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SVAZEK 16 (1971) APLIKACE MATEMATIKY ClsLo 2

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION
OF THE CAUCHY PROBLEM FOR A CLASS OF LINEAR
INTEGRO-DIFFERENCIAL EQUATIONS

IvaN HLAVACEK

(Received May 29, 1970)

INTRODUCTION

Some problems in the theory of viscoelasticity [1], [2] may be described by means
of integro-differential equations. In the present paper a class of problems is consid-
ered, which includes these physical examples. The weak solution is defined on the
variational basis [3] and its existence, uniqueness and continuous dependence on the
given data proved, using the theory of integral equations of Volterra’s type in Banach
spaces.

Sections 1 and 4 deal with the equations of the first order in time coordinate,
Sections 2 and 5 with equations of the second order. The theory is restricted to the
equations only, possessing the highest spatial derivative by the term with the highest
time derivative. In Section 3 the existence and uniqueness theorem for integral equa-
tions of Volterra’s type in a Banach space is proved.

1. THE PROBLEM OF THE FIRST ORDER AND THE CORRESPONDING
INTEGRAL EQUATION

Let a bounded interval I = <0, T) and a basic Hilbert space H be given, with the
scalar product (u, v) and the norm |u| = (u, v)'/%.
V will denote a Hilbert space with the scalar product ((u, v)) and the norm |uf =

= ((u, w))'".
L,(I, X,) will denote the space of functions u(f), mapping the interval I into a part
X, of a Banach space X, and such that

T
j|ul§dr<w.
V]

Similarly, L,(I x I, X,) is defined.
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#(X,Y)denotes the space of linear continuous mappings of a Hilbert space X into
a Hilbert space Y. Let us denote u'(t) = du/dt and the domain of the operator A
by D,.

Consider the following equation in H

(1) By () + Aolt) ut) + f AL (1, 1) u(z) dr = £(1)
dt 0

and the initial condition
(2) u(0) = u, .

Here B(t), Ao(t), A(t, 7) are linear (in general unbounded) operators in H. Assume
that there exists a Hilbert space V, positive constants ¢, § and operators 2(t)e Z(V, V)
for all t € I, such that

3) Ve H, |u|=clul forevery ueV,

(3) Dy, isdenseinVforall tel,

4) ((B(t) u, v)) = (B(t)u,v) for ueDp,. veV, tel,
(5) (B(t) u, u)) = Bl|u]? for ueV, tel and

(5) ((#(t) u, v)) is bounded on I for any fixed u,veV.

Furthermore, assume that the operators /,(t)e Z(V, V) and #,(t, 1) e L(V, V)
exist for almost all t e I and ¢, T € I, respectively, such that

(6) ((o(t) u, v)) = (Ao(t) u, v)
(7) (o 4(t, ) u, v)) = (A((t, T) u, v),
o (t,7) =0 for t<r1

hold for almost all tel, veV, ue Dy nVand almost all t,tel, ue D, NV,
~ respectively.
Finally, let

(8) Ao(t) € Ly(I; £(V, V).
) ‘ (D) e Ly(I x I; (V. V)

and uy €V, fe Ly(I; H).
Remark 1. In case of differential operators, the above-mentioned conditions
imply that the operators A, and A, may involve only spatial derivatives, the order of

which is bounded from above by the order of the spatial derivatives of the operator B.
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Define

(10) Aot 7) = J "otz ) ds |
(11) Ho(t, 1) = (1) + L,(t, 7).
It is obvious that (1, 7)€ L,(I x I; Z(V,V)). In fact,
(117 [|=,(t. r)H =0 for T>1,

forse 91 = [0 [t de £ 7[ Jorie gl o or s

Definition 1. (Weak solution of the Cauchy problem.) We say that a function u is
a solution of the Cauchy problem P(u, f), if u € Ly(I;V) and

(12) j :((g(r) u(t) + f (:.%’O(t, 2 u(s) dr, (p(t))) di —
-| It [0 65.000) + (@0 . o0 |

holds for every @ € Ly(I; Dy).

Remark 2. Let us suppose the “convolution symmetry” of the operators, occuring
in (1), i.e., let

LT(B(o u(t), ofT = 1) dt = J OT(B(t) o) (T — D) dr,
Jr<Ao(t) u((t) +J”A1(t, 7) u(c) dr, o(T — t)> dt =

0 0
T t
_ f (Ao(r) oft) + J A(t, 7) v(e) dr, (T t)) dar.
0 0
Then (12) means the condition of the stationary value for the functional (see [3])

(13) #(u) = f T{((g(z) u(t) + Jnl:ﬂo(z) (@) + j "5 2) () dz] dr —

0 0 0

— 2 B(0) ug., u(T — t))) -2 (J:f(r) dr, u(T — t))} ,dt,

if we set su(T — 1) = o(1).

Remark 3. The relation (12) follows from (1) formally, if we integrate it with
respect to 1, insert (2), multiply by ¢(1) in H, extend the result with the use of (4), (6),
(7) and integrate over I.
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Example. Some three-dimensional problems of linear viscoelasticity for ageing
isotropic and homogeneous materials ([ 1], [2]) may be described in terms of displace-
ments u(X, 1), (i =1,2,3), X€ Q < E;, tel, by an integro-differential equation

(14) Lu(X, 1) — J lKo(t, 1) Lu(X, ) dt = F(t),

where K(t, 7) is a real continuous function on I x I with continuous 0K (t, 7)/dt, Lu
is a vector-function with the components

3 62
(Lu); = Vu; + (co + 3) Y. L
k=1 0x; 0x;

(where ¢, is a positive constant, V> Laplace operator). For simplicity, we shall consider
the conditions
uft)=0

on the boundary of the (bounded) region Q, for all t € I. Let us set
H=[L(Q], Bt)=L, V=[WQLF, Duy=[2(2)] .

Here 9(Q) denotes the set of functions having continuous derivatives of all orders
and a compact support in Q. W$(€) denotes the closure of 2(2) in the sense of the
norm of W{"Q), i.e.,

3 a 2
Iulfyz(t)(g) = J‘ [u2 + Z (—u—) ]dX .
ol i=1 \0x;

Extending the product (Lu, v) according to (4), we derive

3
((Bu, v)) = Y uy + (co + %) u; | vy dx ,
o ik=1]0x; 0x, | 0x;

i

where

(o= ¥ e %ar

o k=1 0X; 0x;

Consequently, & is defined by means of

0 Ju ou;
‘(; (.@u)k = 7—" + (CO + :17) —_ .
Evidently, # € £(V, V), because

|#]* < 2 max [1, (¢ + 4)’]
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and the inequality (5) holds. In fact, the operator # corresponds with that of isotropic
elasticity with the Poisson’s ratio

v=1— (2 + 7).

Consequently, —1 < v < 4 for ¢, > 0 and the quadratic form of the strain energy in
terms of strain tensor components is positive definite. Then (5) follows from so called
KoRN’s inequality (see [4], [5]). The operators 4, and A, are defined by means of

)
Ao(t) = —Ko(t, ) L, Ay(t,7) = — ;—Ko(r, 7L
t

as follows from (14) by differentiation with respect to t and by comparison with (1).
Then (8) and (9) can be verified for

Aofl) = — Ko(t.0) B, Ay(1.7) = — (% Ko(t.7) 3.

Suppose u, € [W5(Q)]?, fe Ly(I: [L,(?)]?) are given and
F(i) J' (o) dr.

The solution of the Cauchy problem 2(uq, f) is any function u e L,(I; [W$"(@)]%),
satisfying (according to (12)) the relation

(48 [58te030fof

+(co + )au(‘c)] }—a—q’"—(t)dxm:

Xi

.[_H ) ed?) +,k;(a O'lk + (o + ) 6::1) a(g’)‘c(t)}dxm

for every ¢ € L,(I; [2(Q)]%).
In accordance with Definition 1, we shall ‘consider the integral equation

(15) B(t) u(t) + j # o, 7) u(t) dr = G(1),

in L,(I; V), where G() € V is defined by means of the relation
t

(1) (60 0) = (@00 0) + ([ 70 4 0)
0

for every peV, tel.
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Note that the norms ”.QZ(t)n are bounded on I. This may be concluded on the base
of (5’) (see Lemma 1 in [6]). Hence we can prove easily, that G(t) e L,(I; V). In fact,

001 = il + 7 [ )"

, consequently

where 4, is the upper bound of [ %(r)

(16) (e ar < 2wl + 77 g ar).

2. THE PROBLEM OF THE SECOND ORDER AND THE CORRESPONDING
INTEGRAL EQUATION

Consider the equation

(1) 3 (COVO) + B ) + [ B9 ) o +

0

+ Aot u(t) + f Au(t, 7) u(z) de = £(1)

0

in H and the initial conditions
(18) u(O) =u,, u'(0)=rv,.

Here Ay(t), A(t, ©), Bo(t), By(t, t) and C(¢) are linear operators in H. Assume that
three Hilbert spaces V, Vg, Vi = H, positive constants «, f, y, ¢, and operators

(1), B(t), (1) exist such that

(19) lula = 3ul Juls = Blu], [ulc = el

(20)  ((Ho(1) u, v))4 = (Ao(t) u,v) for ue Dy <=Vy, vEV,, tel,
((Bo(t) u, v))s = (Bo(t) u, v) for ueDpy = Vg, vEVy, tel,
(6w e)e = (CO)uo) for weDey =Ve veVe, rel.

(21) Ao()e LWV Va). Bo(t)e LV Vi), (1) LV, V),

(22) ((€()u, u))c = ¢(|ul|é for tel, ueV and

((4(t) u, v))c is bounded on I for every fixed u,vel, .
Suppose that
(23) V=ViaVyaVe
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is not empty nor restricted to zero element only. Let us define the norm in V by

lul* = JulZ + ulz + lule
and suppose that

(24) lul = efullc.

The latter inequality implies, in case of differential operators, that the operator C
contains the spatial derivatives of the maximal order in the equation (17).

Choosing a fixed u eV,
9(v) = ((Ho(t) u, v))4
is a continuous functional on V, because
|((o(8) ws 0)a] < [ Lo(®)] ] [lo] -

Therefore an operator (1) € Z(V, V) exists, such that

((o(t) u, v))4 = (Hoo(t) u,v)) for u,veV,

where

Ifaa) ] = sup [(8o0) . Dl = |4o)] ]
consequently
(25) I 0o < o)) -

In the same way, we define the operators %,o(f) € L(V,V) and %yo(t) € L(V,V)
on the base of operators %,(t) and %(t), respectively.

Furthermore, let us assume that operators «,(t,7)e Z(V,V) and %,(1,7)e
€ Z(V, V) exist for almost all ¢, T € I, such that

(26) ((.ﬂ,(r, ‘L') u, v)) = (Al(t, r) u, v) s
((B(1, T) u, v)) = (By(t, 1) u, v)

holds for almostallt,tel,t = t,veV,ue Dy, Vand ue Dg, ., NV, respect-
ively, o,(t,7) = #B,(t,7) = @ for t < 7. |
Let

(27) A (1) e Ly(I; L(Va Vy)), Bo(t) € Ly(1; L(Va, Vi) -
Then by virtue of (25) and an analogous inequality I
oo(t), Boo(t) € Lo(I; L(V, V).

The norms ||%,(t)| are bounded on I. This follows from (21), (22) and an analogue
of (25) (see Lemma 1 in [6]).
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Moreover, let
(28) ot\(t,7), B(t,7)eLy(I x I; Z(V,V)).

ug. vo€V, feLy(I; H).
Define

t
o1, T) =J‘Jf00(2) dz for t21, Ao(t,7)=06 for t<rt,

T

At 7) = J' '

T

t
ot ((z,7)dz, B,(t,7) = J By(z, 7)dz,

T

oAyt 1) = J : q}w’l(:, 5) ds> dz.

Setting .
Hot, 1) = Boo(t) + By, T) + Loy(t, 1) + AL5(1, 7)),

we obtain

(29) Ho(t, ) e Ly(I x I; L(V,V)).

This can be proved, using the following inequalities together with (25), (27) and (28)

J o v 7 oo

f:j:"ﬂm(t, 7)|? dede < J‘OTJ-OT (I:Hdoo(z)n dz)zdt de < T3J:”d0(z)“z dz.

lorse 9l = [ ([T 9 as)az ] s 72 [ [ posce o .

B,(1, 7) is quite analogous to o7,(t, 7) in (10), therefore we have an analogue to (11°).

Definition 2. (Weak solution of the Cauchy problem.) Let D(I) denote the linear
_ manifold of functions ¢ € Ly(I; V), for which ¢' € Ly(I; V), ¢(T) = ©. We say that
" a function u is a solution of the Cauchy problem P(ug, vy, f), if ue L,(I; V), u' €
€ Ly(I; V), u(0) = u, and

(30) 'f T((%,o(z) w(t) + f o'.xfo(t, D (@) ds, (p(;)» at

0

- J:{((%OO(O) Do — A o(t,0) g — J ;dz(t, 7) g dr, (p(t))) + (J:f(r) dr, (p(t))} di

holds for every ¢ € D(I).
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Remark 4. Let the operators be ‘“symmetric in convolutions” in the following

sense
T

JT(C(z) u(t), o T — 1)) di = j (C(t) o(t), (T — 1) dt ,
g j (COue) ol = ) dely = j (€0, u( = ) delcs.
J”<Bo(r) u(t) + JIB,(L z)u(z)dz, o(t — r)) dr =

=O£<BO(I) ot) + };BI(T, 2 oz)dz. u(t - z)) d

for any tel and let an analogous equation hold for Ay(f) and A,(t, t). Then (30)
means the condition of the stationary value of the functional ([3])

F(u) = J‘ :{«%O(t) w(t) + j '(goo(r)uf(z) + f “B.(, 2) w(z) dz) dr +

0 0

# [[(ootd ) + [ 200 dz)de =2 60(0) s -

0 0

— Booft) o — J "Bt 7) o d, u(T — t)>) - z( f (:f(z) de, u(T — z))} dt —

0

- ((“0’ %OO(T) “(T))) >

if we insert

(31) (i) = o + j w(e)de

0

and set su(T — t) = (1).

Remark 5. The relation (30) follows from (17) formally, if we integrate it on (0, ?)
with respect to t, insert (31), multiply by ¢ in H, extend the result with the use of
(20), (26) and integrate over I.

In accordance with Definition 2, we shall consider the integral equation

(32) Goolt) (t) + f O'Jifo(t, o) w(x) dr = G(1)

in L,(I; V), where G(t) € Vis defined by means of the relation

(32)
t t

((G(1), 9)) = (<‘€00(0) vo — o4(t,0) uy — J o ,(t, 7) ug dr, (p)) + (f f(r) dr, (p)
0 0
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for every ¢ e Vand t € I. We can prove easily, that G(f) € L,(I; V). In fact, the norms
[€00(?)| are bounded on I, therefore

[€00(0) vo|| < Cylvg| . €, = const.

Further, using (25) and (27), we derive
T 1/2
oot 0) ol 5 ol ([ 10l a)
0

and similarly, with the use of (11’) and (28), we obtain

| = ol 7([[ [t ar ) ™

I 0J0

t
f o 5(1, 1) ug dt
0

Altogether, we have

() immnécm%W+ww[rm(ﬁﬁﬂdMVm)”+

. T( [ j :Hm(z, I dt dr)uz] b ( LT; 10 dt)”z,

¢ = (o2 + B2 + 922,

consequently G(t) is bounded and therefore square-integrable on 1.

3. INTEGRAL EQUATION OF VOLTERRA’S TYPE IN L,(/, V)

The main object of this section is the following

Theorem 1. Let K(t, 7)€ Ly(I x I; £(V.V)), F(t)e Ly(I; V). Then the integral
equation

\ t
(34) u() - .[ K(t, ©) U(x) dr = F(1)
0
has precisely one solution U € Ly(I; V). This solution is determined by the formula
t
(35) u(t) = F(i) - J (1, ) F(z) dt ,
0

where the resolvent kernel

9(t,1) e L,(I x I, 2(V, V))
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is given by the series of iterated kernels
(36) .@(t, ‘c) = - Z K,,(t, 1:) s
n=1

Ki(t,7) = K(t,7), Kuq(t,7) = J”K(t, z)K,(z, 1) dz,

T

(n=12..,151),

which converges almost everywhere on I x I. Moreover, it holds

o0 [woras2 (e [ ] oo e Crop o

Proof. The Fubini’s theorem yields the existence of functions
T T
(9= [ Ikl az, p0) = [ 1K ) e
0 0

for almost all xeI and y el, respectively, where a(x)e L,y(I), B(y) € L,(I). Let us
set

(39) J:Q«x)dx==f:p«y)dy:=J:]:ﬂxo,ﬂn2dtdr==N2.

We have the following estimates
(39) IKa(x, 9)[* = a?(x) B(y)

X [Kalx, DI £ o2 B0) by 9) . (n = 1,2,..)

hy(x,y) = fxaz(z) dz, hye(x,p) = Ixaz(z) h(z,y)dz, (y £x).

y

The formula
1
(40) h(x,y) = ” hi(x,y), (n=1,2,..)

can be derived by induction and from (38)

0= hl(x’ y) < N?
follows. Then

h,(x, y) < l N2n
n!

holds and inserting into (39), we obtain
[Kns2(x, )| < afx) B(y) N"/\/n! , (n=0,1,2,..).
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Consequently
@) TIK A= K] ol ) XN = Mt

holds for every finite m. The latter infinite series converges for any N, so that M(t, 7) €
€ L,(I x I). Consequently, the series of norms (41) converges for m — oo almost
everywhere on I x I. Hence the series (36) converges almost everywhere to %(t, 1) €
e £V, V).

From the Lebesgue theorem ([7], 111.6.16) it follows that

lim JT Tu fK"(t, 1) — %(t,7)|*dtdr = 0

m- oo 0Jo n=1
and
Y(t,1)e Ly(I x I; £(V,V))
(if we define simply .#(t, ©) € £(V, V) as the usual multiplication of u by M(, 7)).
Next we shall derive the relation

42) K(t,7) + 9(t,7) = J' 'K(t, 2) 9(z, 1) d=

T

for almost every ¢ eI and 7 e I. In fact, choosing 7, such that B(t,) < oo, M(t, 7o) is
a majorant for the series

P LYCAS]

and belongs to L,(I). Consequently,

Y K (t 1) = —9(t, 1)
n=1

in L,(I; #(V,V)) again by virtue of the Lebesgue theorem. Therefore we may write
almost everywhere

m-— o n

t t m
'[ K(t, 2) 9(z, 1) dz = — lim K(t, 2) Kz, 70) dz =
. =1

0 To

= —lim Y K, (t, 1) = K(t, 70) — Y. K, (1, 70) = K(t, 7o) + 9(1, 7o),
1 n=1

m—o n=

that is (42). Now inserting (35) into the left-hand side of (34), we obtain

F(f) — J 9, ©) F(z) dr — f K(t, <) [F(r) - j (s, 2) F(z) dz] dr =

0 0 0

— F() - J ;[?(t, 9 + K(t, 7] F(x) de + L’df j K(t, 7) 9(x, =) F(z) ds .
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Applying the Fubini theorem ([7] 111.11.9) to the last integral, we obtain

J;dt j‘K(z, 1) %(t,z) F(z) dz = J dz L'K(r, 0) %(x, 2) F(2) d

0 0

_ L( j :K(t, 2) 9z, 7) dz> F(z) de .

Consequently, making use of (42), we can verify that (35) satisfies the equation (34)
almost everywhere in I. The inequality (37) follows from (35), if we realize that

U@ < 2|FQ))? + 2 j s 97 de j ()] ar

0 0

Il

and use the properties of F(t) and (1, 7).

It remains to prove the uniqueness of the solution of (34) in L,(I; V). Suppose

that v(t) e L,(I,V) satisfies the homogeneous equation (34) with F(f) = ©, and
denote

ORI

Using the Schwartz-Cauchy inequality, we obtain successively

O 720, 0l < 20 [ e a .

[o()]> < v? a®(1) h(1,0), (n=1,2,..).
From (38) and (40) it follows that

h,(t,0) = ;11—' ny(t, 0) = l'[j (1) d'c] < N*"[n!,

n! 0
consequently

ruu(t)\v dr < (nt)~" v2N2" j "2 (i) dt < Nt

0 0

As the last term converges to zero for n — oo, v = O in L,(I, V).

\

4. EXISTENCE AND UNIQUENESS THEOREM FOR THE PROBLEM
OF THE FIRST ORDER

We shall need the auxiliary

Lemma 1. There exists the inverse operator B~ '(t)e £(V,V) for tel and the
norms |2~ '(t)| are bounded on I. .
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Proof. Let w e V be an arbitrary element and ¢ € I. The bilinear form ((#(1) u, v))
and the linear functional ((w, v)) satisfy all the assumptions of the Lax-Milgram theo-
rem in ¥, consequently there exists precisely one element u € V such that

((B(1) u, ) = ((w. v))

for every v e V. Therefore #(t) u = w. Making use of (5), we obtain

Blull = [#@) ul .
which yields
a8~ (0wl < B~ W],
so that

(43) |2~ ()] =B~ forall tel.

Theorem 2. Let (3) till (9) hold. Then there exists one and only one solution u
of the problem P(u,, f) and it holds

(4) jﬁWWm§(wW+ﬂmwm)

Proof. Existence. Let us consider the equation (15) and apply the operator 27 '(t)
to it. Using Lemma 1, we obtain

(45) u(f) — J (e, ) u(r) de = F(1),

where )

(46) H(t,1) = =B (1) Ho(t, 1) e L(I x I; £(V,V)),
F(1) = #7'(1) G(t) e L(I; V).

Consequently, we may apply Theorem 1 to obtain a solution u € L,(I, V) of (45).
Then u is a solution of the problem 2(u,, f). In fact, applying (1) to (45), multiplying
the result by ¢ in V, inserting (15) and integrating over I, we derive (12).

Uniqueness. First we shall prove the following

Lemma 2. L,(I; Dy,) is dense in L,(I; V).

Proof. The set €, of continuous mappings w(t) of I into V is dense in L,(I,V)
(see e.g. Lemma IV.8.19 in [7]), therefore it suffices to prove the density of L,(I; Dip,,)
in %,. Choose an arbitrary tel and we %,. As w(t)eV and Dg,) is dense in V,
a sequence {v,(t)} = Dp, exists such that

tim o) < ()] = 0, o] £ 2w, n=1.2,..
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Define in this way a sequence of functions v,(r) € Ly(I; Dp()- As the function 2w e
e L,(I, V) represents a majorant of the sequence {v,(t)} and v,(t) converge every-
where in I to w(t), we may apply the Lebesgue theorem to obtain

tim [ = 70 = o

and the proof is complete.
Next let u € L,(I; V) satisfy the equation

[0+ [ tersoa s

for every ¢ € L,(I; Dyy). By virtue of Lemma 2, we have
t
B(1) u(t) + f Hoft, ) u(z) dr = ©
0

Applying also the inverse operator 4~ !(t) and Lemma 1, we are led to the equation
(45) with F(t) = ©; hence

[ horea < o

according to (37), and the uniqueness of solution is proved.
It remains to prove the inequality (44). From Theorem 1, (37), (46), (43) and (16)
it follows that

fOT[]u(t)]lzdt < 2(1 +forfor|1g(z, 7)|? dtdr)ﬂ"l 2T(3~£”u0”2 + Tc‘zf:]f(t)lz dt),

which is of the form (44).

5. EXISTENCE AND UNIQUENESS THEOREM FOR THE PROBLEM
OF THE SECOND ORDER

\

In the present section we shall prove the following

Theorem 3. Let (19) till (24), (26), (27) and (28) hold. Then there exists one and
only one solution u of the problem P(ug, vo, f) and

(48) L(Hu(')llz + Juw()]?) dt = C(IluolV + [oo]* + 'r If(t)lzdt)
holds. ' v
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Proof. Existence. There exists the inverse operator €4, (1) € Z(V, V) for any tel
and

(49) €50 ()] < ¢i' for tel.

This follows from (21) and (22) in a way similar to the proof of Lemma 1. Let us
consider the equation (32) and apply the operator %, (1) to it, We obtain the equation

(50) u'(r) — f'(zf(:, t)u'(r)dr = F(1),

where O

(51) H(1,71) = —Co0 (1) Ho(t, 1) € Ly(I x I; L(V, V),
(52) F(t) = @40 (1) G(1) € Ly(I; V) .

By virtue of Theorem 1, a solution u’ € L,(1, V) of (50) exists. Setting

(53) | u(t) = ug + J W@ de

1]

we obtain u € Ly(I; V), u(0) = u,. Then u is a solution of the problem 2(u,, vy, f).
In fact, applying %0(1) to (50), multiplying the result by ¢ € D(I) in V, inserting (32')
and integrating over I, we derive (30).

Uniqueness. First we shall prove the following

Lemma 3. The linear manifold D(I) is dense in Ly(1; V).

Proof. As the set €, of continuous mappings v(t) of I into Vis dense in L,(I; V),
it will suffice to prove the density of D(I) in %,. Let v € %, and let the real functions
9,(1), (n = 1,2, ...), be defined as follows

3()=1 for 0<t<T-2/n,
$,()=n(T—1n—1) for T—2n<t<T— In,
9()=0 for T—1/n<t<T.

Then the products v,(t) = 9,(t) ve %, and

(54) ﬂuvm ()] < j C a0

T—2/n

for n - co. Let us extend v,(1) continuously on the interval I, = (=6, T + ) for
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ad > 0, so that
0()=0 for T—1n<t<T+3J,

denoting the extension of v,(t) by 5,(f). Let us regularize 5, by means of the function
x2
B Y <,
o(x) = P <x2 - h2> or ¥ <

0 for |x| = h,

that is, we introduce

1 T+6
Uu(t) = ;J' wyt — 1) o,(r)dr for tel, h<3d,
®

—é

where
1
P =f o(x) dx .
-1
From there
t+h
(55) f oyt — 1)dt = hx
t—h

follows. Then

hm anh(t) = En(t)
h—0

uniformly on I. In fact, using (55), we may write (for 1 e1)

<

I R I G IL RO

|

l t+h
< _f [52) — 5.(0)]| wn(t — 7) de.
hx J -
To any ¢ > 0, we can find h > 0, such that

(57) [.(e) = a.(0]] <&

holds for any pair of t, tel,, satisfying |t — t| < h. Inserting (57) into (56). we
obtain the uniform convergence, which implies

(8) lim ﬁanh(t) (P di = 0.

Obviously #,(T) = O for all n > 1/5, h < 1/n. Further, ,,(t) and o,,(t) belong to %,
as a consequence of the uniform continuity of w,(f) and dw,(t)/dt on any compact
interval. Hence #,, U,, belong to L,(I; V), if we restrict them again to the interval I.
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Hence ,, € D(I). Finally, from (54) and (58), we obtain

jr\\ﬁ,,h(t") — o(r)|*dt >0

for n > oo, h < [/n, and the Lemma is proved.
Next let u, u’ € L,(I; V) satisfy the equations

u0) = 0,

J :((%O(l) w(t) + ﬂf oft, 1) w'(z) dr, <p(t)>) dt =0

for every ¢ e D(I). By virtue of Lemma 3, we have
t
Goolt) (1) + J Hoft, ) u'(7) de = ©
0

and applying the inverse operator %, (1), we are led to the equation (50) with F(t)
= @, consequently

I

[ ac—o

according to (37). Then we have also

[ [foon

In order to prove the inequality (48), we use (37), (52) and (33). Thus we obtain

- (59) J:“:;’(t)“z dr <2 (1 + jqj‘rug(t, 7)|? dt dt> Tey?.

0J 0

'{C‘HUOH + o] [TA”Z (j:”ﬂo(‘)“z dt)”2 + T(J‘Tj\:”dl(t’ 7)) dt dr)m] +

“ai < J':z dtJ.:“u’(t)"z dt = 0.

0

+ IR (j':‘lf(‘)lz dt)l/z}z.

Finally, a similar inequality follows for u() from (53). Adding the latter to (59), we
obtain (48).
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Souhrn

EXISTENCE A JEDNOZNACNOST RESENI CACHYOVY ULOHY
PRO JEDNU TRIDU LINEARNICH
INTEGRO-DIFERENCIALNICH ROVNIC

IvAN HLAVACEK

V teorii vazkopruZnosti se vyskytuji ulohy, které lze popsat integro-diferencialnimi
rovnicemi s pocate¢nimi podminkami. Cilem tohoto ¢lanku je dokazat korektnost
variaéni formulace jisté tfidy uloh, zahrnujici zminéné fyzikalni ptiklady. Teorie se

omezuje na rovnice, které maji nejvyssi derivace podle prostorovych soufadnic u ¢lenu
s nejvyssi derivaci podle ¢asu.

Author’s address: Ing. Ivan Hlavdéek, CSc., Matematicky tstav CSAV v Praze, Zitna 25,
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