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SVAZEK 8 (1963) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

THREE-DIMENSIONAL STREAM FUNCTION IN TERMS 
OF QUATERNIONS 

M. Z. v. KRZYWOBLOCKI, H. ROTH 

(Received May 17th, 1962.) 

The present work demonstrates the application of quaternions to problems 
in inviscid fluid flow theory. A method is developed for obtaining a three-
dimensional quaternion stream function and a corresponding quaternion 
complex velocity potential. The method of development is made to closely 
parallel the two-dimensional case (i. e. the complex variable method). The 
equation of the stream surfaces and of the body are obtained. For ilustrative 
purposes the method developed is applied to a flow around a sphere. 

CHAPTER I. OUTLINE OF THE PROBLEM 

1.1 The Two Dimensional Complex Velocity Potential 

The equations of continuity and irrotationality for the two-dimensional flow of an 
incompressible fluid are respectively given by: 

(1.1.1) d i v . V = ^ + ^ = 0 , 
dx dy 

and 

(1.1.2) curl.V = 0 , or ^ _ ~ == 0, 
dy dx 

where V = ui + vj is the velocity vector and x and y are orthogonal Cartesian 
coordinates. The stream function \{/ = \l/(x, y) and the velocity potential <p = <p(x, y) 
defined by: 

(1.1.3) „ _ _ _ _ _ _ _ _ , „ _ _ _ _ _ _ _ , 
dx By dy dx 

identically satisfy equations (1.1.1) and (1.1.2), respectively. 
As a consequence of the alternative conditions (i. e. substituting for cp in eq. (1.1. l), 

etc.): 

(1.1.4) vV = - ^ + ^ = 0, V * - 0 . 
cbr dy1 
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The complex velocity potential w is defined by: 

(1.1.5) w = q> + ixj/, 

where i — x / — 1. 

Definition 1.1.1. - [10, p. 27] - If a function: 

(1.1.6) w = 9 + i«A = /(z) = / ( x + t » , 

is defined, single valued and differentiable throughout a region R then w is said 
to be a regular (analytic) function of z in R. The region R, is called the region of 
regularity of w. 

It is a well known theorem of complex variables thet w is a regular function of z 
in R if and only if (p and ijy (the real and imaginary parts of w) are related by equations 
(1.1.3) (these relations are called the Cauchy-Riemann equations) [10, pp. 29 — 30, and 
others]. A direct consequence of the Cauchy-Riemann equations is that both cp and \J/ 
satisfy Laplace's differential equation (1.1.4) [10, p. 31]. 

In the following sections a method similar to the one outlined above will be develop­
ed for the three-dimensional case. Before proceeding along these lines, the current 
approach to three-dimensional flow will be discussed. 

1.2 The Present Methods For Treating Three-Dimensional Flow 

For the three-dimensional case, the equations of continuity (eq. (1.1.1)) and irrota-
tionality (eq. (1.1.2)) become: 

/ . „ .\ ,• ., du dv dw 
(1.2.1) div. V = — + — + — = 0 , 

dx dy dz 
and 
,« «„x , ., [dw dv\ . [du dw\ , /dv du\ , 
(1.2.2) curl. V = / + j + )k = 0. 

\dy 8zJ \dz dx) \dx dy) 
Equation (L2.2) is, of course, equivalent to the following three scalar equations: 

(1.2.3) ^ _ ^ = 0 , ? U - ^ = 0 , ^ - - ^ = 0 . 
dy dz dz dx dx dy 

The three-dimensional potential function cp = (p(x, y, z) satisfying equation (1.2.2) 
identically is given by: 

(1.2.4) V = - g r a d . v = - ^ - / - ^ i - ^ k , 
dx dy dz 

where by virtue of equation (1.2.1): 

(1.2.5) d , v . ( g r a d . „ ) = ^ + ^ + ^ V > = 0 . 
dxz dy1 dz1 
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The similar selection of a single scalar stream function xfi — \j/(x, y, z) identically 
satisfying equation (1.2.1) had, however, not been accomplished. A scalar stream 
function can be defined for the case of axially symmetric motion (i. e. motion which 
is the same in any plane passing through a given line called the axis of symmetry and 
for which there is no flux of fluid across these planes) ([12], pp. 125 — 126] and [13, 
pp. 406-407]). 

If the axis of symmetry is taken as the x-axis then the position of points where the 
same flow picture exists is specified by two coordinates, x and co — (y2 + z2)112 and, 
therefore, \ps = \(/s(x, co). The stream function t//A. (Stokes' stream function) is given by: 

1 fy. 

co dx 
(1.2.6) 

CO ÔCO 
0 

where u and g are the velocity components in the x and co-directions, respectively. 
The equation \j/s — constant is the equation of the streamlines in the x, co-plane. The 
functions cp and i//s are of different dimensions and therefore a complex velocity poten­
tial cannot be defined as in section one ([12, p. 126] and [13, pp. 407 — 408]). 

The problem of finding Stokes' stream function for flow around bodies of revolution 
is treated in standard text books on hydrodynamics [12, 13, etc.]. Knowing \j/s, we 
may use equations (1.2.6) and: 

dcp dcp 

dx dco 
(1.2.7) 

to obtain cp and V. Similarly, if either cp or V are known, \j/s may be obtained. 
We consider now another approach to the problem. A general solution of the 

equation of continuity (eq. (1.1.l)) can be found in terms of two functions a and 0 
[18, p. 68], such that: 

(1.2.8) 

where: 

(1.2.9) 

D(<r, ) 

D(y, z) ' 

D(a, ) 
v = —-— D(z, x) 

D(a, ) 

' D(x,УУ 

D(a, ) 

D(xux2) 

Õa õa 
ÔXІ ôx2 

Õ Ô 

дxx õx2 

If crand 0 are known then equations (1.2.4) and (1.2.8) can be used to find cp and V. 
However, the inverse problem of finding a and 0 when either cp or V is known involves 
the solution of three partial differential equations (eq. .(1.2.8)) in two unknown 
functions. As with the previous method, a complex velocity potential has not yet 
been defined. 

In the following sections a complex velocity potential will be developed for three-
dimensional flow. It will involve the use of quaternions (defined in the following 
section) rather than complex variables. 
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CHAPTER II. THE QUATERNION STREAM FUNCTION \j/ 

2.1 Basic Definitions 

Definition 2.1.1. — [1, p. 161, 162, 236, and 2, p. 403] — A quaternion, g, may be 
defined as a quadruple of real numbers (a, b, c, d) obeying the following proper­
ties: (1) Two quaternions g = (a, b, c, d) and g = (a', b', c , d') are equal if and 
only if a = a', b = b', c = c and d = d'. (2) If X is any real number then Xg = 
= (Xa, ab, Xc, Xd) = gX. (3) The sum of two quaternions, g = (a, b, c, d) and g = 
= (a', b', c , d') is given by g + g' = (a + a', b + b', c + c , d + d'). 

The quaternion ( — g) [2, p. 403] is defined by: 

(2.1.1) -g=(-\)g. 

The four quaternion units are [1, p. 166 and 2, p. 404]: 

(2.1.2) I = (1,0, 0 , 0 ) , i = (0 ,1 , 0 ,0 , ) , ; = (0,0, 1,0). 

k = (0, 0, 0, 1) . 

The zero quaternion is 0 = (0, 0, 0, 0). 

Any quaternion q = (a, b, c, d). is evidently expressible as: 

(2.1.3) g = (a, b, c, d) = al + bi + cj + dk, 

where a, b, c, and d are any real numbers. 

Definition 2.1.2, — [1, p. 236] — The product, gg', of any two quaternions is 
distributive with respect to addition and associative where: 

(2.1.4) i2 = j 2 = k2 = - I , ij = k 

(therefore jk = i , ki = j , ji = — k, kj = —i, ik = —j) . 

The unit I is thus seen to act as an identity. Dickson [3, p. 46] takes the four units 
as the matrices: 

(2.1.5) I=ll 0 \ , i - l V - 1 0 \ , j = / 0 l \ , f c - / 0 V - l ) \ , 

\ o i / \ o - y - i / \-ioJ \ y - i o / 
and defines a quaternion as any linear combination of these units with real coeffi­
cients. 

An alternative to Dickson's procedure is to take the four units as the matrices 
[16, p. 472]: 
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(2.1.6) / = 

j = 

'1 0 0 o\ 
0 ! 0 0 
0 0 1 0 
,0 0 0 1 / 

0 0 l 0 
0 0 0 -1 

- 1 0 0 0 
0 1 0 0 

k = 

and to define a quaternion, g, as any linear combination of these units with real 
coefficients. 

Some authors [2, p. 405] treat the quaternion g as the sum of a scalar (or scalar 
matrix) d and a vector v = ai + bj + ck where i, j , k is an orthogonal triple of unit 
vectors in the usual sense of vector analysis. In particular, from the above remarks 
and equation (2.1.6), a vector V = ui + vj + wk may be represented as a quaternion: 

(2.1.7) V = 01 + ui + vj +wk = I 0 w v u 
0 u — v 

Definition 2.1.3. - [3, p. 46] - The quaternions g — ai + bi + cj + dk and 
C(g) = ai — bi — cj — dk are called conjugates. The product: 

(2.1.8) gC(g) . C(g) g = (a2 + b2 + c2 + d2) I = N(g) I. 

Definition 2.1.4. - [3, p, 46] - The quantity N(g) defined by equation (2.1.8) 
is called the norm of g. 

The quantity N(g), however, is not the norm of g in the sense of Definition (1.1.5) 
of Part I. 

2.2 The Complex Velocity Potential Q and the Condition of Right-Regularity 

The quaternion operator A is defined by [16, p . 473]: 

(2.2.1) A=J-i + ±i + ±j + ±k-
(X ôx, дx, õx. 

ô д ð ð 

ðxA õx3 ðx2 ðxì 

Ô 

дxъ 

д 

ôx4 

д 

дx, 

ð 

ðx2 

ô 

ôx2 

õ 

ÕXi 

д 

ðxA 

ð 

ðx3 

Ô ð ð õ 

ćbcj ðx2 ðxъ öx4 

where the units /, i, j and k are defined by equation (2.1.6). 
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Let xlt x2, x3, be the orthogonal Cartesian triple x, y, and z and set 8jdx4 = 0. The 
quaternion stream function i]/ = 01 + ij/xi + \j/2j + i/^/c and the quaternion velo­
city V = OJ + ui + vj + wk are respectively given by: 

(2.2 .2) «/t = / 0 i//3 <A2 i/t! 

- i / t a 0 i/ti -< / t 2 

- i / > 2 - « A i 0 iA3 

- ^ i >A2 -<A 3 ° 

and equation (2.1.7). 

The quaternion equation (eqs. (2.1.7), (2.2.1) and (2,2.2)): 

(2.2.3) A\j, = V, 

is equivalent to the four scalar equations: 

(2.2.4) *3+*M„+^+* ],^0, 
ox oy oz 

(2.2.5) « 4 ~ ^ - = *.„ - </», • 
dy dz 

(22.6, . - M i _ £ £ . . , , . , - , _ , , 
OZ ox 

(2.2.7) w _ . 3 _ . _ £ j _ . . , . , _ , . . , . 
ox oy 

Equation (2.2.4) and equations (2.2.5) through (2.2.7) are respectively equivalent 
to the following vector equations: 

(2.2.8a) div. iff = 0 , 

(2.2.8b) curl, ifr = V, 

where ij/ = \]/ti + ij/2j + i//3/c. Equation (2.2.8b) satisfies the equation of continuity 
(eq. (1.2.1)) identically, The additional condition given by equation (2.2.8a) will be 
discussed later in this section. 

These are the same results (except for sign) as are obtained in an entirely different 
manner in reference [17]. A similar correspondence will be found between some 
of the other results of the above cited reference and those of the present paper. 
It should also be noted that the vector ij/ defined by equation (2,2.8b) bears an obvious 
resemblance to the vector potential B defined by ([13, p. 489] and [19, p. 185]): 

(2.2.9) curl. B = V , 
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+ 

Substitution of equations (2.2.5), (2.2.6) and (2.2.7) (or eq. (2.2.8a)) into the equation 
of irrotationality (eq. (1.2.2)) gives ([12, pp. 208-209] and [19, pp. 185-186]): 

(2.2.10) curl. V = curl. (curl. i» = 

= |~-(div. *) - V2^~] I + f|-(div. *) - V2^2lj + 

[^(div. * ) - V2*31k = 0. 

Equations (1.2.5) and (2.2.10) are, by virtue of equation (2.2.8a), equivalent to the 
following four scalar equations: 

(2.2.11) V2<p = 0 , V2<A, = 0 , V2i/>2 = 0 , V2i/t3 = 0 . 

If the quaternion (or vector) stream function ij/ (eq. (2.2.2)) is added to the scalar 
(or scalar matrix) potential function <p then a quaternion three-dimensional complex 
velocity potential, Q, is given by (see eq. (2.1.6) and the above remarks): 

(2.2.12) Q = <pl + yj/^i + \J/2j + \J/3k = <pl + if/ = / <p \j/3 \jj2 ipx 

-ij/3 <p l/ti ~i/>2 

-\J/2 - i j / l <p i//3 

- < A i i>2 - i / > 3 <P 

Combining equations (1.2.4), (2.2.3) and (2.2.12), we obtain (see also eqs. (2.2.5), 
(2.2.6) and (2.2.7) for notation): 

(2.2.13) Aip - V = Aip + / 0 <p,2 <p,y <p,x\ = A(ip + <pj) = AQ = 0. 

-<P,z 0 <P,x ~<P,i 
-<P,y ~<P,x 0 <P,z 
-<P,x <P,y ~<P,z 0 

If, as in the complex variable case, the complex velocity potential Q = <pl + if/ is 
taken as a function E of the coordinate quaternion g = x4I + x,j + x2j + x3k 
(for the present case x4 = 0, xt — x, x2 — y, x4 = z), i. e. 

(2.2.14) Q - F(g) = <pl + ipti + ij/2j + ij/3k , 

where <p, if/u \\/2 and ip3 are real valued functions of the x's of class C(t) (t ^ 2) then 
equation (2.2.13) is, by definition, a necessary and sufficient condition that Q be 
a right-regular function [6, p, 310]. For the three-dimensional case x4 = <3/dx4 = 0 
whereas for the two-dimensional case x4 = x, d/dx^ = djdx, and one of the other 
three x's is equal to y. The remaining two x's and their derivatives arc equal to zero. 
It is easily verified that, for the two dimensional case, the quaternion equation 
(2.2.13) reduces to the Cauchy-Riemann equations [6, p. 310]. 

The property of right-regularity is treated in references [6], [7], [8] and [9] in an 
analogous manner to the treatment of regularity of a complex variable in the literature 
(see, for example, [10]). 
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A direct consequence of the right-regularity condition is that the four components 
<P, 'Ai. </t2 and t//3 of Q separately satisfy Laplace's equation in three-dimensions, 
(2.2.11) [6, p. 311]. If f = 01 + \l/xi + \l/2j + ip3k is known, then equations (2.2.5), 
(2.2.6) and (2.2.7) can be used to find V and therefore cp can be found from equation 
(1.2.4). 

The inverse problem of finding \J/ from either cp or V involves the solution of a system 
of four partial differential equations (eqs. (2.2.4) through (2.2.7)) in three unknown 
functions, \j/u ii2 and ij/3. Similarly, finding \\i for irrotational flows requires the solu­
tion of four partial differential equations (eq. (2.2.4) and (2.2.11)) in the three unknown 
functions i/t., if/2 and \j/3. 

2.3 The Equation of the Stream Surfaces (Surfaces of Flow) 

Every streamline lies in a surface called a stream surface co(x, y, z) = constant. 
The family of stream surfaces are orthogonal to the family of potential surfaces 
cp(x, y, z) = const. Normals to cp = const, and co = const, are respectively given 
by [(4, p. 87] and [20, p. 116]): 

N . - ' g n m . ^ l + ^ . l + ^ k . 
dx dy dz 

and 

/". o n M A dco . dco dco . 
(2.3.1) N(0 = grad. co = — i + — j + — k. 

dx dy dz 

From orthogonality, Nv.. Nw = 0, and therefore: 

(2 3 2) ^ . ^ . + ^ £ ^ + ^ ^ = o 
dx dx dy dy dz dz 

Equation (2.3.2) could, obviously have been obtained from the condition of tan-
gency of the celocity V and the system of surfaces co(x, y, z) — constant since this is 
equivalent to the condition that the velocity V = ui + vj + wk is perpendicular 
to the surface normal Nw (eq. (2.3.1)). Using equation (1.2.4), this condition can be 
stated as: 

/-. „ .,% .» ... dco dco dco 
(2.3.3) V. N(0 = u — + v — + vv — -= 

dx dy dz 
dcp dco dcp dco dcp dco\ _ 

dx dx dy dy dz dz J 

which is merely equation (2.3.2). 
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From equations (1.2.4), (2.2.5), (2.2.6) and (2.2.7), equation (2.3.2) can be written as: 

(2.3.4) (>h,z - </t3,) — + ( ^ - *,,-) ~ - + (*,.- - <A2,,) — = 
ox cy dz 

s F l ^ + F 2 ^ + F 3 ^ = o . 
5x <3_y 3z 

Equation (2.3.4) is a linear partial differential equation whose solution ta(x, y, z) = 
— constant gives the stream surfaces. This type of equation is treated in standard texts 
on differential equations [5, and others]. The subsidiary equations, which can be 
deduced directly from the tangency of the velocity vectors and the surfaces co = const, 
are given by [5, p. 361]: 

, , d.x _ dv _ dz dx dy _ dz 

F\ E2 E3 U V W 

If two independent integrals of equation (2.3.5) are given by: 

(2.3.6) ut = a , it2 = b , 

then the solution of equation (2.3.4) is given by the arbitrary functional relation 
[5, p. 361]: 

(2.3.7) «(«.., u2) = 0 . 

2.4 A Possible Line of Generalization 

The technique developed in Chapter II may provide a method for treating com­
pressible fluids. It is, for example, possible to relate if/ to Q and V by the quaternion 
equation: 

(2.4.1) A\j/ = Q(1 + V) = QI + Qui + QVJ + Qwk s T, 

where A is defined by equation (2.2.1) with ,xl3 .v2, x3 as before denoting the orthogonal 
Cartesian triple x, y and z and x4 denoting time /. The quaternion Vis defined by 
equation (2.1.7) and Tis therefore quaternion which, from equation (2.1.6), may be 
represented as: 

(2.4.2) T~ Q(I + ui + vj + wk) = Q / 1 w v u 
—w 1 u —v 
—v~u 1 w 
— II v — w 

Equation (2.4.1) is equivalent to the following system of four scalar equations: 

(2A3) Q = - ( * ! . , + «A2,y + ^ 3 . . ) . 
QU = lj/ut + lj/3iy - lj/2tZ , 

QV = i>2,t + "Al,- - </>3,x , 

QW = l/t3)r + <A2,x - </>l, 
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which identically satisfies the continuity equation: 

(2.4.4) Q„ + (QU),X + (Qv),y + (QW),Z = 0 . 

A listing of other stream functions is given in reference [11]. 

CHAPTER III. AXIALLY SYMMETRIC FLOW 

3.1 Conditions on <// Due to Axial Symmetry 

If the velocity vector lies completely in the meridian plane certain simplifications 
are possible. With no loss of generality the axis of symmetry may be chosen as the 
x-axis. 

Since the velocity vector lies in the meridian plane the vector ifr defined by equation 
(2.2.8) can be chosen perpendicular to the meridian plane [13 pp. 35 — 36 and 494]. 

If for example the meridian plane is chosen as the x, y-plane then the z-axis is 
perpendicular to the meridian plane and therefore V = ui + vj + wk = ui + vj. Since: 

(3.1.1) 

it follows that: 

(3.1.2) 

V = curi. ф = І j k 

Õ д ô 

ôx õy дz 

Фl Фl Фъ 

àфг ÕФi 

õx õy 
- = 0 , 

which is satisfied for \jjl = \j/2 = 0, whence \J/ = \j/3k is perpendicular to the x, y-
-plane. 

The axis of symmetry (the x-axis) lies in each meridian plane and therefore }// is 
always perpendicular to the x-axis so that: 

(3.1.3) < A i = 0 . 

From equations (2.2.4) (2.2.8a) (2.2.6) (2.2.7) respectively (see also eq. (1.2.4)): 

(3.1.4) div. i/r = x\ily + \j/3 z = 0 ; ^3t3e = - v = q>,y ; t//2„x = w = - <p,s, 

where [12, p. 126] q> = (p(x, y2 + z2) = (p(x, R). It, therefore, follows from equation 
(3.1.4) that: 

(3.1.5) «A2 = - \(p(x,R),gdx + F2(y,z) = -

фъ = 

2q>(x, R),R dx + F2(y, z), 

(p(x, R),y dx + F3(y, z) = y \2q>(x, R),R dx + F3(y, z) . 
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From equation (3.1.5) and the condition that div. ij/ = 0: 

(3.1.6) F2<y+ E3,2 = 0 . 

Since E2 and E3 are otherwise arbitrary, let: 

(3.1.7) E2 = zG(R), E3 - - yG(R), 

whence: 

(3.1.8) iA2 - z G(R) - 2 <p(x, R),R dx = za(x, R), 

(3.1.9) ^ 3 = ~ y \G(R) ~ 2 L(x, R),R d x l _ - yu(x, R), 

which are the results stated in reference [17]. It is shown in reference [17] that equa­
tion (2.2.5) and the above results imply that: 

(3.1.10) ^ 2 _ / 2 + _ _ _ _ _ , ^ = / 3 _ 
y2 + z2 r a " y2 + z2 

where f2 a n d / 3 are any particular solutions to equations (2.2.5), (3.1.8) and (3.1.9) 
respectively and m is an arbitrary constant. 

The complex velocity potential Q (eq. (2.2.12)) for axially symmetric flow is there­
fore given by (see eqs. (3.1.8) and (3.1.9)): 

(3.1.11) Q = (pi + i /v + ij/2j + i^k - (pi + a(x, R) [zj ~ yk\ . 

Due to the structure of <//2 and ^ 3 (see eqs. (3.1.8) and (3.1.9)) the system of equations 
given by (2.2.11) reduces to two equations, \2(p — 0 and V2i/t2 = 0. Having the 
desired solution \\i2 of V2i^2 = 0, we may use equations (3.1.8) and (3.1.9) to deduce 
first a and then \j/3. As in the general case, equations (2.2.5), (2.2.6) and (2.2.7) can 
be used to find Vand therefore (p can be found from equation (1.2.4). 

3.2 Boundary Conditions 

The arbitrary constant m in equation (3.1.10) allows the imposition of one boun­
dary condition. An obvious condition is that \\J due to a finite disturbance (e. g. a body 
in a uniform stream) vanishes as one moves infinitely far away from the disturbance. 
If we deal with flow past a body then: 

(3.2.1) i// -> \p,„, as r ~* oo , 

where r is the distance from the body and i//,̂  refers to the incoming stream. 

Another boundary condition which follows directly from the nature of \{/ is given 
by the following theorem. 
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Theorem 3.2.1. For axially symmetric flow past a body, «/> « 0 on the body whose 
form is in turn given by the equation a(x, R) - 0 provided that ax, a>y and az (eqs. 
(3.1.8) and (3.1.9)) are finite for y = z = a = 0. 

Proof. Consider the family of surfaces: 

(3.2.2) ip2(x, y, z) = constant . 

The normals to \\i2 — constant are given by: 

(3.2.3) N^ = grad. i>2 = ij/2tXi + ^2J + </>2 J<. 

The scalar product of Nxj)2 and the velocity vectors: 

(3.2.4) V = ui + vj + wk = 

is given by: 

(3-2.5) N^ V = il/2lX(ip3,y - </>2.J - 'Aa^'Aa.. + 

+ ^2,z^2,x = <A2.x^3,y ~ ^2,y^i,x • 

If equations (3.1.8) and (3.1.9) are combined with equation (3.2.5) the following 
result is obtained: 

(3.2.6) N^ V = ijJ2>J3>y - ^2,y^3,x = - za,*(« + ?«,,) + 

+ za,y(ya,x) = - zaa,x = - i/^a,, . 

Similarly, the scalar product of the normal to a surface ij/3 = constant, N^3 and V 
is given by: 

(3.2.7) Nlj)3 . V = yaa,x = - \p3a,x . 

Obviously the scalar products in equations (3.2.6) and (3.2.7) vanish for \p2 = t//3 = 
= 0. Therefore the velocity is tangent to the surfaces ij/2 = 0 and \J/3 = 0 since, from 
equations (3.2.6) and (3.2.7), the velocity is perpendicular to the normals to these 
surfaces. 

From equations (3.1.8) and (3.1.9) 0-2 = J//3 = 0 when a(x, R) = 0 and therefore 
the surface a(x, R) = 0 is part of both of the above surfaces; a(x, R) = 0 is there­
fore also tangent at every point to the velocity vector, i. e. a(x, R) = 0 is also a stream-
surface. The surface a(x, R) = 0 could obviously have been considered from the 
start rather than \J/2 = 0 and \]/3 = 0. The equation of the body of revolution is there­
fore given by a(x, R) = 0 (i. e. a(x, R) = 0 along and only along the body given by 
that equation). In case the body is finite or semi-infinite a #= 0 in those regions where 
the body does not exist i. e. upstream and downstream of the body. Since the velocity 
must be tangent to both \J/2 = 0 and \j/3 = 0 and since a = 0 is part of the x, y, z-space 
common to these two surfaces the balance of the stream-surface in question would 
have to contain the intersection of \p2 = 0 and i{/3 = 0 off the body a = 0. If \{/2 = 
= i]/3 = 0 but a 4= 0 then y = z = 0 which is the equation of the x-axis. Therefore 
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a streamline comes up to the body along the x-axis, encompasses the body and (for 
a finite body) leaves along the x-axis. 

If y - z = 0 then R = 0. If in addition a(x, R) = 0 then: 

(3.2.8) a(x, R) = a(x, 0) = a(x) = 0 . 

Equation (3.2.8) is satisfied for particular values of x, the algebraic roots of the 
equation. These roots will, from the discussion above, give the points of intersection 
of the surface a(x, R) = 0 and the line y = 0, z — 0. It remains to show that the 
points of intersection (y = z = a = 0) are stagnation points. 

From equations (3.1.3), (3.1.8), (3,1.9) and (2.2.5) and the assumed finiteness of a,x, 
a,y and a,z (where y = z = a = 0): 

(3.2.9) 'u =- ip3ty - i>2fZ = - [(ya),y + (za),J = 

= - [2a + ya,y + za ,J = 0 + 0 + 0 = 0 , 

v - - */>3>* = y<*,x = 0 , vv = i//2>x = za,x = 0 , 

and therefore the points of intersection are indeed stagnation points. Since a = 0 
specifies the body, \\i2 = i//3 = 0 on the body and therefore \\i = i^2j + i>3k = 0 
on the body (including the approaching streamline) and the theorem is thus proved, 
Q. E. D. 

3.3 Equations of the Stream-Surfaces and the Relation of ij/ to \j/s 

The following theorem gives the equations of the stream-surfaces without speci­
fying which is to be chosen as the body. 

Theorem 3.3,1. The equations of the stream-surf aces for axially symmetric flow 
are given by: 

(3.3.1) z\]/2 - y\J/3 = constant. 

Proof. For axially symmetric flow the partial differential equation describing 
the stream-surfaces w(x, y, z) = constant (eq. (2.3.3)) becomes: 

/-, -, „\ / , , \ dco , dw dw 
(3.3.2) (^2,z - ^3,y) — + *3,x - r - - *i* — = 0 . 

ox dy oz 

However, from the axial symmetry w(x, y, z) = w(x, y2 + z2) = w(x, R) = 
— constant and equation (3.3.2) can, therefore, be written as (see eqs. (3.1.8) and 
(3.1.9)): 

(3.3.3) [(za),z + (ya),y] w,x ~ 2(y2 + z2) a,xco,R = 

= 2(a + Ra,R) w,x - 2Ra,xco,R = 2(aR),R w,x - 2(aR),x w,R - 0 ; 

or 
(aR),R w,x - (aR),x w,R = 0 . 

* 
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However, eo(x, R) = const, and therefore: 

(3.3.4) co„ dx + aj,R dR = 0 . 

Combining equations (3.3.3) and (3.3.4) gives: 

(3 3 5) m*x __ d # __ («-*)»-• 
«,„ dx (ccR),R 

and therefore: 

(3.3.6) (Ra),„ dx + (Ra),R dR = 0 ; 

or 
Ra = (y2 + z2) a = z«/f2 — .);|/t3 = const. , 

is the equation of the stream-surfaces. Q. E. D. 
It is to be noted that if \J/ is independent of x then, from equations (3.1.8) and (3.1.9), 

a x = 0. From equations (3.2.6) and (3.2.7) every surface \j/2 — const, or \jj3 = const, 
is then a stream-surface. This condition, a,_ = 0, is true when the stream-surface 
a(x, R) = 0 is a cylinder &(y, z) = const. The special case where the cylinder reduces 
to the x-axis will be investigated further in the next chapter. 

The equations of the stream-surfaces for axially symmetric flow were discussed 
in Section 1.2. The following theorem is suggested by the dual manner in which 
these surfaces may be defined (either by z\\i2 — y\{/3 = constant or by ij/s = constant). 

Theorem 3.3.2. The (quaternion) stream-function \J/ — t/^i + i/t2j + ^^k for 
axially symmetric flow (i//j =_ 0) is related to Stokes' (scalar) stream-function \j/s 

(eq. (1.2.6)) by the formula: 

(3.3.7) Ra = z\j/2 — j'i//3 = i]/s + constant. 

Proof. From equations (2.2.5), (3.1.8) and (3.1.9): 

(3.3.8) u =_ \p3iy - i/r2iZ = - [(ya),y + (za),J = 

= - [2a + ya,y + _a ,J = - 2(Ra),R . 

Since R = y2 + z2 = m2 (eq. (1.2.6) and the preceding remarks), equation (3.3.8) 
becomes: 

(3.3.9) » - - J ( _ _ ) , . g _ - I ( U , ) . - . 
dR co 

Comparison of equations (3.3.9) and (1.2.6) shows that: 

(3.3.10) Ra= ij/s+f(x). 

From equations (3.1.4) and (3.3.10): 

(3.3.Ha) v = - * 3 „ = (ya),x = I [ ^ + / ' ( x ) ] ; 
R 

(3-3.1 lb) w __ *- , , = (zo),_ = | [ ^ f , + / ' (* ) ] . 
R 

• 
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Since g (eq. (1.2.6)) is the velocity component in the co-direction: 

(3.3.12) g = (v2 + w2)* = | i [«AL + f'(x) (2^x + / ' ( * ) ) ]}* = 

-=[fe+/W(-^+/W. 
CO 

It can be deduced from equations (1.2.6) and (3.3.12) that: 

(3-3.13) g2 = ± tf,, = ™ *i- + 4 ( ^ [2*.,, + /'(*)] . 
CO CO CO 

Equation (3.3.13) implies that either: 

(3.3.14) / ' (x) = 0 ; f(x) = constant , 

or 

(3.3.15) 2^x + f(x) = 0 ; ^s>1 = - \f(x) . 

Integrating equation (3.3.15) gives: 

(3.3.16) tj,s- - \f(x) + G(52), 

where G is an arbitrary function of co2. 
It is however required that equation (3.3.13) be true for'all' axially symmetric 

flows and not only those satisfying equation (3.3.16) and therefore, in general, 
f'(x) = 0. 

Substituting equation (3.3.14) into (3.3.10) gives equation (3.3.7) and the theorem 
is thus proved. Q. E. D. 

Evidently Theorem 3.3.2 can be used to deduce \jj from i]/s for axially symmetric 
flow cases where \J/S is known. The work previously discussed, however, provides an 
independent method of finding ij/ which will be illustrated in the next chapter. 

CHAPTER IV. SOME PARTICULAR FLOW EXAMPLES 

4.1 The Complex Velocity Potential for a Uniform Stream Parallel to the Axis 
of Symmetry 

Consider a uniform stream with velocity V = ui. From equations (3.L3), (3.1.4), 
(3.1.8) and (3.1.9) (since v = w = 0): 

(4.1.1) i / ^ = ~ yx,x - \j/2>x - za,x = 0 , 

where y # 0, z 4= 0 and therefore: 

(4.1.2) a,x = 0 . 

This is the case discussed immediately after Theorem 3.3.1. 
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Combining equation (2.2.5) with equation (4.1.2), shows that: 

(4.1.3) ijj2tt - if/3ty = (za),z + (ya),y = 2(a + Ra,R) = 2a + 2R~ = ~ u, 
dR 

and, therefore: 

(4.1.4) « = - - - , 
R 2 

where C is an arbitrary constant. 
The case of uniform flow in the x-direction will be thought of as flow around 

a body, the body being taken as the x-axis. In order that this axially symmetric flow 
be compatible with other cases, it is required that \J/2 = \j/3 — 0 along the x-axis i. e., 
on the surface of the body (see Theorem 3.2.1). However, from equations (3.1.8), 
(3.1.9) and (4.1.4), we have: 

(4.L5) lim [lim ip2~\ = lim lim j — z — J = lim — ; lim [lim \\i3\ = 
z-+0 >>->0 z~*0 |_)>-0 \y2 + Z2 2/J z-0 2 y-*0 z-0 

= lim lim | ——-~ + y -) \= - lim —, 
^oL^oV^ 2 + z2 2/J y-o y 

i. e. both ij/2 and ij/3 are infinite along the x-axis for C + 0. It is, therefore, required 
that: 

(4.1.6) C = 0 , a = - - . 

From equations (3.1.8), (3.L9) and (4.1.6): 

(4.1.7) * ~ fj + J,3k = --2(zj- yk). 

Since the velocity potential <p for uniform flow in the x-direction is q> = — ux [13. 
pp. 410 — 411], the complex velocity potential Q is given by: 

(4.1.8) Q - q>I + ^ = - u[xl + \(zj - yk)] . 

In order to obtain Q as a function of g — xi + yj + zk, it is noted that (eq, 
(2.1.4) and Def. 2.1.3): 

(4.1.9) gi = - xi + zj - yk, C(gi) = - xi - zj + yk , 

and, therefore, from equations (4.1.8) and (4.1.9): 

(4.1.10) Q =U[gi + 3C(gi)]. 
4 

Equation (4.1.7) (with signs reversed) was obtained in an entirely different manner 
in reference [17]. 
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4.2 Flow Due to a Three-Dimensional Doublet at the Point (a, 0, 0) 

The velocity potential of a doublet of strength T at the point (a, 0, 0) is [13, p. 414]: 

lA n i\ T C 0 S 0 T(x ~ U) 
(4.2.1) (p = — ^ , 
1 r2 [(x - a)2 + y2 + z2f 
and the velocity components are thus given by: 

(4.2.2) („, ,, w) = t<3 ( - -y_ - ! l , H*y)y, j _ - -)z) , 

where r = [N(q - a i ) ] 1 / 2 = {#[(* - 5) i + >y + zfc]}1/2> 0 = ** + yj + zk, and 
/Y(gr) is defined by equation (2.1.8). 

From equation (3.3.11a): 

3T(X — a) y 
v — ya„ = i '-^— : 

[(x - a)2 + y2 + z 2 ] 5 / 2 

or 

(4.2.3) « - , f - %~SldX
 2Vn + W + -*) -

J [(x - a)2 + >>2 + z2Y' 
= Y( Wl ' 2 213/2 + d(y2 + Z2) , 

[(x - a)2 + y2 + z2Y' 

where g is an arbitrary function of y2 + z2, since a is a function of x and R. With 
no loss of generality, let g — 0 and choose the functions f2 and / 3 in equation 
(3.1.10) as: 

/A 2 d) f - - TZ _ - TZ _ Ty 
1 ' * J [(x - a)2 + >>2 + z 2 ] 3 / 2 " r3 ' " r3 ' 

From equations (3.1.10) and (4.2.4): 

(4'2'5) * = ~ ([(x - af 7/ + ̂ F - 7T?)J' + 

T>' my 

[(x - ã)2 + y2 + Z2Y12 y2 + z-

From the boundary condition (Section 3.2) that \j/ for a finite disturbance (e. g. 
a doublet) vanishes as R, x -> oo, it follows that m = 0. Combining the above result 
with equations (4.2.1) and (4.2.5) gives the complex velocity potential for a three-
dimensional doublet as: 

(4.2.6) Q = <pl + i> = T ( X ~ fl) / + i/rj + «A3/c - - \ [(* - 5) / - z; + y/c] . 
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Since (see eq. (4.1.9)): 

(4.2.7) (g - ai) i = - (x - a) I + zj - yk , 

equation (4.2.6) can be written as: 

(4.2.8) Q= - l ( g - a i ) i . 
rJ 

4.3 Flow Around a Sphere 

Combining the values of i/t for a doublet (eq. (4.2.5)) with that for uniform flow 

in the 'negative' direction of the x-axis (eq. (4.1.7)) gives: 

(4.3.1) <J,C - U- (zj -yk)-± (zj - yk) = (^-~j [-V - J * ] . 

The body of revolution is given by Theorem 3.2.1 as: 

/ 2 T \ 2 / 3 

(4.3.2) \pc - ac = 0 ; or r2 = ( — = (x - of + y2 + z 2 = constant. 

As would be expected [13, p. 416], the combination of a doublet and uniform flow 
from source to sink (i. e. in the direction of the negative x-axis) gives flow around 
a sphere of radius r — K = ( 2 T / U ) 1 , 3 . From Theorem 3.3.1, the stream surfaces 
are given by (with \j/2 = (u/2 - TJr3) z; \f/3 = ( - uj2 + T/r3) y, from eq.(4.3.1)): 

(4.3.3) z\j/2 - yij/3 = - (y2 + z2)M - -—J - constant, 

with T = (u/2) K3. The body itself (i. e. the sphere) is obtained by setting the constant 

equal to 0. This result is obtained from \j/s in [13, p. 416]. 

The complex velocity potential, Qc, for flow around a sphere is given by (see eqs 

(4.1.8) and (4.2.6)): 

(4.3.4) Qc - U+fэ] -Я' + ( ï - ^ - ^ 
From the two previous examples (eqs. (4.1.20) and (4.2.8)) one can deduce that: 

(4-3.5) Qc = - U [gi + 3C(q/)] - ± (g - ai) i . 
4 r 

Other flow examples as well as the use of Bernoulli's equation to find the pressure 
corresponding to a certain velocity along a streamline, etc. are treated in the literature 
with respect to Stokes' stream function [12, 13, etc.] and, therefore, no discussion 
of these properties will be included. 
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FINAL REMARKS 

The technique presented above may be extended to compressible (and possibly non-
-steady) fluid flow. The application of the technique to obtain the flow around some 
given three-dimensional objects seems to be another promising line of extending the 
work presented herein. The results obtained in the present paper seem to suggest 
that the theory of quaternions may prove to be a successful tool in the domain of 
three-dimensional flow. In two-dimensional steady flow there is one stream function 
which identically satisfies the equation of continuity. In three-dimensional flow there 
are three such functions which are related by means of a determinant equation. The 
present investigation throws some light on the possibility of using quaternion theory 
to obtain a three-dimensional stream function with a possible saving of effort. 
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Výtah 

PROUDOVÁ FUNKCE V TŘÍROZMĚRNÉM PROUDOVÉM POLI 
VYJÁDŘENÁ POMOCÍ KVATERNIONŮ 

M. Z. v. KRZYWOBLOCKI, H. ROTH 

V článku je užito teorie kvaternionů k definici analogů proudové funkce a komplex­
ního potenciálu, běžně užívaných při vyšetřování dvourozměrných potenciálních 
proudových polí, také pro třírozměrná proudová pole. Na rozdíl od dvourozměrného 
proudového pole, kde je jediná skalární proudová funkce, obsahuje kvaternionová 
proudová funkce v případě třírozměrného proudového pole tři skalární proudové 
funkce, které jsou vzájemně vázány podmínkou (2.2.4) a všechny tři hoví Laplaceově 
rovnici (2.2.11). Složky rychlosti jsou dány parciálními derivacemi těchto proudových 
funkcí, rov. (2.2.5) —(2.2.7). Pomocí proudových funkcí je odvozena též diferenciální 
rovnice proudových ploch (2.3.4). Rovněž je naznačeno, jak lze teorie kvaternionů 
užít též pro stlačitelná proudějní. 

Odvozená teorie je aplikována na případ osově symetrického proudění. V tomto 
případě je jedna proudová funkce nulová (3.1.3) a zbývající dvě je možno vyjádřit 
pomocí jediné funkce (3.1.8), (3.1.9). Je též odvozen vztah mezi kvaternionovou 
proudovou funkcí a Stokesovou (skalární) proudovou funkcí (3.3.7) pro případ osově 
symetrického proudění. 

V poslední kapitole je uvedeno několik příkladů osově symetrických proudových 
polí. Nejdříve je odvozen komplexní (kvaternionový) potenciál rychlosti pro homogen­
ní proud ve směru osy symetrie (4.1.8), (4.1.10). Dále je odvozen komplexní potenciál 
pro třírozměrný dipól s osou v ose symetrie (4.2.6), (4.2.8). Superposicí obou proudo­
vých polí se získá proudové pole odpovídající obtékání koule; jeho komplexní poten­
ciál je dán výrazy (4.3.4) nebo (4.3.5). 
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Р е з ю м е 

ФУНКЦИЯ ТОКА В ТРЕХМЕРНОМ ПОЛЕ ТОКА, 

ПРЕДСТАВЛЕННАЯ ПРИ ПОМОШИ КВАТЕРНИОНОВ 

М. 3. в. КРЖИВОБЛОЦКИ, Г. РОТ (М. 2. V. Кг2У\уоЫос1а, Н. КоШ) 

В статье использована теория кватернионов для определения аналогов функ­

ции тока и комплексного потенциала, которые обыкновенно применяются при 

исследовании двухмерных потенциальных полей тока, и в случае трехмерных 

полей тока. В отличие от двухмерного поля тока, где имеется налицо только 

одна скалярная функция тока, представленная при помощи кватернионов функ­

ция тока содержит в случае трехмерного поля тока три скалярных функции 

тока, которые взаимно связаны условием (2.2.4) и все они удовлетворяют урав­

нению Лапласа (2.2.11). Составляющие скорости даны в виде частных произ­

водных от этих функций тока, уравнения (2.2.5) —(2.2.7). При помощи функций 

тока выведено также дифференциальное уравнение поверхностей тока (2.3,4). 

Одновременно намечается путь использования теории кватернионов для иссле­

дования сжимаемого течения. 

Полученные результаты применяются к случаю симметричного относительно 

оси течения. В данном случае одна из функций тока является нулевой (3.1.3), 

и остающиеся две функции можно выразить только при помощи одной функции 

(3.1.8), (3.1.9). Также выведено взаимное соотношение между кватернионной 

функцией тока и (скалярной) функцией тока Стоукса (3.3.7) (81окез) в случае 

симметричного относительно оси течения. 

В последней главе приведено несколько примеров симметричных относитель­

но оси полей тока. Сначала выводится комплексный (кватернионный) потен­

циал скорости для однородного тока в направлении оси симметрии (4.1.8), 

(4.1.10). Далее выводится комплексный потенциал для трехмерного двухполюс­

ника, ось которого совпадает с осью симметрии (4.2.6), (4.2.8). Путем супер­

позиции обоих полей тока получается поле тока, соответствующее обтеканию 

шара; его комплексный потенциал дан соотношениями (4.3.4) или (4.3.5). 

Ашкаг!? ас1с1ге,чхех: РгоГ. М. 2. V. КггуъюЫоскг, МюЫ§ап 8Ше Ошуегзйу, 1, ОШ§ На11, 
М. Оер!., М^Ы^ал. 138А. — Ог. Н. Когк, Аегозрасе СогрогаНоп, СаШ'огша, Ш А . 
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