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SVAZEK 13 (1968) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

ON MAXIMIZING A CONCAVE FUNCTION SUBJECT TO LINEAR 
CONSTRAINTS BY NEWTON'S METHOD 

JlTKA ZACKOVA 

(Received August 8, 1967) 

1. Newton's method for finding the point at which a function f(x) of several 
variables attains its maximum (minimum) is defined by the approximation scheme 

(1) xn+1 = xn + *n[F(xn)]-l V/(x„) . 

Here — F(x) denotes the matrix of second-order derivatives of the function f(x) 
at point x. The a„'s are eligible; they can be chosen all equal to 1 (the classical case) 
or they can be chosen according to the principle of small steps or according to the 
principle of steepest ascent. 

Newton's method can be adapted for solving nonlinear programming problems. 
We shall confine ourselves to the problem of maximizing a concave function subject 
to linear constraints. We shall derive such an adaptation by replacing the gradient 
direction by Newton's direction in J. B. Rosen's gradient projection method [3] 
and we shall discuss its properties both from the theoretical (convergence problems) 
as well as practical point of view (computational improvements, a numerical example). 
This is the contents of Sect. 2, 3, 4, 5 and 7 of the present paper. At the same time, 
a program in ALGOL is to appear in the respective part of this journal. 

Another adaptation of Newton's method (for maximizing concave functions of 
a special type constrained to a simplex) has been suggested by Hajek [1, Sect. 5] 
in connection with a problem in statistical sampling techniques. In Section 5 of the 
present paper, the convergence of Hajek's method is proved in one-dimensional 
case, whilst a counter-example is given in the two-dimensional case. 

2. (A) Let the convex polyhedral set 

f = {xe Em : ajx - bL = l{x) = 0, i = 1, ..., k) 

be bounded and nonempty. 
(B) Let the objective function/(x) = f(xl9 ..., x/M) have continuous second-order 

derivatives on some open set containing 9£\ let the matrix 

\dxt dxjj 

be positive definite at all points x e rJ. 
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The problem is to find the point at which f(x) attains its maximal value on ;T. 
Let ah i e {il9..., iq} c { l , . . . , k) be linearly independent vectors; set Q = 

= (x e Em : ajx — bt = lt(x) = 0, i = iu ..., iq}9 let x 0 be any point of £t. 
(Consequently, x 0 lies in the intersection of q independent hyperplanes.) Suppose, 
without loss of generality, that {iu...9iq} = {\9...9q}. Denote F0 = F(x0). In 
addition to the usual inner product and norm, denoted by (. , .) and ||. J| respectively, 
define the inner product 

(x, y)0 = xTF0y . 

Denote as _L0 and j | . | j 0 the corresponding to it relation of orthogonality and norm, 
respectively. Let nt be the inward pointing normal of the hyperplane ajx = 0, i.e., 
the vector satisfying n- _L0x for all x in this hyperplane and such that ||nf||0 = 1. 
Then F0ni = jiiai follows, i.e., 

n i = ViFolai > 

where nt = (ajF0 a^)~^. Because of the possibility of multiplying the inequalities 
ajx _ b, by any positive number we can assume that \ix = 1, i = 1, . . . , q. 

Let £>{1) be the ^-dimensional subspace of Em spanned by (independent) vectors 
nu ..., nq\ then J ( 2 ) = {x : ajx = 0, i = 1, ..., q} is obviously a (m — a)-dimensional 
subspace of Em and it holds 1{1} 1 0 ^ ( 2 ) , Em = £{1) ® J ( 2 ) . 

Define the matrices Nq = [nJ? ..., n j and Aq = [o t , ..., o j . Similarly as in [3], 
the following lemma holds. 

Lemma 1. The matrix P(1) = N^N^FQN^1 NqF0 is a projection matrix which 
takes any vector in Em into &{1) and the matrix 

(3) P<2) = E - P<!) = E - Nq(NlF0Nq)-> N^F0 

is a projection matrix which takes any vector in Em into &{2). 

Further, let Nq_x = [n l9 ..., nq_1] and denote P(1_\, P{21X the corresponding 
projection matrices. Then 

llP(2) n II2 

(d\ p(-) _ p(2) _ \\rq-inq\\ p 
[ ) q ~ q~1 ||p(2) „ 112 r ° 

!| rq-ln .2l|0 

which is easy to verify by multiplying of partitioned matrices. 
Some lemmas, which are similar to those in [3] as to the assertions as well as to 

the proofs, will be introduced now (without proof). 

Lemma 2. If ||(N^F0N^)-!|| _ rj9 then i P ^ i - J o _l r]~K 

Lemma 3. If x0 e & then x0 + P{2)y e Q for arbitrary y e Em. If x0e_l and 
x . = x 0 + z G 9C then Aqz _ 0. 
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Let y(x) be the maximal eigenvalue of the matrix 

F(x) = - ( J [, let y ^ max y(x) . 

Further, denote the gradient of f(x) by g(x) = Vf(x). 

Lemma 4. For arbitrary x, x 0 e £, the inequality 

(* ~ x o ) T g(*o) - i l i | x - x 0 | j 2 ^ f(x) - f(x0) ^ (x - x 0 ) T g(x0) 

hO/ds. 

Theorem 1. Under assumptions (A), (B), the following assertions are valid: 
(i) If x 0 G f lies On exactly q (l ^ q S m) hyperplanes which are linearly 

independent, say 

x0 e 1 = {x : ajx = ft., i = 1, ..., a/} , 

t/?£/t the function f(x) attains its global maximum on 3C at the point x0 if and only if 

(5) T ' : o 1 f ( x o ) = 0 am/ ( N , r F 0 N , ) - ' N , r
g ( x 0 ) p . 

(ii) If x 0 is interior to 3C, then the function f(x) attains its global maximum 
on 3C at the point x 0 if and only if 

(6) Fo1g(x0) = 0 . 

Proof, (i) The functionf(x) attains its maximum at the point x0 if and only if 

- ( x - x o ) r g ( x o ) ^ 0 

holds for all vectors x satisfying the inequalities 

aj(x - x0) ^ 0 , i = 1, ...,q . 

But this holds true (see Karlin [2, Theor. B. 3.4]) if and only if there exists a ^-di­
mensional vector r g 0 such that 

i 
g(xo) = Z rfli, 

i= 1 

or, equivalently, 

(?) F-lg(x0) = Nqr. 

Multiplying both sides of (7) by (NJFQN^'1 N[F0, we get 

r = ( N [ F 0 N „ ) - ' N [ g ( x 0 ) g O , 
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which completes the proof of (i). The proof of (ii) is obvious. 

3. Let us suppose, for the sake of simplicity, that our problem is non-degenerated, 
i.e., in the polyhedral set _T, each (m — _)-dimensional face lies in the intersection 
of exactly e (independent) hyperplanes, 0 < e g m. 

Let us define a finite or infinite sequence {x„} according to the following rule. 
Let x0 e _F. Denote 

Fn = F(xrt), A(xn) = F; X g(xn), ||y||n
2 = yTFny , etc. 

Let xn belong to the intersection J of exactly q independent hyperplanes, 1 fg q ^ m; 

let us set 

(8) r = r(x„) = (N[F„N, ) - 'N[g (x„ ) , 

Oj = max rt, 
1 _i ii _. q 

P ^ _(x„) = Nr; r(x„), P<2> _(x„) = _(x„) - P<» _(x„). 

(Remark that matrix N_ depends on xn and that formulas (8) are in accordance 
with (3).) 

Choose )] > 0 such that | |(N r F(x) N)_ 11| g r/ for all points x from the boundary 
of f. (Columns of N are again the normals of all the hyperplanes which x belongs to.) 

a) Let either xn be interior to !l and (6) holds, or xn e £ and (5) holds. Then the 
function f(x) attains its maximum on 3C at the point xn and the sequence terminates. 

b) Let either xn be interior to 9C and A(xn) 4= 0, or x„ e J and \P{2) -4(xn)||n > 
> max {0, i^ jw -^}. The algorithm will be defined for the latter case only; the 
corresponding formulas for the former OP,Q follow by replacing P{2) A(xn) by ^(xn). 

Define 

(9) xn + 1 = xn + TnZn 

where 

, _ P$M__ 
ÌҐЧ

2)Җ*»)V 

and where xn is chosen in the way described below which ensures both xn + 1 e f 
a n d f ( x n + 1 ) > f(x„). According to Lemma 3, x n + 1 e £ for arbitrary T. In addition, 
^i(xn+i) __ 0 for i = q -f 1, ..., k, is required. Denote 

Tj = i M for a [ z „ < 0 . 

= oo for űjzn ^ 0 , 

(10) тn

M ) = min {тt- > 0} . 
q+lźi^k 
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Considering that zn 4= 0 and SC is bounded, we have T[M) < 00. For 0 < T = T|,M*. 

we have xn+. e $T. Now, if we choose, 

(11) T = m , n ( / T < - > l l P ^ > J ( x " ) l i " 
1 ' V" y| | pr^„)ll2 

we can easily establish (by means of Lemma 4) that 

(12) f(Xn + T„Z„) - f(x„) = iT n | |P ( 2 ) A(X„)||n . 

c) Let Oj > 0 and | |P^ 2 ) A(x„)||„ = \Q3Y\~^- Suppose for simplicity that O^ = rq 

and define 

X n + 1 = X„ + T;jZn , 

where 

z = fi2^ jfe) 
" \K-\ A(*.)1 

and T„ is again chosen in such a way that xn+1 e 9C and f(x„ + 1 ) > f(xn). We have 

J(x„) = P<'» A(xn) + P<2> J(x„) = t rint + P<2> J(x„) , 
1 = 1 

hence 

P^1A(xn) = rqP^inq + P'q

2>A(xn). 

Comparing with (4), we conclude that 

= (P<2j1n„J(x„))„ = aft*2.?. ^(x„) 

"" | | p<2->J2 lp«-i"X2 

and thus a J P ^ -4(xM) > 0. We have again x,,+ 1 e X for any T e (0, T ( M ) ) , where 

T{M) has the same meaning as above. Further, z„ 4= 0, in view of 

! | P ( 2 ) A(x\\\ > r l lP ( 2 ) n II - l iP ( 2 ) A(x)\\ > 1n n~^ 
| | r q - l A\r-n)\n ~ ? q | | r q - i n q | | n ||r<? A\*n)\\n = 2&W 

Choosing 

03) r„ = m i n ( т Г , 
M, i ||p<2j, ^(x„)!|„3 

y \K~\ M*M2 

we can establish by means of Lemma 4 that 

(14) /(X„ + T„Z„) - f(x„) £ iT„||P<2j1 J(X„)|„ £ iTrf^"- . 
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4. Now, let us go into the convergence problem of the suggested algorithm. 
Logically, two cases can occur. Either (i) there is an infinite subsequence {xnJ of the 
sequence { x j such that Tnk < T(

n
M) holds for each its term, or (ii) in the sequence 

{xn}, Tn = T(
n

M) holds for all n starting from some nt. First, let us follow the case (i). 
(i) Suppose, without loss of generality, that the mentioned subsequence {xnJ 

is convergent, say xnk -> x*, and that the points xnk are all relative interior points 
of the same face Sf n & of the polyhedral set 3C, where Sf = {x : ajx = bh i = 
= i l s ..., is}. Denote P(2) resp. P(l) = £ — P(

s
2) the projection matrices onto sub-

spaces ^(2) = {x : ajx = 0, i = il9 ..., Q and /5^(1) (which is _L0 - orthogonal 
to 5^(2)), respectively. Further, let Qy(x) = max {0, max -VfI-(x)}, where the vector 

l _ = i _ i s 

t>(x) satisfies the relation PS
I} A(x) = Ns r>(x), Ns = [n£l, ..., n J . Then (12) and (14) 

give 

where 

f(Xnk+l) ~ f(Xnk) > f(Xnk+l) ~ f(Xnk) > <Ank 

*j = ^j\\p(s2) *(xj)h for «PJ2) A(XJ)\\J > i i T * ^ ( x j 

= iTy Or(xJ w"} for ||P(2) A(Xj)||y _S ir/"^ <5>(xJ . 

(If /^ n _-T = _y then the points x„k are interior to <% and i/̂ . = i^||__(xjj|y.) 

Let the limit point x* belong to 1 = [x : ajx = &,., i = il7 ..., ij <-= £f, let 
P^u, P^2) be the corresponding projection matrices and r be the vector of coordinates 
of P(

q
l) A(x*) with respect to the basis {nfi, ..., niq}. The sequence /(xwJ /*/(x*), 

and because of continuity, P<2) .4(x„J -> P<2) A(x*) and O^(x„J -> O^(x*). Moreover, 
00 

/ (x*) - / (x n J > £ i//,Jk, hence *//„k -> 0 and P(2) A(x*) = 0, O^(x*) = 0. Evidently, 
fc = 0 

P^2> J(x*) = 0, too, and A(x*) can be written both as 

>(D A(x*) = P(
q
l) A(x*) = X r /x*) nh , 

1=i 

as well as 

A(x*) = P(i) A(x*) = j] r<rtJ{x*) nh 
1=i 

where r>,/x*) _g Oy(x*) = 0. Here {il5 ..., Q c= {i1? ..., ij and from the unique 
expression of the vector __(x*) in the basis {nfi, ..., n, } it follows r,(x*) _g 0, j = 
= 1, ..., q. Thus the necessary and sufficient condition for the point x* be the maxi­
mum point of / on 9£ is satisfied. 

(ii) Let us follow the second case. Let the sequence { x j be infinite and let an 
integer nx exist, such that for every n > ni9 Tn = T(M) holds. In the original Rosen's 
paper [3], this alternative was omitted. Though we don't know any example, the 
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possibility of its occurence is not excluded from the logical point of view and can 
be the cause of the "zigzagging" effect. 

Now, let x n + 1 = xn + T(
n

M)zn for n > nx and either 

||P<2> J(x„)||„ > c Q(X„) or i|P<2> A(xn)\\n ^ c e(xn) 

where c = j / l"^ and the symbols N, P (2), O refer to the intersection of all hyperplanes 
that xn belongs to. 

In the former case, a face of smaller dimension is reached for Tn = T ( M ) . Hence this 
case cannot occur in an infinite number of steps, as a vertex of the polyhedral set :T 
would be necessarily reached after a finite number of occurrences. 

Hence, it remains to handle the following case: There is n0 = nx such that 

| |P ( 2 )A(xn) | |n^cO^(xn), O(xn)>0 

and Tn = T ( M ) hold for all n ^ n0 and, moreover, the points of the sequence {xM}„0 

lie in faces of constant dimension m — s, 5 > 0. 

If the sequence {xn} possesses more than one point of accumulation then there 
exists a convergent subsequence {x;7,} to each of them and liminfT (M) > 0. From 

n' 

the monotone convergence of the sequences {f(xn,)}5 from (14) and from continuity, 
we can prove, similarly as in the case (i), that all the points of accumulation of the 
sequence {x„} are the maximum points of f on 9£ — which contradicts the strict 
concavity off 

Hence, there is a limit x* of the sequence {x,.}; let x* e J = {x : ajx = bh i = 
= il9 ..., iq) and let all the points of {x„}^ are relative interior to faces £f x n $•> . . . 
. . . , £fh n 3C altogether of dimension m — s. Denote P(2J the projection matrix into 
the subspace ^ ( 2 ) , e = 1 , . . . , h. (The index (2 ) has the same meaning as in the 
definition of J ( 2 ) .) For given e, let {xn,} be the subsequence of [xn] containing all 
points xn e 9"e\ then 

0 < \\P?) A(xn)\n, ^ c Q<,0(xn) . 

Lemma 5. Suppose Q^JX*) = Ofor some e. Then x* is the point at which f attains 
its maximum value on 3C. 

Proof. If O^e(x*) = 0 for some ee {!,..., h) then P ^ J(x*) = 0 and P ( 2 ) A(x*) = 
= 0 follow. The vector A(x*) can be written both as 

as well as 

A(x*) = P ^ A(x*) = X rjnh , 
1=1 

A(x*) = PІlJ A(x*) = X r^j(x*) nh 

У = i 
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wh^re ntj are normals to the hyperplanes whose intersection is Sf{2), r^eJ(x*) are 
components of the vector r>c and r#>eJ(x*) = Qye(x*) = 0 holds. Because of the 
unique expression of A(x*) in the basis {n,v . . . , n . J , Vj = 0, j = 1, . . . , q, follows. 

The existence of such e will be proved for m g 3, 

Theorem 2. For m ^ 3, the sequence {x„} defined in Section 3 converges to the 
point at which f attains its maximum value on S£. 

The p r o o f will be given for m = 3; the case m = 2 can be handled in the same 
manner as sub L below. Moreover, we can consider the case (ii) only. For the non-
degenerated problem we have to discuss the following five eventualities: 

1. Let {x*} = SI be a vertex which is the intersection of edges SPU Sf 2, Sf'3 each 
of which contains an infinite subsequence of {x„}^. Now, Pq

2) A(x*) = 0 and r£ = 0, 
i = 1, 2, 3, the return to any edge Sfu Sf 2, Sf2 beeing impossible, because x* is the 
maximum point off on each set SPj n 9C, j = 1, 2, 3. The point x* is the sought 
solution. 

2. Let in the case L, the infinite subsequences of {x.,}^ can be drawn from the 
edges Sf u Sf2 only. Numerate the respective points in such a way that for k = k0 = 
= [(n0 + l)/2], x2k e Sfu x2k+le Sf 2 and x2fc -> x*, x2fc+ l -> x*. Let 

J = {x : ajx = b„ 

ířx = {x : ajx = b„ 

íŕ2 = {x: ajx = b„ 

y 0 = {x : a\x = bъ} 

=- 1,2,3} 

= 1,3} 

= 2,3} 

and P (

t

2 ) be the projection matrix onto the set Sf{

0

2) = {x : aTx = 0}. Then we have 

for n = n0 

_ ^ , T ( M ) **1 ^ ( X n ) 
X r t + 1 *n t- *„ | | p ( 2 ) j / x \ | | ' 

|| r l A\Xn)\\n 

aTP[2)A(x2k) > 0 , afPi 2 >_(x 2 k ) < 0 , 

aJP[2) J (x 2 f c + 1 ) < 0 , aT

2P[2) A(x2k+1) > 0 

which gives aTP[2) j(x*) = a ^ A(x*) = 0 for fc -> oo, i.e. O^(x*) = ^ 2 ( x * ) = ° 
and according to Lemma 5, x* is the sought solution. 

Similarly, it is possible to prove the convergence in the remaining three cases. 

3. {x*} = J is a vertex which is the intersection of two-dimensional faces Sfu 

Sf 2, Sf\ each of which contains an infinite subsequence of {x„}^. 
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4. As in the case 3., but only the faces 5^,, £f\ contain infinitely many points 
of ix I00 

5. x* e J , where the edge J is the intersection of two-dimensional faces £fl9 £f 2 

each of which contains an infinite subsequence of {x„}^. 
For more-dimensional cases, the discussion is very complicated and it seems 

impossible to generalize this proof. 

5. Up to this point, xn has been supposed to lie on exactly q hyperplanes, supposed 
to be linearly independent. If xn lies in addition on further hyperplanes which are 
linearly dependent on the original set, the degeneracy occurs. It is possible to remove 
it in a similar manner as in linear programming, i.e., by means of small perturbations 
of the position of the dependent hyperplanes. The algorithm itself can be adapted 
in the way suggested in [3]. 

Two modifications of the suggested algorithm, which reduce the amount of compu­
tations required per step and don't affect the convergence, will be mentioned now. 

First, the definition of the inner product need not be changed and the inverse F" 1 

need not be computed at every step of the algorithm. For instance, let v > 0 be an 
integer given in advance. Suppose that at the n-th step, inner product (x, y)n was 
defined and the matrix F~l established. We can keep this definition of the inner 
product even in the following (v — 1) steps, using F~l g(xn + j) instead of Newton's 
direction A(xn + j) for 1 ^ j < v. The projection matrices for 1 ^ j < v can then 
be computed by means of recursion relations of the type (4) (cf. [3]). 

Secondly, the use of formulas (11) and (13) for determining T„ is not very advant­
ageous. Instead, the length x of each step can be chosen by the method of steepest 
ascent which means to solve (at least approximately) one-dimensional maximization 
at each step. If the function f(x) possesses concave second derivatives in all directions, 
a result stated below as Theorem 3 can be used for solving this problem, i.e., for 
maximizing f(x0 + TZ0) on 0 ^ T ^ T ( M ) . 

In spite of these modifications, the amount of computations per step is still quite 
large in the suggested method. It seems that it would be proper to use it for acceler­
ation of computations or for refinement of solution yielded by some of the gradient 
methods in those cases when the gradient method converges slowly or even does 
not converge to the correct solution because of rounding errors. 

6. Now, we shall investigate an adaptation of the classical Newton's method 
(i.e., of the scheme (1) with an = 1) to the constrained problems. We shall start 
with the following quite simple one-dimensional result, which is nevertheless interest­
ing, as it does not require the initial approximation to lie in the contractivity domain 
of the respective mapping. 

Theorem 3. Let f(t) be a function of one real variable, let f"(t) exist and be 
continuous, negative and concave on <a, b>. Denote t* the point at which f(t) attains 
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its maximal value on (a, b}. Let t0 e <a, b}. For n ^ 1, define 

(15) t„+1 = t„ m /or tn-me<a<by> m f'%) 

= д /or ^ - • £ & ! < « , 
/ ( i n ) 

= 6 for t„ - f-^- > b . 

Then One Of the following cases occurs: 

1. {t„}o° N t*-
2. {f„}0» S t*. 

3. There is an integer n0 = n0(t0) such that 

t0 < tt < . . . < t ^ t < t* < tno and {tn}Z\t*. 

4. There is an integer n0 = n0(t0) such that 

t0 > tt > . . . > rII0. l > r* > t„0 and [QZ S t* . 

The p r o o f will be carried out in two steps. 

(i) First, we shall prove this auxiliary assertion: 
(*) If the sequence {tn} converges then lim tn = t*. 

M-+O0 

By means of relations (15), a continuous mapping Tof <a, b> into itself is defined: 

/ ' ( t ) Tt = t -f max <;« — /; mm 

If l = lim tn then t is the fixed point o^ T, i.e., 
7f-+ 00 

max }a~t; min 

L /"(/) 
• b - t 

-Ш;Ь 
L /"(i) 

= o, 

which can occur exactly in one of the folio wing three cases: 

a) t = a, f'(a) ^ 0, 
b) a < t < b, f'(t) = 0, 
c) r = b, f'(b) ^ 0. 

This proves t = t*. 

(ii) Let t* = b; then f'(t) ;> 0 for all t e (a, b> and tn g fn+1 g b for arbitrary 

tn e (a, b}. The sequence {i*„}o° is nondecreasing, bounded from above and lim tn = b 
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because of (*). Similarly, if t -= a then the sequence {tn}0 is nonincreasing and 
lim tn = <3. 

If a < t* < b then /'(**) = 0 and 

_ • _ _ _ . _ ( , . _ , . 

where 0 ^ 0 ^ 1, thus 

, _•/__) _ ,* _ ( r _ f*)[i 

T(ŕ* + gft, - <*)Г 

Л O J 

f"(Ґ + Ö(fn - f*))' 

f'%) 

Suppose for the moment that tn — (f'(tn)jf"(tn)) e (a, b>. Then 

t„+I - t * = (t„-t*) 
j"(t* + (̂t„ - ñf 

f'%) 

As a consequence of concavity, the function/"(t) is either nondecreasing for t < t* 
or nonincreasing for t > t*. Suppose f"(t) is nonincreasing for t > t*; the second 
case is similar. Then/"(t* + 0(t — t*))jf"(t) g 1 for any t > t*. As soon as t„0 > t*, 
then t,lo > tn ^ t* for all tz > n0, the sequence {l,.},^ is nonincreasing, bounded from 
below and according to (*) we have {tn}„°0 \ t*. Especially, for t0 > t* case 1. 
occurs. For t0 < t*, t0 < tt holds. Suppose t0 < tt < . . . tk < t*. Then either 
tk < tk+i __ f* o r tk+i > t* and the case 3. occurs with n0 = k + V If such an 
integer n0 does not exist then 

1 

holds for all n and {tj /* t*. 

r%) > o 

J and the steady con-If tn ~ (f'(tn)lf"(tn))<£(a, b), then obviously n - *. 
vergence starts from the point tno — b resp. 6?. 

In [ l ] , a problem concerning statistical sampling techniques is studied and reduced 
to maximization of the concave function 

(iб) 

on the set 

H J-l 

f(p) = _L [ I (aJh - ajh) Pj + aJhy 
h = l j = 1 

^ = { í>e£;- , . : p y _ 0 , ; = 1,. . . , / 
J - l 

I 
1 

ІPj < lì 
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The ajh"s are non-negative constants satisfying following conditions: 

a) There are no numbers /,- ^ 0 , £ Xt = 1 such that 
i*fc 

fl*A = Z ^ i T . 

i*h 

holds for all A = 1, . . . , H. 

b) There is no decomposition of the set {l, . . . , J} in to sets sd, M such that 

H H ljhL 

h - 1 h = 1 
Z Ö І / 2 = Z ЯЈAЯІЛ1 

holds for all /' e j./, 7 e <#. 
This special problem is suggested to be solved by means of the following adaptation 

of the classical Newton's method. Denote 

w - ' d'f 

\dpi dpjJiJ=t j _ i > 

A(p) = F ( ř ) - ' V / ( ř ) 

and 

where Aj(p), 7 = 1,..., J — 1, are components of the vector A(p). Let pne0. 
If p„ + J(p„) e ^ define pw + 1 = pn + A(pn). Let p„ + A(pn) 4 & and 

A/p„) < 0 for j e i T c {l, ..., J} 

Aj.(>„)>0 for 16Jfc{] J } . 

Denote 

I min (p i l f; - A ;(*>,,)) 
__ je£[ 

Z--X#v) 

where pJn, j = 1, . . . , J - 1, are components of the vector pn and pJn = 1 — Z Pj„. 
For 7 = 1, ..., J define j = * 

(17) Pjn+1=PJH+ Aj(Pn) -f ^(fV) = 0 and pJn + A7<P„) S 0 , 

F7»+l = P/« + ** ̂ I(Pn) i f ^i(Pn) > 0 > 

P,„+l = 0 if Pjn + Aj(pn) < 0 . 

Then obviously pn+l = (Pi„+i, . . . , P j - i „ + i ) r e ^ . 
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The question 1. about the convergence of this algorithm and 2. about its modific­
ation in case some derivatives off fail to exist in some point of & (which occurs 
if and only if some ajh = 0) remained open. Let us follow the case J — 2. 

Theorem 4. Let J = 2 in (16) and ajh > 0 for all j = 1, 2 and h = 1, ..., H. 
Then the sequence {pn} defined by formulas (17) converges to the point p* at which 
the function f(p) attains its maximal value on 0*. 

Proof. Now, & = <0, 1> and formulas (17) coincide with (15). The function f 

is concave and its second derivative exists at all points in <0, 1>, is continuous and 

concave. The assumptions of Theorem 3 are satisfied. 

If some ajh = 0, we can indicate an interval I c (0, 1) which contains the sought 

solution p* and on which the algorithm converges. 

Theorem 5. Let alh = 0, h e J f u alh > 0, h e J-f 2, a2h = 0, he ,.yf2, a2h > 0, 
hejeu where Mp

l n jf2 = 0, J^UJ^2 c {V . . . , H} . 
Then the point at which the function 

f(p) = £ í(aih - a2h) p + a2h~]* I 
h=l 

attains its maximum on <0, 1> belongs to the interval <£1? 1 — e2> where 

(18) - , = i /o r / ' ( i ) £ 0 , 

V£i = 

l / l 
/ î g ^ 2 

EV(Ч- I 
héXtyj*2 y/(i(alh + a2/,)) 

<-j- /oг /'(*)< 0, 
V2 

(19) в2 = i for f'(ł)_0, 

£ Va2/t 
/e _ _ _ j 

/ ь _ __ ^ _ V f c 2 

£ V(2«i/t) + £ —^—a2fL— 
/iê r2 Mjr1u.«f2 V(Kaift + a2/.)) 

< -7: /<"• /'(i) < ° • 
V2 

Proof. It is desired to find eu e2 _ i such that f'(l - e2) _ ° a n d / ' fci) = ° 
hold. 
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a) I f / ' ( i ) S 0 then e2 = \ can be taken. L e t / ' ( i ) > 0, i.e., 

I V(2«ih) - I sj(2a2h) + I - g - ~ flM > 0 
^e^2 /j£^t H*eXKJje2 yj(j{alh + «2flj) 

and 

If e = i , then 

IV(2ai,)+ I - 7 7 ? ^ H > 0 -
ftejr2 H*eXKj2fe2 yj{\{alh — a2/ í)j 

2/'(l - e) = - — X >2) , + I — — 
Jє ыж, ҺФ*, J(alh + є(a2h - alh)) 

-5-4-1 >-» + I V(-в») + I lft u 2f t 

/ e he^ři fi6.?T2 ^ i u « 3 ř 2 \ / ( K a l ^ + fl2fi)) V 

and for e = e2 defined by (19), f'(\ - e2) = 0 and e2 = i hold. 
b) I f/ ' ( i ) = 0 then e t = \ can be taken. F o r / ' ( i ) < 0, the conditions/'(e^ = 0 

and e. = i can be verified for e1 defined by (18) in quite similar manner as in the 
previous case. 

A similar result holds even for J > 2. Before stating it, let us recall that the problem 
(16) and that of maximizing the function 

(20) MP)=l (lajhPj)' 
h=X j=X 

on the set 

»x = {peEj:Pj*0J= 1 , . . . , J , X P ; = *} > 
1=i 

are equivalent. 

Theorem 6. Let 

aiho = 0 , iesf c {V ..., J} , 

aJko*09 je® = { 1 , . . . , J ) - stf . 

Then the function J\(p) does not attain its maximal value on 0>
1 at such a point p * 

for which p* = 0 for some j e 3. Moreover, to any relative interior point pe 0*u 

there is e0 > 0 such that 

UP* + <p - p*)) > f(p*) 
holds for 0 < e ̂  e0. 

P r o o f see in [4]. 
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The problem of convergence for J > 2 is more complicated. If ajh > 0 for all 
j = 1 , . . . , J, h = 1, . . . , H, then the mapping Tof the set _̂  into itself given by for­
mulas (17) is continuous and according to the Brouwer's fixed point theorem, T pos­
sesses at least one fixed point. However, the fixed point of the mapping T need not 
be the point at which the function / (p ) attains its maximum on & and the sequence 
{Pn} g i v e n by (17) need not converge to the solution of the problem, as demonstrated 
by the following example. 

Example . Find the maximum of 

f(Pu Pi) = V(|Pl - \P2 + \) + V ( ^ 2 + \) + V H . P l + | ) 

on the set & = {p_, p2 : p_ ^ 0, p2 = 0, _?_ 4- p2 _ --}• H e r e is J = 3, H = 3 and 

Let p10 = 1, p20 = 0. Then 

i v / _7_ i_' 
n \ p _ / 48 32 

j _ _9_ 
'32 64 

Vj(Po) = ( l / 

F o ' = ¥ ( ! | ) . J(Po) = ( | ) . ^ ( * > o ) = - I - ¥ = - 4 < 0 

and x = 0. The algorithm terminates in the point P10 = 1, P20 = 0- Nevertheless, 
there is a direction in which/(p) does increase on 0. Let us have, e.g., p_ -4- p2 = 1; 
denoting p = p1 we get the function f2(p) = i y/(3p + l) + f %/(2 ~ P) w m c r -
does not attain its maximum on the interval <0, 1> at the point p = 1 but at the 
point p = | | | . Consequently, / (0 , 1) < / ( { & ^ ) . 

7. The above-mentioned example will be solved by means of the projected Newton's 
direction method, explained in Sections 2 — 4. Starting from the point p10 = 1, 
p20 = 0 and determining the length r according to the principle of steepest ascent, 
the projected Newton's direction method yields the exact solution already after the 
first step, as can be easily seen. 

Now, for illustration, let us start from an interior point, e.g., from Pi0 = P20 = 3. 
Then 

f(Po) = Vn + VI + V£ = 1-768, 
, v /0.1975X -_o . /0.4652 0.2818' 

L - - - - ) > Fi = M ( 0.0522/ \0-2818 1.3385 

and 

à(p0) = křo 
0.1067 

1256 
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where k is a positive constant. The condition p0 + T A(p0) e 0> gives T = T ( M ) = 
= (1/3 • 0.2323) = 1.4349. The function f(p0 + T -4(p0)) is increasing in the point 
T = T ( M ) thus we have T 0 = T ( M ) and p u = | + 1.4349 • 0.1067 = 0.4864, p2l = 
= i + 1.4349 • 0.1256 = 0.5136. Now, 3 

f(f>,) = 0.6148- + 0.3784" + 0.1682* = 1.8093 , 

.39818 0.25930 

.25930 0.69746 
/0.18336X F r l = 1 9 . 0 0 5 1 / 0 . : 

s y r ' \o.o4380j \o.: 

4P.) 
.60346\ 

T.48411j ' 

The point p , e J = {p e E2 : p, + p 2
 = l } > t n e corresponding normál is 

^ - 1 / \0.95676j 

where the value K = 3.43132 follows from the condition n\Flnl = 1. The projection 

and the one-dimensional maximization in the direction P ( 2 ) zi(pi) yields pl2 = 
= f | | = 0.8782, p22 = 0.1218, p2 e J , /(f>2) = 1.836. The gradient 

g(f>2) = 0 . 1 0 4 9 ^ 

hence A(p2) = ~0A049n 1 and P ( 2 ) A(p2) = 0, ^ = -0A049 < 0. According 
to Theorem 1, f>2 is the desired solution. 
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Výtah 

POUŽITÍ NEWTONOVY METODY PRO VYHLEDÁNÍ MAXIMA 
KONKÁVNÍ FUNKCE PŘI LINEÁRNÍCH OMEZENÍCH 

JITKA ŽÁČKOVA 

Newtonovu metodu lze upravit pro řešení úloh nelineárního programování — pro 
vyhledání maxima konkávní funkce na omezeném konvexním polyedru. Navrhovaná 
modifikace spočívá v tom, že se používá Newtonova směru namísto gradientu 
v Rosenově [3] metodě projekce gradientu. V práci je odvozen příslušný algoritmus 
(odst. 2 a 3) a studuje se jeho konvergence (odst. 4). V odstavci 5 jsou navrženy 
některé úpravy vhodné pro numerické výpočty; postup výpočtu je ilustrován na pří­
kladě (odst. 7). 

Jinou úpravu Newtonovy metody pro vyhledání maxima konkávní funkce speciál­
ního typu na jednotkovém simplexu navrhl Hájek [1, odst. 5] v souvislosti s řešením 
jedné úlohy pravděpodobnostního výběru. Tato metoda konverguje v jednorozměr­
ném případě, jak je dokázáno v odstavci 5, avšak v odstavci 6 je uveden příklad, 
kdy ve dvourozměrném případě metoda nekonverguje. 

Р е з ю м е 

ПРИМЕНЕНИЕ МЕТОДА НЬЮТОНА К МАКСИМИЗАЦИИ 

ВОГНУТОЙ ФУНКЦИИ ПРИ ЛИНЕЙНЫХ ОГРАНИЧЕНИЯХ 

ИТКА ЖАЧКОВА 

В настоящей статье изучается модификация метода Ньютона для решения 

задач нелинейного программирования — для максимизации вогнутой функции 

при линейных ограничениях. Предложенная модификация заключается в заме­

щении градиента направлением Ньютона в градиентном методу Розена [3]. 

Изучается сходимость соответствующего алгорифма (отдел 4) и в отделе 5 

предложены некоторые изменения удобные для практических вычислений. 

Применение метода показано на примере (отдел 7). 

Другой модификацией метода Ньютона для максимизации вогнутой функции 

частного типа на единичном симплексе занимался Гаек [1, отдел 5] в связи 

с решением одной задачи вероятностней выборки. В отделе 5 настоящей статьи 

доказана сходимость этого метода в одномерном случае и в отделе 6 показан 

двухмерный пример, в котором метод не сходится. 

Ашког'з аМгезз: ЪУх. ЗИка Раскопа С 8 с , Ма1етаПско-Гу21ка1ш' Гакика К^, РгаЬа 8, 
8око1оу$ка 83. 
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