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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I KY ČÍSLO 2 

ON THE POSSIBILITY OF APPLYING A COMPUTER 
WHEN SOLVING THE FOUR COLOUR PROBLEM 

BORIS GRUBER 

(Received 18 May 1967) 

To my father 
on the occasion of his 80th birthday 

1. GEOGRAPHICAL NOTIONS 

A country is a set of points in a euclidean plane which is homeomorphic 
with a closed circle area (having a positive finite diameter). A finite set M of countries 
is called a map, if the following is fulfilled: 

1. M consists of at least two countries; 
2. two arbitrary countries of M never have an interior point in common; 
3. none point of the plane belongs to four countries of M; 
4. the union of all countries of M (the domain of M) is homeomorphic with 

a closed circle area. 

As it is well known point 3 does not mean any restriction of the problem. As a matter 
of fact, the same may be said about point 4.1) 

The number of countries of a map M is called its degree; symbol deg M. The 
countries Zu Z 2 of a map are called adjacent, if they are neither identical nor dis
joint. We say that the set U is a boundary segment (in short: segment only) of the 
map M, if 

1. it is a subset of the boundary of the domain of M; 
2. it is a subset of a country of M; 
3. it is connected; 
4. U' cz U is true provided that U' satisfies points 1, 2, 3. 

*) For a given n, however, point 4 does mean a restriction. But the above proposition is to be 
understood in this sense. If we have a map M consisting of n countries which does not satisfy 
point 4, we consider instead of M a new map M' consisting of ri (// > n) countries which has 
originated from M by "changing the interior seas into countries". Then M' fulfils point 4 and we 
apply the algorithm to the number n . 

83 



The number of the boundary segments of a map M is called its order; symbol ord M . 
Obviously 

(1.1) 1 < ord M _ 2(degM - 1) 

for any map M. 
Every boundary segment is a subset of one and only one country of the map. We 

say that it belongs to this country. If Ul9 U2 are boundary segments of the same map, 
then they are either 

1. identical or 
2. disjoint or 
3. have one or two points in common. 

In the last case they are called adjacent. Such segments always belong to adjacent 
countries but the opposite is not true. In any map there exists at least one country 
to which only one boundary segment belongs. 

We say that the map M of the order m is numbered, if an integer j (l _ j _ m) 
is associated with any boundary segment of M in such a way that this mapping is 
one-to-one and that to any pair of adjacent segments either the numbers i, i + 1 
(1 _ i < m) or the numbers m, 1 correspond. If the integer j is associated with 
a particular segment, we speak simply of the segment j . 

Two numbering, of a map are called accordant, of one of them may be obtained 
from the other by a cyclic permutation 

(1.2) f12 -m-p+lm-p + 2...m \ {l ^ p £ m) 

\p p + 1 ... m 1 . . . p — 1 / 

Ail numberings of a map the order of which is greater than 2 may be divided into 
two classes of mutually accordant numberings. We speak following the common 
convention of positive (i.e. counterclockwise) and negative numberings. The num
bering of a second order map is considered both positive and negative. 

We say that the map M' has originated from the map M by annexation, if 

M c M' , deg M' = deg M + 1 . 

The set M' — M consists of one (the co-called annexed) country. If h denotes the 
number of the boundary segments of the map M which have points in common 
with the annexed country, then 

h = ord M for ord M' = 2 , 

(1.3) h = ord M - ord M' + 3 for ord M' > 2 . 

This is immediately seen. Thus we have 

1 < ord M' _ ord M + 2 

provided that the map M' has originated from the map M by annexation. This is 
obvious for ord M' = 2; the other cases follow from (1.3) since h _ 1. On the other 
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hand if M is an arbitrary map and the integer i fulfils 

(1.4) 1 < i < o r d M + 2 

then there exists a map M' of the order i which has originated from M by annexation. 
Let the map M' have originated from the map M by annexation. We say that these 

maps are numbered in a corresponding way, if both of them are numbered in a nega
tive way and one of the three following cases occurs: 

I. ord M' = 2 or ord M' = 3; 
II. a) 3 < ord M' < ord M + 2, 

b) the annexed country has points in common with the segments ord M' — 1,... 
..., ord M, 1 of the map M, 

c) the number ord M' is associated with that boundary segment of M' which 
belongs to the annexed country; 

III. a) ord M' = ord M + 2, 
b) the annexed country has points in common with the segment 1 of the map M, 
c) the number ord M' is associated with that boundary segment of M' which 

belongs to the annexed country. 

If a map M' has originated from the map M by annexation then they always may 
be numbered in a corresponding way. On the other hand if M is a negatively num
bered map and the integer i fulfils the inequalities (1.4) then a map M' of the order i 
exists which has originated from M by annexation and may be numbered in a cor
responding way with M. 

If M is a map of the degree n, then every map which has originated from it by 
annexation has the degree n + 1. The contrary is true as well. If M' is an arbitrary 
map of the degree n + 1 (n > 1), then there exists a map M of the degree n such that 
M' has originated from M by annexation. It suffices namely to take away from M' 
that country into which only one boundary segment belongs. 

A non-void set of maps is called an atlas. If A is an atlas, then the symbol [-4] 
denotes the atlas defined like this: M' e [>4] holds if and only if such a map M e A 
exists that M' has originated from M by annexation. We introduce two particular 
sequences of atlases 

(1-5) A2, _43, A4, . . . 

(1.6) A29A'3, A'49... 

Here A( (i > 1) designates the set of all maps of the degree i and A\ the set of all 
maps of the degree smaller or equal to i. Thus we have 

(1.7) A' = A2 u A3 u ... u At 

(1.8) A \ cz A ' i + 1 

(1.9) -4 i + 1 -=[* . ] 

for any integer i > 1. 
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We say that a map is regularly stained by at most four colours (in short: stained 
only) if it is decomposed into at most four classes such that none of them contains 
two adjacent countries. The countries belonging to the same class are said to be 
stained by the same colour. 

Let the map M' have originated from the map M by annexation, let M, M' be 
stained. We say that they are stained in a corresponding way if the following is true: 
Any two countries Zl9 Z2e M are stained by the same colour in the map M if and 
only if they are stained by the same colour in the map. M'. 

We say that two boundary segments of a stained map are stained by the same 
colour, if the countries to which they belong are stained by the same colour. Other
wise they are said to be stained by different colours. Thus two adjacent segments 
of a stained map are always stained by different colours. 

When staining a map we define a decomposition in the set of all its boundary seg
ments. Two segments belong to the same class of this decomposition if and only if 
they are stained by the same colour. The map is said to be stained in a reduced way, 
if the above decomposition does not contain more than 3 classes. 

A map is called regular, if it may be stained in a reduced way. It is called singular, 
if it cannot be regularly stained by at most four colours. In all other cases it is called 
semisingular. Such a map can be stained, but not in a reduced way. 

We say that an atlas A is regular, if every map of it is regular. We say that A is 
singular, if it contains at least one singular map. In the remaining cases A is called 
semi-singular. A semi-singular atlas does not contain any singular map, but it con
tains at least one semi-singular map. 

Let the map M' have originated from the map M by annexation. Then the following 
obviously holds: If M is singular, then M' is singular; if M is regular, M' is not 
singular; if M is semi-singular, then a singular map M" exists which has originated 
from M by annexation. (It suffices for example if M" is of the second order.) 

This necessitates the following for the atlases (1.5): If At is singular, then Ai+l 

is singular; if At is regular, Ai+1 is not singular; if At is semi-singular, Ai + 1 is singular. 
Thus in the sequence (1.5) one of these two cases occurs: 

1. Every atlas A{ (i > 1) is regular. 
2. There exists such an integer k (k > 3) that the atlases A2,..., 4fe_ x are regular, 

the atlas Ak is semi-singular, 
the atlasses Ak+i, Ak+2,... are singular. 

To ascertain which of these two cases actually occurs means to solve the four colour 
problem. 

The aim of this paper is more modest. We introduce an algorithm which enables 
one to state for any integer n > 4 whether every map consisting of n countries may 
be regularly stained by at most four colours or not. The negative answer for a parti
cular n would mean, of course, that the solution of the four colour problem was 
found. 
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2. BOTANICAL NOTIONS 

A decomposition K of the set of integers 

(2.0) 1,2, ..., m (m > 1) 

is called & flower, if 

1. it consists of at most four classes; 
2. in any class there is neither a pair of integers of the form /, / + 1 (l = i < m) 

nor the pair m, 1. 

If this decomposition consists of just four classes, we say that the flower K is gay. 
The number m is called the order of the flower K; symbol ordK . Performing the 
cyclic permutation (1.2) on the set (2.0) the flower K changes into a new flower which 
will be denoted Kp. 

Let M be a numbered and stained map of the order m. According to paragraph 1 
the staining of M determines a decomposition of the set of all its boundary segments. 
Since M is numbered, this decomposition is transferred to the set of integers (2.0) 
forming a flower of the order m which will be denoted x(M). It is gay if and only if 
the map M is not stained in a reduced way. 

We say that the flower K' has originated from the flower K by pollination, if one 
of the following three cases occurs: 

I. a) ord K' = 2 or ord K' = 3, 
b) the flower K is not gay; 

II. a) 3 < ordK ' < ordK + 2, 
b) there exists a decomposition L of the set of integers 0, 1, 2, ..., ord K such 

that 
a) L consists of at most four classes, 
P) K is a partial decomposition of L, 
y) none of the integers ordK ' — 1, ..., ord K, 1 belongs to the same class 

of L as the number 0, 
3) omitting the integers ordK ' , ..., ordK2) in the decomposition L a n d 

replacing afterwards the number 0 by the number ord K' we get the flower 

K'; 

III. a) ordK ' = ordK + 2, 
b) K is a partial decomposition of K', 
c) the number ord K + 1 belongs to the same class of K' as the number 1. 

If the flower K' has originated from the flower K by pollination, then 

ord K' = ord K + 2 . 

2) Of course this set is void for ord K' = ord K + 1. 
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If 

(2.1) 1 < 5 ^ ordK + 2 

holds for a flower K and an integer s, then there exist at most three flowers of the 
order s which have originated from K by pollination. However, none flower of this 
property need exist at all. But it does exist if the flower K is not gay. 

If the map M' has originated from the map M by annexation and if they are num
bered as well as stained in a corresponding way, then the flower x(M') has originated 
from the flower x(M) by pollination. On the other hand if 

1. the map M' has originated from the map M by annexation, 
2. M, M' are numbered in a corresponding way, 
3. M is stained, 
4. the flower K' is of the order ord M' and has originated from the flower x(M) by 

pollination, 

then the map M' may be stained in such a corresponding way with M that Kr = 
= x(M'). TO see this it is sufficient to consider the definitions of the respective notions. 

A finite (void or non-void) set of flowers of the same order is called an inflorescence. 
The order of a non-void inflorescence C (symbol ord C) is the order of its flowers. 
The order of the void inflorescence is any integer greater than 1; but the symbol 
ord C for C = 0 is meaningless. 

The void inflorescence is called also singular. A non-void inflorescence such that 
all its flowers are gay is said to be semi-singular. All other inflorescences are called 
regular. They contain at least one flower which is not gay. 

Let M be a numbered map. Then A(M) designates the set of flowers x(M) provided 
that M has been stained in all possible ways. Thus X(M) is an inflorescence of the 
order ord M. It is regular or semi-singular or singular simultaneously with the map M. 

If a non-void inflorescence C consists of the flowers 

Ki,...,K, (t^ 1) 

and the integer p fulfils 

1 ^ p gv ord C 

then Cp designates the inflorescence consisting of the flowers 

Kp, . . . , KP . 

If C = 0 we put Cp = 0 for any integer p ^ 1. The inflorescences C, Cp are both 
either regular, or semi-singular or singular. 

Is C a non-void inflorescence and s an integer fulfilling 

(2.2) 1 < s ^ ord C + 2 
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then the symbol sC denotes the inflorescence defined in the following way: The flower 
K' belongs to sC if and only if 

1. ordK ' = s, 
2. there exists a flower K e C such that K' has originated from K by pollination. 

Further we put sC = 0 for C = 0 and any integer s > 1. It may be, of course, sC = 0 
also for C 4= 0. However, if C is regular and s satisfies the inequalities (2.2), then sC 
is non-void. The symbol sC — providing it is meaningful — denotes always an in
florescence of the order s. 

We say that the inflorescence C has originated from the inflorescence C by pollina
tion, if such an integer s exists that C = sC. Assuming the inflorescence C has ori
ginated from the inflorescence C by pollination, the following propositions are clear: 
If C is singular, C is singular. If C is regular, C is not singular. If C is semi-singular, 
a singular inflorescence C" exists which has originated from C by pollination. We 
may put, for example, C" = 2C. 

If the map M' has originated from the map M by annexation and if they are num
bered in a corresponding way, then the inflorescence X(M') has originated from the 
inflorescence X(M) by pollination. It is namely 

X(M') = ord M'X(M) . 

On the other hand if M is a numbered map and the inflorescence C has originated 
from the inflorescence X(M) by pollination, then a map M' exists which has originated 
from M by annexation and fulfils C = X(M') provided that it has been numbered 
in a corresponding way with M. 

If C is a non-void inflorescence, then |C| designates the set consisting of the ele
ments 

C1, C2, ..., CordC. 

Is C void | C| is considered void as well. 

The set R is called a herb, if such an inflorescence C exists that 

(2.3) R = | C | . 

The order of a non-void herb R (symbol ord R) is the order of the inflorescences 
belonging to R. The order of a void herb is any integer greater than 1; but the symbol 
ord R for R = 0 is meaningless. There exists obviously one and only one herb of the 
order 2; it will be denoted 2. 

The herb R fulfilling (2.3) is called regular, or semi-singular or singular in accord
ance with the inflorescence C. The symbol |^(M)| means the same herb may the map M 
be numbered in any negative way. This herb is denoted %(M) and will be referred to 
as the characteristic of the map M. Its order is ord M. It is regular, or semi-singular 
or singular simultaneously with the map M. 

We say that the herb R' has originated from the herb R by pollination, if inflores-
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cences C, C exist in such a way that C has originated from C by pollination and 

R = |C| , R' = |C ' | 

hold. 

Provided that the herb R' has originated from the herb R by pollination, the fol
lowing may be easily verified: If R is singular, R' is singular. If R is regular, R' is 
not singular. If R is semi-singular, a singular herb R" exists which has originated 
from R by pollination. 

If the map M' has originated from the map M by annexation, then the herb x(M') 
has originated from the herb %(M) by pollination. On the other hand if the herb R' 
has originated from the herb #(M) by pollination, then a map M' exists which has 
originated from M by annexation and fulfils R' = x(M'). 

We say that the herb Rx is lower than the herb R2 (symbol Rt < R2), if inflores
cences Cu C2 exist in such a way that 

* i = | C i | , R2 = \C2\, 0 + C l C = C 2 , Ci*C2. 

When writing R{ g R2 we mean, of course, that either Rt < R2 or R± = R2 is valid. 
If the herbs Rt, R2 fulfil Ri < R2 then 

1. none of them is singular, 
2. if K! is regular, R2 is regular, 
3. if R2 is semi-singular, Rt is semi-singular, 
4. ord Rx = ord R2. 

We say that the integer j is an index of the herb R, if 

1. there exists a map M fulfilling 

deg M = j , z(M) = R ; 

2. there does not exist a map M such that 

deg M <j , x(M) = R . 

If the herb R cannot be considered a characteristic of any map, we put its index equal 
to 0. Thus every herb R is associated with one and only one non-negative integer 
which is its index. We denote it ind R.3) 

If R = x(M), then 

ind R fg deg M . 

If the herb R' has originated from the herb R by pollination and ind R > 0, then 

(2.4) ind R' ^ ind R + 1 . 
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If ind R' > 2, then such a herb R exists that R' has originated from R by pollination 

and 

(2.5) ind R < ind R' . 

A non-void set of herbs is called a herbarium. The herbarium consisting of the 

herb 2 is denoted 2. If H is a herbarium, then [H] designates the herbarium defined 

in this way: Rf e [H] holds if and only if such a herb Re H exists that Rf has origi

nated from R by pollination. 

We say that the herbarium H is regular, if any of its herbs is regular. We say that 

H is singular, if it includes a singular herb. In all other cases H is called semi-singular. 

Such a herbarium does not include singular herbs, but it contains at least one semi-

singular herb. The herbarium H is called simple, if R1 < R2 never holds for JRX, R2 e 

e H . 

Is H a herbarium, then ~ H designates the set of herbs R fulfilling 

1. ReH, 

2. if JR' e H, then R' < R is false. 

The set " H is a simple herbarium and a subset of H. If JR e H, then such a herb 

R' e ~H exists that K' :g K. The herbarium ~H is regular or semi-singular or singular 

simultaneously with the herbarium H. 

Is A an atlas, then {A} denotes the set of all the herbs x(M) where M e A. The 

herbarium {A} is regular or semi-singular or singular simultaneously with the atlas A. 

For any atlas A 

(2.6) [{A}] = {[A]} . 

We introduce two particular sequences of herbaria 

(2.7) H 2 , H 3 , . . . 

(2.8) H 2 , H 3 , ... 

putting 

н,. = { A } , H; = {A;} (/> 1 
Thus 

(2.9) H; = H 2 u H 3 u . . . u H, 

(2Ao) H ; ^ H ; + 1 

(2.11) H i + 1 = [ H , . ] 

for any integer i > 1. (See (1.7), (1.8), (1.9), (2.6).) Further 

(2.12) H 2 = H , 2 = 2 

(2-13) H 2 c H 3 . 
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From (2.9), (2.11), (2.13) it follows 

[ H ; ] = [ H 2 ] u [ H 3 ] u . . . u [ H j = 

= H3 u H4 u . . . u H i + 1 = 

= H2 u H3 u ... u H i + t 

so that 

(2.14) H; + 1 = [ H ; ] ( i = 2 , 3 , . . . ) . 

Using (2A2), (2A1) and (2A2), (2A4) we can construct the sequences (2.7), (2.8) in 
a recurrent way regardless of the atlases (1.5), (1.6). Owing to (2.12) 

(2A5) Hf = H; ( i = 2 , 3 , . . . ) 

is valid so that (2.7) and (2.8) denote the same sequence. For this sequence one of the 
two following cases occurs: 

V Every herbarium Ht (i > 1) is regular. 
2. There exists such an integer k (k > 3) that 

the herbaria H 2 , . . . , Hk_ t are regular, 
the herbarium Hk is semi-singular, 
the herbaria Hk+ u Hk+29... are singular. 

It suffices to remind oneself of what has been said about the atlases (1.5) in para
graph 1. 

The herbarium H\ (i > 1), that is also the herbarium Ht is the set of that herbs 
the index of which is positive and smaller or equal to i. This can be easily seen. 

Finally let us establish the herbaria 

S3, S4, . . . 

T 3 , T 4 , . . . 

in the following manner: S, or Tt is the set of that herbs of Hi the index of which 
is smaller than i or equal to i, respectively. Thus 

(2A6) Ht ^S.uT, *(i =3 ,4 , . . . ) 

with disjoint summands. 

It may be shown that 

(2.17) S i + 1 = ~Hi+ln~Ht 

(2.18) T i + 1 = ~ H i + 1 - S i + 1 (i = 3 ,4 , . . . ) 

although at the first sight only 

S.+ 1 = Hi+l n Hf 
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may be stated. If namely R e Hi+l n H,, then R' < R is false for R' e Hi+i and 
consequently also for R' e H-, since 

(2.19) HtczHi+1 

according to (2.15), (2.10). Thus R e ~H. having in mind that R e Ht This means 

Hi+i r\ Ht c Hi+l n H-

which necessitates (2.17) .Then (2.18) is clear. 

3. ALGORITHM 

According to what has been hitherto said it is clear enough that there is no problem 
in the main to state an algorithm by means of which one could ascertain for any 
integer n > 1 whether it is possible or not to staine regularly every map consisting 
of n countries. It suffices namely to know for the given n whether the atlas An is 
regular or semi-singular or singular, that is whether the herbarium Hn is regular or 
semi-singular or singular. The sequence of these herbaria may be constructed in 
a recurrent way which has apparently an algorithmic character and admits the applica
tion of a computer. 

However, the practical kernel of the problem lies in the fact that the storage and 
the time of the computer must be saved to the highest degree. These demands are not 
satisfied well enough when building up the sequence (2.7). The algorithm we intro
duce in this paragraph is much more economical in both lines. All herbaria recorded 
in the storage are simple and the pollination is applied no more than once to any herb 
whereas the construction of (2.7) possesses none of these two properties. 

Algorithm. Let n be an integer greater than 4. Build up the sequence 

(3A) V3,W3; Vt,WA;...,Vp,Wp 

consisting of pairs of herbaria in the following way: 

1. V3 = 2; W3 = [2] - 2. 
2. Are the herbaria V}, W( (i „ 3) already known, establish ~ [WJ. Is i = n — 2 

or is ~[WJ not regular, put p = i. Otherwise put 

(3.2) Vi+1= -(V, u Wt u " [ W J ) n (V( u W,) 

(3.3) Wi+l = -(V,. u Wt u -[W/J) -Vi+1. 

Then every map consisting of n countries may be regularly stained by at most 
four colours if and only if the herbarium ~[Wp] is regular. 

Before we start proving the assertion stated in this algorithm we introduce two 
lemmas. 
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Lemma 1. Let the following be true for the herbs Rl9 R2> R2; 

1. Rt is regular; 
2. Rt ^ R2; 
3. R2 has originated from R2 by pollination. 

Then a herb R[ exists which has originated from R} by pollination and fulfils 

(3.4) Ri g R'2 . 

Proof. The case Rx — R2 is clear. Further let us assume R1 < R2. The inflores
cences Cu C2, C2 and the integer s exist in such a way that 

R1=|C1|, tf2 = | c 2 | , Q*ClaC29 cl*c2, 

Rf
z = \C2\ , C2 = sC2 , 1 < s = ord C2 + 2 . 

Hence 

0 4= sCx c sC2 , 

since Cx is regular and 

1 < s ^ ord C- + 2 

holds. Denoting Ci = sC1? R; = |Cij we have 

R\ = |ci|, R2 = |c2|, 0 + c; c: c2 

which means (3.4). 

Lemma 2. If the herbarium ~Ht (/ > 1) is regular, then 

S i + 1 = - ( S i u T i u - [ T i ] ) n ( S i u T i ) , 

T + i = - ( S i u T i u - [ T i ] ) - S j + 1 . 

Proof. From (2.16), (2.17), (2.18) it follows that it is sufficient to prove 

(3.5) - (S, .uT, .u-[T, . ] ) = -H,.+ 1 . 

1. Let us assume 

(3.6) R e - ( S . u T , u - [ T f ] Y 

This means that 

(3.7) ReSiuT,u-[Ti] 

and 

(3.8) if R' e S. u Tt u ~[TJ then R' < R is false . 

We seek to show 

(3.9) Re~Hi+1 
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i.e. 

(3.10) 

and 

(3-11) 

From (2.4) it follows 

(3.12) S,uT,u-[rrj<=Hl+. 

which necessitates (3.10). Thus only (3.11) is to be proved. 
First let R' e H( (see (2.19)). Then such an R" e ~H( exists that R" < R'. Assuming 

R' < K we should have 

R" e$t u T , u - [ T J , R" < R 

which contradicts (3.8). 
Secondly let R' e Hi+l - H- so that ind R' = i + 1. Then such a herb R2 exists 

that R' has originated from R2 by pollination and ind R2 < ind K' holds (see (2.5)). 
This means R2 e Ht. There exists a herb R± e "H , fulfilling Rx ̂  R2-

 T m s n e r b is 
regular since Hf is regular. According to lemma 1 a herb R[ exists which has origi
nated from Rt by pollination and fulfils 

(3.13) Ri g K' . 

Now let us make the assumption 

(3.14) R' < R . 

Since Rt e ~Ht we have 

(3.15) either R1 e S, or Rj e T, . 

In the first case ind RA < i and ind R[ ^ i by (2.4), i.e. R[ e H r There exists a herb 
R'oe'Hi fulfilling 

(3.16) R'0 ^ R[ . 

From (3.16), (3.13), (3.14) it follows 

R;eSfuTfu " [ T . ] , R'0 < R 

which contradicts (3.8). Considering the second eventuality in (3.15) we have Ri e [ T j . 
There exists a herb R0e ~[TJ fulfilling R0 <; Ri. Hence 

R^eS^uT. u " [ T J , JRS < R 

which is again a contradiction with (3.8). Thus the assumption (3.14) must be false 
for R' e Hi+1 and consequently (3.11) is valid. In this way 

-(S.uT.u-pTjJc.-H^. 
is proved. 
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The proposition (C3) may be verified by constructing ~H3 , S3, T3. If (U.) is correct 
for a particular i fulfilling 

3 ^ i < p, 

then the herbaria Vi + 1, W i + 1 are defined and (3.2), (3.3) are true. From lemma 2 
and (3.22) it follows 

Sf+i — V;+i - T i + 1 = W i + 1 . 

The herbaria Vi9 W£ are regular by (3.22), ~ [ W j is regular since i =j= p (see point 2 
in the algorithm). According to (3.2), (3.3) the herbaria V i+1, W i + 1 , i.e. the herbaria 
S i + 1 , T i + j are regular and consequently ~Hi+1 is also regular which was to be proved. 

Since (Up) is true, ~Hp is regular, Tp = Wp. By lemma 2 (see (3.5)) we get 

(3-23) - H p + 1 = - ( " H p u - [ W j ) . 

Now let us assume that ~[Wp] is regular. Then p = n — 2 according to point 2 
of the algorithm. By (3.23) ~Hp+1 is regular so that Hp+l is also regular. Thus 
Hp+2 = Hn cannot be singular having in mind what has been said about the sequence 
(2.7) in paragraph 2. This means that every map consisting of n countries may be 
regularly stained by at most four colours. 

Secondly let us assume that ~[Wp] is not regular. Then neither ~Hp+l nor Hp+1 

are regular and therefore they are semi-singular since Hp is regular. By (3.21) p -f 1 < 
< n which means that Hn is singular. Thus in this case it is not possible to staine 
every map consisting of n countries in the required way. The proof is completed. 

As far as the economy of the algorithm is concerned the following is to be pointed 
out. It is clear that all the herbaria recorded in the storage when building up the 
sequence (3.1) are simple. Further if the pollination is applied to a herb K, then JR 
belongs to some Wt (3 rg i ^ p). Denote j the smallest integer for which R e Wj. 
Then ind R = j since Wj = Tj. Consequently R e Ti9 i.e. R e Wf cannot hold for 
any i greater than j . This means that none herb is pollinated more than once during 
the construction of (3.1). 

S o u h r n 

O MOZNOSTI POUZITI SAMOCINNEHO POCITACE 
PRI RESENI PROBLEMU CTYR BAREV 

BORIS GRUBER 

V praci je uveden algoritmus, jimz lze pro kazde pfirozene n zjistit, zda kazdou 
mapu skladajici s e z n zemi je mozno pravidelne obarvit nejvyse ctyfmi barvami. 

Author's address: RNDr. Boris Gruber, CSc, matematicko-fyzikalni fakulta Karlovy university, 
Ke Karlovu 3, Praha 2. 
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