parallel to the Axis
of Symmetry

Consider a uniform stream with velocity ¥ = ui. From equations (3.1.3), (3.1.4),
(3-1.8) and (3.1.9) (since v = w = 0):

(41]) ¢3,x = = Yo,y = 'I/Z,x = zo,, = 0,
where y + 0, z + 0 and therefore:
(4.1.2) o, = 0.

This 1s the case discussed immediately after Theorem 3.3.1.
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Combining equation (2.2.5) with equation (4.1.2), shows that:

(4.1.3) Wy, — Y3, = (z0),, + (ya),, = 2( + Roa,p) = 2o + ZREd% = —u,

and, therefore:

I

Ao
|
RS

(4.1.4) o

where C Is an arbitrary constant.
The case of uniform flow in the x-direction will be thought of as flow around

a body, the body being taken as the x-axis. In order that this axially symmetric flow
be compatible with other cases, it is required that ¥, = ; = 0 along the x-axisi. e.,
on the surface of the body (see Theorem 3.2.1). However, from equations (3.1.8),

(3.1.9) and (4.1.4), we have:

_ ZE‘.)] —1im & tim [lim y,] =

y? + z2 2 520 2 y=0 -0

(4.1.5)  lim [lim ¢,] = lim [lim <

z=0 y-=0 z=+0 | y—0

. . —Cy u . C
= lim | lim +y—J)}=—lim—,
y=0| zm0o \p% + 22 2 y=0 y

i. e. both ¥, and /5 are infinite along the x-axis for C # 0. It is, therefore, required

that:

(4.1.6) c=o, a=-—~-g—.

From equations (3.1.8), (3.1.9) and (4.1.6):

. u., .
(4.1.7) Vo= oj + Yak = “E(Zj—yk)-
Since the velocity potential ¢ for uniform flow in the x-direction is ¢ = — ux [13.
pp. 410—411], the complex velocity potential Q is given by:
(4.1.8) 0 =ol +y=—u[xI +zj — yk)].

In order to obtain Q as a function of g = xi + yj + zk, it is noted that (eq,
(2.1.4) and Def. 2.1.3):
(4.1.9) gi= —xI+zj — yk, Clgi)= —xI —zj + yk,

and, therefore, from equations (4.1.8) and (4.1.9):
(4.1.10) Q= Z[gi + 3C(gi)] -

Equation (4.1.7) (with signs reversed) was obtained in an entirely different manner

in reference [17].
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4.2 Flow Due to a Three-Dimensional Doublet at the Point (d, 0, 0)

The velocity potential of a doublet of strength 7 at the point (@, 0, 0) is [ 13, p. 414]:

Tcos @ 1(x — a)
= -,

4.2.1 © =
( ) p 2 [(x — a) + y? + 2]}

and the velocity components are thus given by:
a)y 3t(x —a) z>

t[3(x — a)*> — r*] 3t(x —
rs ’ r5 ’ rs

(4.22) (4, v,w) = (

where r = [N(g — ai)]'/? = {N[(x — a)i + yj + zk]}"% g = xi + yj + zk, and
N(g) is defined by equation (2.1.8).
From equation (3.3.11a):

b= o, = 3t(x — a)y )
Tl - a4 2P
or
3(x ~ a)dx
423 a =1 + g(y? + z2) =
( ) [(x _ 5)2 + y? o+ Z2]5/2 g(y )

-7
= + g(y* + %),
O P AL
where § is an arbitrary function of y? 4 z2, since « is a function of x and R. With
no loss of generality, let § = 0 and choose the functions f, and f; in equation
(3.1.10) as:

-1z -tz . 1y
424 - - L=
( ) f2 [(x — 5)2 + %+ 22]3/2 3 fs 3
From equations (3.1.10) and (4.2.4):
1z mz
( ) l'[/ ([(x _ a)z + yz + 22]3/2 y2 + Z2>1

+ Ty my
([(x I Zz)

From the boundary condition (Section 3.2) that ¢ for a finite disturbance (e. g.
a doub]et) vanishes as R, x — oo, it follows that m = 0. Combining the above result
with equations (4.2.1) and (4.2.5) gives the complex velocity potential for a three-
dimensional doublet as:

(426) Q= ol +y = ’("r;—@l + Yy) + sk = :3 [(x = a)l -z + yk].
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Since (see eq. (4.1.9)):
(4.2.7) (9 —ai)i=—(x—a)l + z — yk,

equation (4.2.6) can be written as:

(4.2.8) Q=-"(g-aii.
-

4.3 Flow Around a Sphere

Combining the values of ¢ for a doublet (eq. (4.2.5)) with that for uniform flow
in the ‘negative’ direction of the x-axis (eq. (4.1.7)) gives:

(4.3.1) V. = g(zj — yk) — %(Zj ~ yk) = (g - %) [zj ~ yk].

The body of revolution is given by Theorem 3.2.1 as:
27

u

2/3
(432) Y.=a.=0; or r*= ( ) = (x — a)’> + y* + z? = constant .

As would be expected [13, p. 416], the combination of a doublet and uniform flow
from source to sink (i. e. in the direction of the negative x-axis) gives flow around
a sphere of radius r = K = (2¢/u)"*®. From Theorem 3.3.1, the stream surfaces
are given by (with ¥, = (u/2 — t/r’) z; Y5 = (— u/2 + t/r*) y, from eq.(4.3.1)):

3
(4.3.3) W, — Yy = %(y2 + zz)(l - [’i) = constant ,

with © = (u/2) K. The body itself (i. e. the sphere) is obtained by setting the constant
equal to 0. This result is obtained from ¥ in [13, p. 416].

The complex velocity potential, Q,, for flow around a sphere is given by (see egs
(4.1.8) and (4.2.6)):

(4.3.4) 0, = l:(u + -}3) x - g} + (g - r%) [zi — yk].

From the two previous examples (eqs. (4.1.20) and (4.2.8)) one can deduce that:
(4.3.5) 0, = — Z[gi +3C(gi)] — 5 (g — ai)i.
r

Other flow examples as well as the use of Bernoulli’s equation to find the pressure
corresponding to a certain velocity along a streamline, etc. are treated in the literature
with respect to Stokes’ stream function [12, 13, ctc.] and, therefore, no discussion
of these properties will be included.
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FINAL REMARKS

The technique presented above may be extended to compressible (and possibly non-
-steady) fluid flow. The application of the technique to obtain the flow around some
given three-dimensional objects seems to be another promising line of extending the
work presented herein. The results obtained in the present paper seem to suggest
that the theory of quaternions may prove to be a successful tool in the domain of
three-dimensional flow. In two-dimensional steady flow there is one stream function
which identically satisfies the equation of continuity. In three-dimensional flow there
are three such functions which are related by means of a determinant equation. The
present investigation throws some light on the possibility of using quaternion theory
to obtain a three-dimensional stream function with a possible saving of effort.
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Vytah

PROUDOVA FUNKCE V TRIROZMERNEM PROUDOVEM POLI
VYJADRENA POMOCI KVATERNIONU

M. Z. v. KrRzywosLockr, H. RoTH

V ¢lanku je uZito teorie kvaternionil k definici analogl proudové funkce a komplex-
niho potencialu, b&Zn€ uZivanych pfi vySetfovani dvourozmérnych potencialnich
proudovych poli, také pro tfirozmérna proudova pole. Na rozdil od dvourozmérného
proudového pole, kde je jedina skalarni proudovéa funkce, obsahuje kvaternionova
proudova funkce v pfipadé tfirozmérného proudového pole tfi skalarni proudové
funkece, které jsou vzajemn& vazany podminkou (2.2.4) a viechny tfi hovi Laplaceové
rovnici (2.2.11). SloZky rychlosti jsou dany parcialnimi derivacemi téchto proudovych
funkci, rov. (2.2.5)—(2.2.7). Pomoci proudovych funkei je odvozena téZ diferencialni
rovnice proudovych ploch (2.3.4). Rovng&Z je naznaleno, jak lze teoric kvaterniond
uzit téZ pro stlacitelna proudégjni.

Odvozena teorie je aplikovana na pfipad osové symetrického proudéni. V tomto
pfipadé je jedna proudova funkce nulova (3.1.3) a zbyvajici dvé je moZno vyjadfit
pomoci jediné funkce (3.1.8), (3.1.9). Je té% odvozen vztah mezi kvaternionovou
proudovou funkei a Stokesovou (skalarni) proudovou funkei (3.3.7) pro piipad osové
symetrického proudéni.

V posledni kapitole je uvedeno nékolik pfikladd osové symetrickych proudovych
poli. Nejdfive je odvozen komplexni (kvaternionovy) potencial rychlosti pro homogen-
ni proud ve sméru osy symetrie (4.1.8), (4.1.10). Dale je odvozen komplexni potencial
pro t¥irozmérny dipdl s osou v ose symetric (4.2.6), (4.2.8). Superposici obou proudo-
vych poli se zisk4 proudové pole odpovidajici obtékani koule; jeho komplexni poten-
cidl je dan vyrazy (4.3.4) nebo (4.3.5).
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Pezrome

OVHKIMA TOKA B TPEXMEPHOM [TOJIE TOKA,
NMPEACTABJEHHAA INPU NMOMOIIM KBATEPHUOHOB

M. 3. 8. KP2XKMBOBJIOLLKY, I'. POT (M. Z. v. Krzywoblocki, H. Roth)

B crarbe MCnoib30BaHa TEOPHst KBATEPHUOHOB Ui onpeesienns ananoros QyHk-
IMH TOKA W KOMIUICKCHOTO MOTEHUMANA, KOTOPbIC 0OBLIKHOBCHHO MPUMCHSIIOTCS HPU
WCCICAOBAHUU [IBYXMCPHBIX MOTEHLUMAJBHBIX MOJIEH TOKA, U B CIYYae TPEXMEPHDBIX
moneit Toka. B oTanyue oT ABYXMEPHROTO MOJIS TOKA, IJIe UMEETCS HAJIMLO TOJIbKO
oaHa ckangapuas GyHKIMS TOKA, APENCTaBeHHas IPH TOMOIUM KBATEPHUHOHOB (yHK-
UMst TOKA COJAEPMMT B Clyyde TPEXMEPHOrO TONsl TOKA TPH CKANSPHBIX (GYHKIIMM
TOK&, KOTOPbIE B3aWMHO CBsi3aHbt ycioBueMm (2.2.4) 1 BCe OHM YIOBJIETBOPSIIOT ypaB-
Henuto Jlannaca (2.2.11). Cocrapisiiolime cCKOpOCTH JaHBl B BUAC YaCTHBIX NPOM3-
BOJIHBIX OT 3TUX (yHKUKil Toka, ypasHenns (2.2.5)—(2.2.7). Tlpn nomoium dbyHKumi
Toka BbIBeJeHO Takxke nuddepeHunanbLHoe ypaBHeHHE foBepxHocTeH Toka (2.3.4).
O[HOBPEMEHHO HAMEUACTCS AYTh MCMOJb30BAHKSA TCOPUM KBATEPHUOHOB [UISI HCClie-
JIOBAHUS CHHUMAEMOTO TEYEHUSsI.

ITosyyeHnbie pe3ysibTaThl APUMEHSFOTCS K CIIYUaH0 CHMMETPHUYHOIO OTHOCUTENLHO
ocH TedyeHHs. B nmanHOM ciydae onHa u3 gywkumid Toxa ansercs Hynesoit (3.1.3),
M OCTaronecs B¢ (hyHKIMHM MOJKHO BBIPA3UTh TOJBKO TPH MOMOILLMN OHOMN (ByHKINH
(3.1.8), (3.1.9). Takxe BbIBEEHO B3aMMHOE COOTHOUICHUE MEXIY KBATEPHHOHHOMN
(byuxumeir Toka n (ckanspHoi) dbynkumein Toka Croykca (3.3.7) (Stokes) B crmyuae
CUMMETPHYHOTO OTHOCUTEIbHO OCH TEUEHUs.

B nociieiedt riiage nNpuBeeo HECKOJIbKO IPUMEPOB CUMMETPHYHBIX OTHOCHTE b~
HO ocu nojieil Toka. CHavana BBIBOJUTCS KOMIUIEKCHBIH (KBATEPHUOHHBINA) MOTEH-
HHan CKOPOCTM VI OJIHOPOJHOIO TOoKa B HanpaBJieHHMH OcH cHMmeTpuu (4.1.8),
(4.1.10). Tanee BLIBOAMTCS KOMIUJIEKCHBIH MOTEHIMAT I TPEXMEPHOTO ABYXIOJIIOC-
HHKd, OCb KOQTOPOIO COBIALAET ¢ ocbio cummerpuu (4.2.6), (4.2.8). Ilyrem cynep-
NMo3ULMH 000UX MoJdelt Toka NMONyuaeTcs HoJje Toka, COOTRETCTBYIONIee 0OTeKaHuo
11apa; ero KOMIJICKCHRLI ToTerumMan aad cootHolenuamu (4.3.4) wan (4.3.5).
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