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SVAZEK 13 (1968) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

ROUNDING ERRORS IN ALTERNATING DIRECTION METHODS 
FOR PARABOLIC PROBLEMS 

H. H. RACHFORD, JR. 

Recently, the rouding error growth in solving a Crank-Nicolson difference analogue 
of a general second order parabolic problem with smooth coefficients in one space 
variable was analyzed [1], It was shown that to maintain a fixed bound on rounding-
induced errors the word length of the floating mantissa must be increased in propor
tion to the logarithm of the number of time-distance mesh points as the time and 
distance steps, k and h, are taken to zero at constant kjh. The present work shows 
that the analysis can be extended to the p-dimensional case when the computation is 
done using a stable, consistent, two-level alternating direction procedure. In this 
case, the required increase in word length is proportional to log (p2NM2) where N is 
the maximum number of grid points in any line in Rh, the mesh covering the spatial 
domain, and M is the number of time steps. 

p 

Let L(u) ~ YJ [(d/3.Xf) (ot(x, t) (dujdx^) + £(x, t) (dujdx^"] + y(x, t) u, and con
sider I = 1 

(1) L ( « ) = ^ + / ( * , 0 
ct 

in a bounded region R x (0, T] , where R cz Rp, a, £, and y are scalar valued con
tinuous function of x e Rp and time, t, 0 < a0 ^ a ^ am, y :g 0, and u is specified 
such that fourth distance derivatives of u are bounded. We consider the operators 

(2) - Lhi w(P, t) = V,.(«(P+ >'\ t) V, w(P, t)) + (±) Z(P, t) [w(P?, t) - w(P7, r)] 

+ y(P, t) w(P, t)\p 

where the grid of points Rh over R is generated by the increment vector h = (h1,... 
..., hp), PeRh is defined by P = (xu ...,xh ...,xp), P? = (xu . . . , xt ± hv ..., xp), 
P±ll2(xu ..., xt + hi/2, ..., xp), V,. w(P) = [w(Pt) - w(P)] hj1 and V, w(P) = 
V,-M'(Pj"). The Crank-Nicolson difference analogue of (1) becomes 

(3) w(P, tn+1) + lk£ Lhl[w(P, tn+1) + w(P, r„)] = w(P, tn) - kf(P, t„ + \k), 
; = i 
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which relates the values of the approximation w at points of (Rh u Ch) x {tn}7 

where tn = nk9 n = 0, 1, ..., K — 1, K = T/k, and where the points Ch are points 
on OR x {t„}. We let Nn be the number of points of Rh and ||v|| = (hl9 ..., hp YJVT)112 

for all v e RNn. The relation (2) is evidently of the form Rh 

(4) (/ + A)wn + 1 + Bwn = 0„, n = 0, 1, . . . ,K - 1 , 

where A and B depend also on n. Letting ]T Af = A and noting that (I + A,-) w = z 
. = i 

is readily solved, the alternating direction form of (4) is 

(5a) (/ + A,) jSiV, + t M . + */,- = 0-
J'=2 

(5b) (/ + A;) /.<'>. = fl'"" + ^ A , i = 2 , . . . , p , 

and the approximation for w„+1, fin+i is taken to be P(
n
p
+i. 

The computations using (5) produce not {/3„} but a sequence {/Sn}, which differs 

from {/?„} due to rounding. We follow the type of analysis of WILKINSON [2] and write 

tf-li = Q ^ j ^ i = & 4 where 

J. ^ - ( B + A-A.)/^, dt^ff^ + AA, i = 2 , . . . , /> , 

and 

^ = g r t ~ ( B + A--41)/5n + e1, ^. =/3 n
i
+7 ) + AA + ^ , i = 2 , . . . , p , 

where ef is the error introduced in computing 5^ from the stated arguments, 
Q. = (I + A,-)-1, and (5f is a matrix approximating Qf whose existence and exact 
form depend upon the procedure used to solve (5). 

We assume several quantities relevant to the problem to be solved: 

(6a) ||(1 + i4 l)-1 | | < 1/5, 8 > 0 , 

(6b) max (| |^| | + 2 £ | A A | | + ||B/3M||, ||fl,||) = /? , 
i 

(6c) IIR.l ^ M ( T ) , 

where R{ = QtQJl — L and T is the number of floating base N digits in the mantissa. 
The existence of /j and S follow from consistency and stability of (5). 

q q 

From (5), (6), and an examination of f ] Q,, — f ] Qx , we conclude that 
i=j i=j 

(7) ||t>„+1|| ^ [(1 + M)" - I ] . " ' [>„ + £ | A / „ | | + |(B + A) /?„||] + 
j = i 

+ e(ep - i)(e - lY1-?, + [||-i + || £ ( f t _ f - f[ 2.) A,- -
7 = i i = 7 i' = 7 

- ( ft -ly - II 6.)(B + ^)[|] H--1I 
./=! ./=! 
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p p 

where vn = /?„ - /?„, O = (l + M)/O\ >l„ is a bound on ||ef||, and G = S I I Qt^j ~ 
P j ~ i / = j 

— PJ Qfc(B + A). It will be seen to be important below that G is the matrix such that 
fc = i 

/j/j + 1 = GPn + Hg„ from (5); hence, by stability of (5), ||G| = 1 + C0k for all n. 

Using the methods of (2), we find that 

(8) rj„ = [(/<, +S)p + (k2+p8-' + a)\\v„\\] v/(l - fv), 

where 

k! = max {1 + (1 + v) N0[|| \B\ || + a(p - 1)] , [1 + (l + v) aN0]} , 

k2 = max {[|| |B | || + a(p - l)] [1 + (1 + v) N0] , a[(\ + v) N0 + 1]} , 

and a is a bound on || |A,| ||, v = sNl~r\ s = \ or 1 as rounding or chopping occurs 
in storage, xx = x — logN 1.053, N0 is the maximum number of sums taken for any 
element of any matrix-by-vector multiplication in dh fi= QP — <5~p, S = ft + <3~/', 

a = ^y, Y= A£ IIA Î + ||B + A||, and £ = Q(QP - 1 ) 0 ? - l ) " 1 , It follows from 
(8) that i = 1 

(9) H £ 9 2 ( t f - l ) ( ^ i ~ I ) " 1 , 

where <px = [||G|| + a + vC(k2 + a + £<Tp)(l - (v ) - 1 ] and <p2 = (> + &(kx + 
+ S) (l — (v)~ l ] /?. We assume now that l? is fixed and that the computations are car
ried out sothat M decreases at least linearly with v. Expansion of a shows that 
a = c[M + 0(M2) for M small. Thus, if M = c1v\c\ and we choose v = c\k, then 
a = ctk; hence, cpt = 1 + c3k + 0(k2). Since ^ = c4k + 0(k2), <p2 = /te5k for k 
small, and 

(10) ||v„|| Sc5Tec>T . 

This is satisfactory as it is exactly the same result that would obtain were L(w) = 
= du\dt an ordinary differential equation in t. 

The question of real interest arises when hjk = c while k -> 0. A suitable ordering 
of P e Rh yields A,- as a diagonal set of m tridiagonal blocks, each irreducible for ht 

sufficiently small, where m is the number of physical rows of points of Rh in R 
associated with the /th direction. Thus, the solution of (I + A,) w = z is the solution 
of in independent tridiagonal systems of the form 

fbl9cl9 0, . . . , 0 , 0 \ fwA 

(11) l°2,b29c29...,0, 0 . L r $ V V = r . 3 = = i ; s = l , . . . , m , 

\o , 0, 0, ...9aj9bjl\wjl 

where d is an m-segment of z and rt is a normalizing factor so that for ht 
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sufficiently small 

(12) i) § + \aj\ + \Cj\ < 6/1 - 4v - 3v2 - v3); j = 1, ..., J, 

ii) — 1 _ ah Cj < 0; j —• 1, ..., J — 1; i = 2, ..., J, the left hand equality 
holding for some row of some Fs; s = 1, ..., m, 

iii) a t = c7 = 0, 

iv) 8 > 0. 

It is easy to see that ||Fs||oo < <5~\ hence, 3 = 1 suffices for (6a). Analysis of the 
floating point operations involved in (11) shows [1] indeed that Qt does exist with M 
of (6c) given by 

M = (15 + 2JIFP vd-1 + O^S-1)2 . 

Taking v = c2hjk2, hj _ hh assuming ht\k = c fixed as k -> 0 leads to vO*"1 = 
= amc2k

2\2c + 0(k3), where am = max ~{Pf1/2). For k small, <?! and (p2 of (9) now 
RGRh 

satisfy: <px _ 1 + c3k, and cp2 ^ c^k2 for any c,3 > c0 + 69a2p2c2c 3, and 
c'5 > c2c-x ajp(\2p - ^). 

The following theorem follows from the analysis outlined above. 

Theorem. Let (l) be solved in a hypercube using (5) which is assumed to be stable 
and consistent with c0 independent of p. Computation is performed with x-digit 

floating-N arithmetic. If N~T = t2hjp~2k2, hj _ hh i = 1, 2, . . . ~, fry = ck, and 
// j§n and /?„ arc r/te computed and exact solutions for (5), respectively, then as k -» 0 

||A--/y _ k c ^ T , 

where C3 > c0 + 13sNaMt2c~3, c"5 > F053sN c2c~1aM/^[12 - l l (2p)"1] arid 5 
75 I" ° r 1 #s rounding or truncation occurs, respectively. 

Although the analysis has ignored the variations of A and B with n, we need only 
note that the bounds may be interpreted over all n, and that stability implies ||G„|| _ 
_ 1 + C0k independent of n to complete the proof. Further, the analysis does not 
assume symmetry of Ab but only the inequalities (12). Thus, for any shape region 
approximated with difference relations of positive type we shall expect the theorem 
to hold. 
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