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SVAZEK 15 (1970) APLIKACE MATEMATIKY CisLo 1

THE EFFICIENCY OF ESTIMATES
IN STATIONARY AUTOREGRESSIVE SERIES

Jiki ANDEL

(Received May 30, 1968)

Let {X,}Z, be a stationary random sequence whose correlation function is known.
Let its expectation be EX, = a¢p, where ¢, is a given function and o an unknown
parameter. Denote by @&y the least squares estimate for o based on the random
variables X, ..., X. This paper is devoted to the evaluation of the efficiency of 8y
for some frequently occurring functions ¢,. A theorem on asymptotic efficiency
is formulated in the last section.

1. INTRODUCTION

Let X = (X, ..., Xy)' be a random vector with a regular covariance matrix G such
that

EX, = ap,, 1<t

lIA

N,

where ¢, (1 < t < N)is a given function and a is an unknown parameter. The matrix
G is supposed to be known.

The estimate for a, say @&, is called the least squares estimate, if & minimizes the
N
expression Y (X, — a¢p,)>.
t=1
Lemma 1. Put ¢ = (¢y, ..., ¢y). If @ + 0 then the least squares estimate 8, is
(M & =(¢'9)"" o'X
and has the variance
(2) var @ = (¢'9)"2 ¢'Go .
Proof is obvious. Compare with [3], p. 130.

18




Lemma 2. Denote by & the best linear unbiased estimate for the parameter o
(i.e., @ is the linear unbiased estimate with minimal variance). Then for ¢ + 0

(3) &= (p'G lp) " G 'X
and
(4) vard = (¢'G ™')™ " .

Proof. See [1]. Compare with [3], p. 131.

Let us recall some advantages of the least squares estimate &. It may be simply
evaluated and does not depend on the covariance matrix G. The variance of & may
be easily determined by (2).

On the other hand the variance of the best linear unbiased estimate & may be sub-
stantially smaller than that of the least squares estimate &. But the evaluation of &
is more complicated as & depends on G, even through G™'. If N is not very small,
the inversion of the matrix G is generally very difficult.

The efficiency ey is introduced by
ey = var d/var &

as a measure of the quality of the estimate &. In our case we get with respect to (2)
and (4)

(5) ey = (¢'0)* [(¢'Go) (¢'G 1 9)]7" .

A very important class of vectors X = (X, ..., X)' is the set of finite parts of an
infinite random sequence {X,}Z,, where EX7 < oo, cov (X,, X,) = cov (X 4+, Xs4r)
for all integers t, s, r. Related problems were considered in mathematical papers from
different viewpoints. See e.g. [3], [4], [5]- Such questions as those of the lower
limit for ey and of the asymptotic efficiency of the estimate & were solved.

In practice, however, the economic, hydrologic and some other important series
usually have not such a length that we may rely on the asymptotic properties of ey
only. It seems to be suitable to determine ey exactly at least for the most current
types of series {X,}2, and for the most usual functions ¢,.

In the particular assertions we shall specify the correlation function of the series
{X,}2, (directly or by means of the spectral density) and the function ¢, occuring
in the expectations of the series:

EX,=a¢p,, t=0,+1, £2,....

We keep the following notation: G is the covariance matrix of the random variables
X4, ..., Xy ey is the efficiency of the least squares estimate &y where &y is based
on X, ..., Xy only. Let ¢ = (g, ..., ¢y) and X = (X, ..., Xy)".
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2. THE ESTIMATE OF THE CONSTANT EXPECTATION
IN THE AUTOREGRESSIVE SERIES OF THE FIRST ORDER

Theorem 1. Let {X,}”, be a series of the random variables such that
EX, =«a, cov(X,X,) = (L - a?) tall
where t, s are integers and 0 + a € (—1, 1). Then
©) en = NY[N + 2af(1 — @)] [N — 2a(t — a")/(1 = *)]}~*
holds.
Proof. In this case ¢, = 1. The spectral density
fQ)=Q@n) "1 —ae*™?, —n<Aisn

corresponds to our correlation function B(k) = (1 — a?)~' a'*l as it is well known.
We have

1 a a? a¥~!
a 1 a ...aV?
(M G=(1-4a*)""a*> a 1 ...aV3
aN—l aN—Z aN—sl

and with regard to [2], pp. 424, 425, for N = 3

1 —a 0 0... 0 O 0

—a 14+ 4% —a 0... 0 O 0

G-l — 0 —a l1+a*> —a... 0 O 0
0 0 0 0...—-a 1+a* —a

0 0 0 0 .. 0 —a 1

As ¢, =1,1 <t < N, we have ¢'¢ = N. As a matter of fact, ¢'Ge is the sum of
elements of the matrix G and it will be denoted by S(G). Analogously ¢’'G "¢ as the
sum of elements of G™! will be denoted by S(G™").

For a natural N and b # 1 it may be proved by induction that the following
formulas holds:

(8) ékb" =b(1 —b")(1 —b)"2 = Nb"*'(1 — b)™",

) ikzb" =2b2(1 = b (L = b)> +b[L — (2N = 1) b"] (1 — b)™% -
k=1 _ szN+1(1 _ b)_l.
Using (8) we get
8(6) = (1 — @) ™H{N + 2a(l — ) [N = (1 = &) (1 — @)}
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Obviously
S(G™') = N + a*(N — 2) — 2a(N — 1).

Substituting into (5) we get after some modification the assertion of Theorem 1.
Theorem 1 implies these coroliaries:

a) For fixed a and N — oo we have ey — 1.
b) For fixed a and N — oo
ey =1—2a*1—-a*)""N" +o(N7")
holds.
c) Denote the efficiency ey given in (6) more explicitly by ey(a), in order to
emphasize its dependence on a. Then

lim ey(a) =0,

a->1-

lim ey(a) = 0 for N odd, N = 3,
a-»>—1%

lim ey(a) = IN(N — 1)"'  for N even, N = 4.

a-»—1+%

The values of ey(a) are given in Table 1 for various N and a.

Table 1
THE EFFICIENCY ey(a)

N
\ 3 4 5 6 7 8 9 10 | 15 | 20 | 30 | 50 | 100 | 500
a
\ |

|

—0:95]0-113,0:694/ 0-157| 0-642| 0-203 0'626" 0-248| 0-622| 0-369| 0-647| 0-684| 0-750| 0-846| 0-964
—0-:90 | 0-226| 0-722| 0-307| 0-683| 0-385| 0-677| 0-454| 0-683| 0-607| 0-741| 0-793| 0-858 0-922) 0-983
—0-80|0-439|0-776| 0-558| 0-759| 0-648| 0-769 0-711| 0-786| 0-813| 0-858| 0-898| 0-935| 0-966  0-993
—0-70 | 0-618| 0-828/ 0-729| 0-826| 0-796| 0-842 0-836| 0-860| 0-894 0-917| 0-942| 0-964| 0-981| 0-996
—0-60 | 0-758| 0-874| 0-838| 0-881| 0-878| 0-897| 0-901| 0-911| 06-936| 0-950| 0-965| 0-979| 0-989 0-998
—0-50 | 0-857, 0-914| 0-905{ 0-923| 0-927| 0-936| 0-940( 0-945| 0-961| 0-970| 0-979| 0-987| 0-993| 0-999
—0-40 | 0-923, 0-947| 0-947| 0-954| 0-958| 0-962 0-:966| 0-968| 0-978| 0-983| 0-988| 0-993| 0-:996| 0-999
—0-30 | 0-964| 0-972| 0-973| 0-976| 0-978| 0-980| 0-982| 0-984; 0-988| 0-991| 0-994| 0-996| 0-998 1-000
—0-20 | 0-987| 0-988| 0-989| 0-990| 0-991| 0-992( 0-993| 0-995| 0-996| 0-996 0-997| 0-998| 0-999| 1-000
—0-10 | 0-997,0-997| 0-997| 0-998| 0-998| 0-998; 0-998| 0-998| 0-999| 0-999| 0-999| 1-000| 1-000, 1-000
0-10 | 0-998| 0-998| 0-998| 0-998| 0-998| 0-998| 0-998| 0-:998| 0-999| 0-999| 0-999| 1-000| 1-000, 1-000
0-20 [ 0-994| 0-992| 0-992| 0-992| 0-992{ 0-993| 0-993| 0-994| 0-995| 0-996| 0-997| 0-998| 0-999| 1.000
0-30 [ 0-989| 0-984| 0-983| 0-983| 0-984| 0-984| 0-985| 0-986| 0-989| 0-992| 0-994| 0-996, 0-998/ 1-000
0-40 | 0-985/0-977| 0-973/0-972/ 0-972| 0-973| 0-974| 0-975| 0-981| 0-984| 0-989| 0-993| 0-996) 0-999
0:50 | 0-982| 0-:970, 0-963| 0-960| 0-959| 0-959| 0-960| 0-961| 0-968| 0-974| 0-981| 0-988| 0-994, 0-999
0-60 | 0-980| 0-965/ 0-955| 0-950| 0-946| 0-945 0-945) 0-945| 0-952| 0-960| 0-970| 0-980| 0-989 0-999
0-70 | 0-981| 0-965| 0-952| 0-943| 0-937| 0-933| 0-931/ 0-:930{ 0-933| 0-940| 0-953| 0-968| 0-982| 0-996
0-80 | 0-984/ 0-969| 0-956/0-945| 0-937| 0-930| 0-923| 0-921| 0-913| 0-915| 0-927| 0-946| 0-969, 0-993
0-90 | 0-990| 0-980, 0-970| 0-961| 0-953| 0-945| 0-938 0-:933| 0-912| 0-901| 0-896| 0-906, 0-936| 0-984
0-950-995/0-989,0-983| 0-977| 0-971| 0-966| 0-960| 0-955| 0:935| 0-:920| 0-901| 0-887| 0-899| 0-967
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3. THE ESTIMATE OF THE CONSTANT EXPECTATION
IN THE AUTOREGRESSIVE SERIES OF THE SECOND ORDER

Theorem 2. Let {X,}%,, be a series of the random variables with the expectation
EX, = a and with the spectral density

(11) f(A) = (2n)7" |a, + ae + age®?|72.

Suppose ay, a,, a, are real numbers such that the polynomial a,z*> + a,z + ay =
= ay(z — by)(z — b,) has roots by, b, whose absolute value is greater than 0
and smaller than 1. Then we have for by * b,

(12) ey = N*{N = 2[(b, — by) (1 — byb,)]7* [b3(1 — by)* (1 = bY)/(1 = b}) -
= b3(1 = by)* (1 = BY)J(1 = B3]} {N + 2(by — 2b,b, + by).
LU= b) (1= )]

and for by = b, = b

(13) ey=N’[N—4b(1 +b+b*) (1 =b)"' (1 +b)73 +
+ 26V (2 + N + 2b + 2b* — Nb*) (1 — b)"* (1 + b)™*]7".
N +4b(1 = b))

Proof. Without a loss of generality suppose a, = 1. Hence

(14) ay, =bb,, a,=—b, —b,, a,=1.

The spectral density (11) may be written in the form
f(2) = @2n)~ ' |(e* — by) (e* = by)|7?, —n<AZm.

From the well-known spectral representation of the correlation function
(15) - B(k) = J e £(1) d1

we evaluate the elements of the covariance matrix G.
Suppose b; *+ b,. Then we get from (15)

(16) B(k) = Ab!¥ + 4,b}

where

(17) Ay = by[(by — bs) (1 - bybs) (1 = B3)]Y,
(18) Ay = by[(b; — b)) (1 — byby) (1 — B3] 7L,

22



The covariance matrix G is

(19) G = A4,G, + 4,G,
where
1 b, b? py~!
(20) G, = b, 1 b, bY~2
BY "t p¥ 2 p¥ 3 1
fori=1,2.

If N = 5, then we obtain by [2] this inverse matrix G~

as a,a, a,a, 0 0 0
2, 2
a,a, az;+aj a,ai+a;ay, a,a, 0 0
2 2 2

a,a, a,a;+aa, as;+aj+a; aza,+aa, 0 0

2
0 a,a, a,a,+aa, a:+a’+al 0 0

2 2 2
0 0 a;+aj+ag aa,+aza, a,a, 0

2 2 2

0 0 a,a;+asa, as;+ajt+ag a,a +aa, a,a,
0 0 a,a, aa,+aa, aital a,a,
0 0 0 asa, aa, as

The sum of elements of the matrix G™* gives

S(G™') = Naj + (N — 2)ai + (N — 4)aj +

+ 2[aza (N — 1) + a,ao(N — 3) + azao(N — 2)].
With respect to (14) we get
(21) S(G™Y) =(1 —by)*(1 = by)*N + 2(1 — by)(1 = by)(by — 2b,b, + b,).
The sum of elements of the matrix G is
S(G) = Ay{N + 2b,[N — (1 = bY)[(1 — by)J/(L = by)} +

+ A{N + 2b,[N — (1 = BY)[(1 — by)]/(1 = b,)}.
Substituting from (17) and (18) we have
(22) S(G) = N[(L — by)* (1 — b,)*]™* — 2[(by — by) (1 — byb,)]™*.

AP = DY) [(1 = 1) (1 — by)*]7" — b3(1 — bE) [(1 = B3) (1 = b2)*] 7'}

According to (5), in our case ey = N*[S(G) S(G™")]"! so that (21) and (22) imply
after some arrangements formula (12).
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Now, we return to the case by = b, = b,0 + be(—1, 1). We have
| f(2) = @m)™" e — b|7*
and from (15) there follows
B(k) = (1L +b*) (1 —b*)b* + (1 — b*)"2 kb, k20.
Using formulas (8) and (9) we obtain the sum of elements of the matrix G
S(G) = N(1 — b)™* —4b(1 + b + b*) (1 — b)>(1 = b*) > +
+ 26712 4 N + 2b + 2b% — Nb?) (1 — b)™2 (1 — b?)73.

The sum of elements of the matrix G™! is given by (21) putting b, = b, = b because
we did not use the assumption by = b, in the proof of (21). Consequently

S(G™') = (1 —b)*N + 4b(1 — b)*.
These results imply (13).
Corollaries of Theorem 2.

a) lim ey = 1 in both cases by * b, and b, = b,.

N->w
b) If N - oo we get these asymptotic formulas:
(23) ey =1—2[(b] + b3)(1 — byb,) + 2byby(1 — by — b, + b3b3)].
(U= byby) (1 = b3 (1 = BTNt + o(N"Y) for by %b,,
(24) ey=1—-4b>2+2b+ b*)(1 —b)" ' (1 +b)>N~' +o(N7")
for by =b,=5b.

c) (13) is the limit of (12) if we put e.g. by = b, b, — b. Analogously (24) is the
limit of (23).

4. THE ESTIMATE OF THE CONSTANT EXPECTATION
IN THE AUTOREGRESSIVE SERIES OF THE n-TH ORDER

Theorem 3. Let {X,}Z  be a series of the random variables with the expectation
EX, = o and the sepctral density

(25) f(2) = @n)~" |(e* = by)...(e* = b,)| 2
where all the numbers by, ..., b, are different, 0 < Ibil <1for1=j<nandall
the coefficients oy, ..., o, of the polynomial
P(z)=(z—by)...(z = b)) = apz" + 2" ' + ... + o,
arereal. Puta; = o,_;, 0 £ j < n.
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Then the efficiency ey of the least squares estimate & is
(26) ey = N’[S(G) S(@™")]™"

where S(G) and S(G™") are the sums of elements of G and G™*, respectively. Further
we have

@) SO =T AN + [N - (1= )1 - (1 - b)
wherefor1 < j<n

(28) Ay = b5 [(b; = by) o (b = bji) (b = byus) ... (b; = by) -
(1 =Bb)...(1 =Bb)...(1 = Bb)] !

and for N = 2n + 1 we have
n—k

Ap— Oy j—k
0

(29) S(G™') = leoaf- - Z_leaf_ j+2NY
J= J=

k=1 j=

n n—k
= 2% Y2 + k)a,_jay—j.

k=1 j=0

Proof. From (25) and (15) we evaluate the correlation function
B(k) =Y Ap%, k=0,1,..
Jj=1

where A; are given by (28). The sum of elements of the matrix G may be evaluated
analogously as in previous sections. This leeds to (27).

We may write the spectral density (25) equivalently in the form
(30 10) = @a) | S avese
k=

where all the coefficients a; = «,_; are real and all the roots of the equation
n
Z a,,_kz" = 0 have the absolute value greater than 1.
k=0
Now, we use the following assertion which is proved in [2]. Put Gl yxy+1) =

= (91s)t,5=0,1,...,y- Then for N = 2n

( min(N—t,N—s,n—[t—s]|)
Ay ily— i1y for max(t,s) >N — n,
i=0
n—|t—s|
Gis = 3 Qyoily—i—jmgy for n < t,s SN —n,
i=0
min(t,s,n—|t—s|)

@yeily—i—14—5) for min (t,s) < n.

i=0
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For |t — s| > n there is g, = 0. If min(¢,5) < n < N — n < max(t,s) then the
first row of the previous formula for g,, gives the same results as the third one. We
must be aware of the fact that in our case the matrix G~ ! has the order N x N only.
From here we obtain the sum S(G ™) given by formula (29).

In the case of equality of some b} we could obtain the results as the limit from (29).

5. THE ESTIMATE OF THE LINEAR EXPECTATION
IN THE AUTOREGRESSIVE SERIES OF THE FIRST ORDER

Theorem 4. Let {X,}‘l"oo be a sequence of random variables with the expectation
EX,=at, t =0, +1, +2, ..., and the correlation function given in Theorem 1.
Then the efficiency ey is given by (5) where

@'o =iN(N +1)(2N + 1),
9Gp = (1 —a®) ' [AN(N + 1)(2N + 1) (1 + a)/(1 — a) +
+a* 2+ N —aN)(1 —a")(1 —a)™* -
—(L+ N —aN + a"*")aN(1 — a)™?],
@G g = IN(N + 1) (2N + 1) (1 — a)* + a(N + N? — a — aN?).
N
Proof. In this case ¢, =t 1 <t < N so that ¢'¢ = Y > The derivation of

t=1

¢'Gp and ¢'G™ ¢ is obvious as in Section 2 both G and G~ are given.
Note a fact that lim ey = 1 holds, too.

N-wo

6. THE ESTIMATE OF THE LINEAR EXPECTATION
IN THE AUTOREGRESSIVE SERIES OF THE SECOND ORDER

Theorem 5. Let {X,}“_’Oo be a series of random variables with the expectation
EX, =at,t =0, +1, £2,... and the correlation function (16) where by + b,. Then
¢, = 1,1 <t < N and the efficiency ey is given by (5) where

o' = %N(N + 1) (2N + 1),
0'Go = by[(by, — b)) (1 — byby) (1 = )] [AN(N + 1) (2N + 1) (1 + b)) :
:(L = b)) +b}2+ N = bN)(1 = bY)(1 = b)™* =
—bN1 +N—=bN + b1 = b)) +
+ by[(by — by) (1 = byba) (1 = BT [AN(N + 1) 2N + 1) (1 + by) :
(L= by) + b2+ N — boN) (1 = b3) (1 = b))™* =
— b,N(1 + N — b,N + B3*") (1 = b,)7°],
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¢'G 1o = IN(N + 1) (2N + 1) (1 — by)* (1 = by)* + 4bib, + 4b1b3 — b} — b3 —
— 6b3b3 + N(1 — byb,) (by + b2 — 2b,b,) + N*(by — 2byb, + b,).
(1= by)(1 = b,y).
Proof. We get these relations using G and G~ from Section 3. The formula
¢'G¢ may be simplified but not substantially. The simplification would concern mainly

the coefficient by N* which equals to [3(1 — b,)* (1 — b,)*]™'. We see from here
that lim ey = 1 holds.

N-ow

The case b; = b, we do not described here. It may be obtain by the limit procedure.

7. THE EFFICIENCY OF THE ESTIMATE OF THE CONSTANT EXPECTATION

IN THE AUTOREGRESSIVE SERIES OF THE SECOND ORDER IF THE ESTIMATE

IS BASED ON THE ASSUMPTION OF THE AUTOREGRESSIVE SERIES OF THE FIRST
ORDER

Theorem 6. Let X,, ..., Xy be random variables with expectations EX, = o,
1 £t £ N and with the covariance matrix (19) which will be denoted here by T.
Let G be the covariance matrix (7). Then the efficiency of the best linear unbiased
estimate for o based on the covariance matrix G is

(31) ev =(9'G710) [(¢'T™'9) (9'GT'TG 1 9)] !

where ¢ = (1,1,..., 1), 9'G™' ¢ is given by formula (10), ¢'T~'¢ is given by (21)
and

¢'GT'TG ¢ = (1 — a)* {by[(b; — by) (1 — b;b,) (1 — b)]™' [N + 2b,(N —
= (L= b1 = b)[(1 = by)] +
+ by[(b2 = by) (1 = byby) (1 — b3)] L.
[N+ 265(N = (1 = BY)(1 = by)[(1 = o)1} +
+4a(l — a)* [(1 = BY)/(1 = by) + (1 = B3)(L = b3)] +
+2a%(1 —a)®> 2+ Y1 + bY7Y).
Proof. The best linear unbiased estimate based on the matrix G is
o* = (0'G1p)~! ¢'G™1X
and has the variance
vara* = (¢'G™19)"2 9'G™'TG .

The best linear unbiased estimate
a = (¢'T~1¢)—1 0T X
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has the variance
vard = (@'T 'p)™".
With respect to the definition of the efficiency

ey = var d@fvar o*
we obtain (31).
As for the evaluation of ¢’'G™'TG ¢, we have

G = ((1 = a).(1 — a)....(1 — a2 (1 — a)).

Introduce the vectors ¢ and &:

y=(1—-ale, ¢ =¢G"'—y.
Obviously
©G TG 1o = YTy + 2y'Te + &'Te.

But (] — a)™* YTy is the sum of elements of the matrix T given in Section 3, for-
mula (22). Further

eTe =2a*(1 —a)* 2+ bY"' + D377,
Ty =20t — " [(L—~ B0 — by) + (1~ B)(1 — )]

This concludes the proof.

From (31) there easily follows lim ey = 1 for an arbitrary ae(—1,1), a * 0,
N-ow
and arbitrary b, and b,, b, * b, satisfying assumptions of Theorem 2. For a = 0

this assertion was proved as a corollary of Theorem 2.

8. ASYMPTOTIC EFFICIENCY OF SOME ESTIMATES OF THE CONSTANT
EXPECTATION

Theorem 7. Let {X,}*, be a stationary autoregressive series of the order m with
an unknown expectation EX, = a. Let T be the covariance matrix of the random
variables X, ..., Xy. Denote by G the covariance matrix of the random variables
X4, ..e, Xy, supposing {X,}"f00 to be an autoregressive series of the order n with
the spectral density (25). Let ey be the efficiency of the best linear unbiased estimate
for o based on the variables Xy, ..., Xy when the covariance matrix G is supposed.
Then lim ey = 1.

N-w

Proof. Analogously to the proof of Theorem 6 we obtain
(32) ey =9'G 99 G lo(¢T g ¢'G'TG )"
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where ¢ = (1,1,...,1)". Put ¢'¢ = E. From the formula for the elements of the
matrix G~ given in the proof of Theorem 3 it follows that EG™' = g(E + J), where

n
q = (Y a,-;)* and the matrix J may have non-zero elements in the first n and last n
k=0

columns only. Actually, the sum of the elements of the k-th column (n + 1 < k <
< N — n) of the matrix G™* gives

q =2a,a0 + 2a,a, + a,-1a0) + ... + 2(aa,—y + ... + ajao) + (af + ... + ag) =
n
= (X a,-)"-
k=0

Obviously, all the non-zero elements of the matrix J may be bounded in the absolute
value by a finite constant K > 0, where K does not depend on N.

From the assumptions made on f(4) in (25) there follows that the equation

n

> a,-;z* = 0 has all the roots inside of the unit circle. Therefore z = 1 is not the
k=0 n

root so that Y a,_, + 0 and g = () a,-,)* > 0.
k=0 k=0

As T is a symmetrical matrix, there holds ET = TE. Using the obvious relation
Ep = N¢ we may write the efficiency (32) in the form

(33) ey=(No'G o + ¢G 'Jo)(No'G "¢ + ¢ T 'JTG ') .

From q > 0 we get ¢'G™ 19 — oo for N - co.

Obviously, the row vector ¢’G™! has all the elements bounded in absolute value
by some positive constant, say Q, which does not depend on N. This implies ¢'G™J¢p
< 2QKnN.

The existence of a positive constant C (C does not depend on N) such that
¢'T ' JTG !¢ < CN may be proved.

The proof of this assertion follows from the fact that the row vector ¢'T™! as
well as the column vectors G~ !¢ and TG~ !¢ have the elements bounded in absolute

value by a consiant not depending on N. We do not go in the details here.
With respect to this, the assertion of Theorem 7 immediately follows from (33).
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Souhrn

EFICIENCE ODHADU VE STACIONARNICH AUTOREGRESNICH
POSLOUPNOSTECH

JIRi ANDEL

Predpoklddejme, ze X = (X, ..., Xy) je ndhodny vektor s reguldrni kovarianéni
matici G takovy, Ze

IIA

EX,=a¢p,, 1St=N,

kde ¢(1 < t < N) je dand funkce a o nezndmy parametr. BudiZ & nejlepsi nestranny
linedrni odhad parametru « a & budiZ odhad « metodou nejmensich Etverct. Efi-
cience odhadu @ je definovdna jako

ey = vardfvar &.

Velmi dilezZité jsou pripady, kdy ndhodné veliiny X, ..., X lze poklddat za Cdst
nekone&né posloupnosti {X ,}2 ., jejiZ korelatni funkce zdvisi jen na rozdilu argument.

Pro nejdilezit&jsi typy téchto posloupnosti a pro nejuZivanéjsi funkce ¢, je v tomto
vypoétena eficience ey. Zde uvedme struény piehled vysledka.

Typ posloupnosti 0, Véta Vzorce pro ey

autoregrese 1. fadu
autoregrese 2. fadu
autoregrese n-tého fddu
autoregrese 1. fddu
autoregrese 2. fddu

(6)
(12), (13)
(26)

- =
W\ AW N -

-V 7. odstavci ¢ldnku je vypoctena eficience nejlepsiho nestranného linedrniho odhadu,
ktery je zaloZen na pfedpokladu, Ze {X ,}°_°w je autoregrese 1. fddu, aé ve skutecnosti
jde o autoregresi 2. fadu. Vysledek je uveden ve vété€ 6. Nakonec ve vét&€ 7 je dokdzédno,
Ze v ptipadé€ autoregresni posloupnosti m-tého ¥ddu s konstantni stfedni hodnotou
nejlepsi nestranny linedrni odhad zaloZeny na pfedpokladu autoregrese n-tého fdadu
je asymptoticky eficientni.

Eficience ey odhadu konstantni stfedni hodnoty metodou nejmenSich &tvercti
v autoregresni posloupnosti 1. fddu je uvedena pro n&které hodnoty N a nékteré
hodnoty parametru a (ktery specifikuje koreladni funkei) v tabulce 1.

Author’s address: RNDr. Jifi Andél CSc., Matematicko-fyzikalni fakulta Karlovy university,
Sokolovska 83, Praha 8 - Karlin.
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