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SVAZEK 17 (1972) APLIKACE MATEMATIKY ČÍSLO 6 

RANK TEST O F HYPOTHESIS O F RANDOMNESS AGAINST A GROUP 
O F REGRESSION ALTERNATIVES1 

NGUYEN-VAN-HUU 

(Received September 6, 1971) 

1. SUMMARY 

In this work the problem of testing the hypothesis of randomness against a group 
of alternatives of regression in a parameter involved in the distributions of random 
observations is investigated and a rank test for this problem is suggested. This 
problem is a generalization of the problem of detecting a shift in a location para
meter of a distribution occurring at an unknown time point between consecutively 
taken observations. The latter problem was considered and a rank test for it was 
proposed by Bhattacharyya and Johnson (1968). The rank test in this work is shown 
to be locally average most powerful within the class of all possible rank tests in the 
sense of the definition in Section 3 below. The asymptotic normality of the rank 
test statistic and the asymptotic efficiency of the rank test are shown not only for the 
case of location and scale parameters but for the case of a general parameter. 

The parametric test for a similar problem for the density of a one-parameter 
exponential family and a rank decision rule for a combined problem of testing and 
classification will appear in subsequent papers. 

2. INTRODUCTION 

Throughout this paper let Xt,...,XN be independent observations which are 
supposed to have absolutely continuous distribution functions with densities fx(x), ... 
...,fN(x) with respect to Lebesgue measure. 

Let H0 be the hypothesis under which 

(1) fi(x) = . . . = f v ( x ) = / ( x ) 

where f(x) is an element of a certain family fF of density functions. 

x) This article is a part of author's thesis prepared during his stay in the Mathematical Institute 
of the Czechoslovak Academy of Sciences. 
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Let Km, m = 1, ..., s, be the alternative under which 

(2) A(x) = f(x, ACml),.. .,fN(x) = f(x, ACmN) 

where f(x, 0) = f(x); Cmj- are the so-called regression constants, A is an unknown 
parameter. Then Km is called the regression alternative. 

It is required to test H0 against Ku ..., Ks. A special case of this problem where 
f(x, 6) = f(x - 0) and 

(3) C =: 0, 1 if m ^ j , m < 7 , respectively, 

was investigated by Bhattacharyya and Johnson in [1] . 

The other special cases of this problem are as follows: 

Putting 

(4) Q = l , Ctj = 0 for i * 7 , f,j = l , . . . , N 

we obtain the problem of slippage in a parameter. 

Putting in (2) 

(5) Cmj = 0 or (j - N + m)/m 

if 7 ^ N — m or 7 ^ N — m + 1 , respectively , 

for m = 1 ,..., s (s ^ N — 1) 

we obtain the growth problem (I) where the alternatives Km, m = 1,..., s, express 
the fact that the parameter remains unchanged until the time point k = N — m 
and then it grows linearly up to the value A so that the rates of growth are different 
for different alternatives (see Figure 1 with s = 3, N = 6). 
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Similarly, putting in (2) 

A ! 
/ i 1 

- 1 ti.—I 1 1 »j». 
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Fig. 1. 

(6) c - 0 or 7 - N + m 

if j ^ N — m or j ^ N — m + 1 , respectively, 

for m = 1, .. . , s (s <; N - 1) , 

then we obtain the growth problem (II) where the alternatives Km corresponding 
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to the regression constants (6) express the fact that the parameter remains unchanged 

until the time point k = N — m and then it grows linearly up to the value s at the 

same rate of growth for all alternatives (see Figure 2 with s = 3, N = 6). 

The problem of testing hypotheses of changes in parameters — a special case 

of the above problem with the regression constants given by (3) — was investigated 
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Fig. 2. 

by Page [9], [10], Chernoff and Zacks [2] for the mean of normal distribution and 

by Kander and Zacks [6] for the parameter of the one-parameter exponential family. 

The tests suggested by these authors are based directly on observations and not 

on ranks. Bhattacharyya and Johnson are the first who proposed a test based on ranks. 

3. RANK TESTS 

1. Notations. 

Let us denote the ordered sample from Xl9 ...9XN by X(1) < X(2) < .. . < X(N) 

and the ranks of Xl9 ...9XN by Rl9...9RN. 

Put X^ = (X^\...,X^)9 R = (R19...9RN) and let x(#> = (x ( 1 ), ..., xm), 

r = (rl9 ..., rN) be a realization of X(,) and R9 respectively. 

Let U be the uniformly distributed random variable on (0, 1) and U(,) = (U ( 1 ),... 

..., U(N)) the ordered sample from the observations Ul9..., UN on U . E0 denotes 

the expectation under H0. 

2. Locally average most powerful LAMP rank test of H0 against Kl5..., Ks 

Let Tbe any test of H0 against Kl9...9Ks and fiT its power function under Km . fiT 

depends on A and m, i.e. fiT = PT(A9 m). 

Put 

(7) 
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fiT(A, p) is called the average power function of the test Twith respect to the weights 
s 

Pi,..., Ps where pm ^ 0, £ Pm = 1. 
m = l 

It is required to find a test which maximizes /?r(A, p) within the class of all possible 
tests for each fixed p = (p l 9 ..., ps) and for all A. In general such a test does not 
exist. Let us confine ourselves to a narrower class — the class of all rank tests. 

Definition. The a-level test T* possessing the property that there exists an e > 0 
such that T* maximizes fiT(A, p) within the class of all a-level tests for allO < A 51 s 
is called the locally average most powerful test with respect to the weights p1, ..., ps. 

Theorem 1. Assume that f(x, 0) involved in (2) has the following properties: 
(Aj) For each x,f(x, 6) is absolutely continuous in 0 e J, where J is an open interval 
containing the point 0 and 

lim[f(x,6)~f(x)]le=f(x,0) 
6>~>0 

/*00 /»00 

(A2) lim | / ( x , 0 ) | d x = / ( x , 0 ) | d x 
^ - O j - o o J -oo 

holds wheref(x, 0) denotes the partial derivative of f(x, 6) in 6. 

Then the test with the rejection region 

(8) Tv,P(R) > Ca 

where 

(9) TNiP(r) = J] Ck(p) E0[f(X^\ 0)lf(X^>)] 
k=l 

with 

(10) Ck(p) = f CmkPm 
m = l 

is the LAMP rank test at the level a within the class of all a-level tests depending 
only on R for testing H0 against Kl9 ...,KS. 

Proof . Let 

(11) qAm(x) = ilf(xj,ACmj) 
1=i 

be the joint density of Xl9 ..., XN under Km and put 

s 

(12 ) qA(x) = YaPm^rJ^)' 
m=l 
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Let QA(.)* QAm(.)bQ ^ e probability measures with respect to the densities q^and 
qAm. Consider the problem of testing H0 against a simple alternative qA with A fixed. 
According to Neyman-Pearson's Lemma (see [7]) the most powerful rank test at 
the level a for testing HQ against qA is given by the critical function 

(13) ФЛ(Г) = i , y ,o if ô,{R = г}>, = , < c ; 

respectively, since the vector R is, under H0, uniformly distributed. Hereafter <P(r) 

denotes the probability of rejecting H0 when r is a realization of R. The constants 

Ca and y are defined so that the test has the significance level a. Let <P\r) be the 

critical function of any rank test. Then the power function of <P'(r) under qA is 

given by: 

(14) 2 > ' ( r ) QA{R = r} = Y > m £ * ' ( r ) QAm{R = r) 
r m = l r 

s 

= T PmPAA' m) = M 4 . P) 

where P^(A9 m) denotes the power of $' under gJm and the summation in r is over 
all possible permutations of {1, 2, . . . , N } . Consequently 

(15) M*,P)*P*'(A>P)-

Let us calculate QA{R = r}. We have 

(iб) QA{R = r] -

*{R = r} 

n/(x,j dxt + íp„ 
N 

п 
î = l 

[ПЛ^^)-ПЛ^)]x 
i = l i = l 

s N Ѓ Г 

dx, ... dx* = 1/N! + X pm £ . . . LД**, ДCmk) - f(xk)] x 
m=l fc^lj J 

{ R = r} 

fc-1 s N 

П ffa) П / ( * * ACmò àx, ...dxN = 1/ІV! + Ę Z CWfcPmgWfc(-4) 

{R = r} {R = r} 

N 

E 
i = fc+i 

where 

(17) amfc(J) = í... ľ[/(xъ Jc™*) -/(**)] ( ^ ) " 1 

{K = r} 

ПД i.-^dXl-d)t*' 
j=fc+i i = i 
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In view of the conditions of Theorem 1 we obtain: 

(18) 

(19) 

limf(xi9 ACmi) =f(xt), 
A-+0 

lim [f(xk, ACmk) - f(xkf\JACmk = f(xk, 0), 
A->0 

/»00 /*oo 

(20) lim sup ... \f(xk, ACmk) - f(xk)\ \ňCmk\-x 

--° J-OoJ-00 

x li f(xf)Y\f(xi,ACm^áxí...áxN 
i=k+í ; = i 

lim sup 
A->o 

lim sup 
A->o 

\f(xk, ACmk) - f(xk)\ \ACmk\ * dxk = 
0 

» I f*ACmh 

f(x,e)dO\\ACmk\-
1dx£ 

- co I J 0 

[\ACmk\ / poo \ /»co 

lim sup -——- \f(x, 6)\ dx \d0 = |/(x, 0)| dx, by (A2) . 
P ^ m f c l J o V J - o o / J -co 

It follows from (17)-(20) and Theorem II. 4.2 in [3] that 

(21) lim gjA) = f... f [f(xk, 0)//(xk)] fj[ f(xt) dx, = 

-4-0 J J i = l 
{R = r} 

= E0{[f(Xk, 0)jf(Xk)]\R = r} P{R = r} = 

= (1/N!)F0[/(Z<->,0)//(Z<-))] 
since/(x, 9) _ 0 for all 6 and in view of the condition (Ax),f(xk) = 0 implies/^, 0) = 
= 0 a.e., therefore the first equality in (20) holds; the last equality in (20) follows 
from the independence of K<"> on R (see Theorem II. 1.2. a in [3]). 

It follows from (21) and (16) that 

lim[ß,{R = r}- ljmЦA = (íІNђj:cк(p)E0{f(X^\0)lf(X^)} = 
A->0 

N 

E 
к=i 

(l/JV!) TNtP(r) . 

Consequently, there exists an e > 0 such that QA{R = r} is a strictly increasing 
function of TNp for all 0 < A ^ e and hence there is a constant Ca such that (13) 
may be written in the form 

<£>(r) = 1, y, 0 if TNtP(r) > , = > <C« respectively. 

The function does not depend on A e (0, e]. Q.E.D. 

427 



Corollary 1. Suppose that f(x, 6) = f(x - 0), i.e. 0 is a location parameter and 
that 

(Aj) f(x) is absolutely continuous, 

r*ao 

(Ai) | T ( * ) | d 
J - 00 

x < C0 

where f'(x) denotes the almost everywhere derivative of f(x). Then for testing H0 

against Ku ..., Ks there exists an a-level rank test defined by the rejection region 

(22) T£>(R)>C. 

where 

(23) T£>(r) = £ Q(p) E0[-/'(X<->)//(X<'<<>)] . 
* = 1 

The test is LAMP within the class of all one-sided rank tests at the level a. 

Proof . It is easy to see that the conditions (Ax), (A2) of Theorem 1 are fulfilled 
provided (Ai), (A2) are satisfied, hence Corollary 1 follows from Theorem 1. 

R e m a r k 1. If the regression constants Cmj assume the form (3) with s = N — 1 
then we obtain from Corollary 1 the test given by (22) with 

(24) T£>(r) = £ ? „ - , E0l-f'(X^)lf(X^)-] 
N 

__ 
k = 2 

where Pk = J] pm are the cumulative weights. This test was suggested by Bhatta-
m = l 

charyya and Johnson in [1]. 

Corollary 2. Suppose that f(x, 9) = exp( — 6)f((x — n) exp( — 6)) where n is 
a nuisance parameter, 6 in an unknown scale parameter and that 

(A'i) f(x) is absolutely continuous, 

(лi) г. |xf r(x)| dx < co 

Then the test given by the rejection region 

(25) TJfflR) > C. 

where 

(26) T<f>(r) = i Ck(p) £ 0 [ - l - X^f'(X^)lf(X^)] 
fc=l 

is the LAMP rank test for testing H0 against Kl9 . . . ,KS . 
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Proof . We observe that, under H0, fx(x) = ... = fN(x) = f(x - rj) and from 
(Ax), (A£) we obtain 

f(x9 0) = - / [ ( x - rj) exp ( - 0 ) ] exp ( - 0 ) - (x - n)f'[(x - rj) . 

. e x p ( - 0 ) ] e x p ( - 2 0 ) 

hence 

Г 
* 0 0 /*oo 

\f(x, 0)1 dx = |/(x - f/) + (x - -,)/'(» - n)\ dx _ |/(x, 0)1 dx š 
J — a) J — oo 

/*oo /*oo /*oo 

g / ( x ) d x + |x / ' (x) jdx = 1 + \xf'(x)\ 
J — oo J — oo J — 00 

dx < oo . 

Thus the conditions (Ax), (A2) of Theorem 1 are fulfilled. Consequently, we obtain 
from Theorem 1 a LAMP rank test defined by the rejection region TNp(R) > Cx 

where 
N 

I 
*c = i 

TNJLГ) = - c,(p)£0*{[-ДX^> - ч) - рт _ -.)/'(*<•-> - I J Ш X ^ - f/)} 

fc=l 

ľ * with E0, E0 denoting the expectation under the hypothesis that the common density 
is f(x — rj) and f(x)9 respectively. 

R e m a r k 2. Let F(x) be the distribution function with respect to the density/(x) 
and let 

F~ V ) - inf {x : F(x) ^ u) , 0 < u < 1 , 

(27) <p(u9f)=f(F-\u)90)lf(F-\u))9 

(28) aN(i9f) = Ecp(U^\f)9 i = 1,2,...,N . 

Then 

(29) Ťvp(R) = X ; a „ ( « ь f ) Q ( p ) I 
fc=l 

(see expression (3) of II. 4.3 in [3]). cp(u9f) is called the score function, and aN(i9f) 

are called the scores. 

3. Locally average most powerful rank tests of the hypothesis of randomness with 
a symmetric distribution 

Consider the hypothesis H* under which the densities of Xl9 ...9XN satisfy 

(30) / . (*) = ... = fN(x) = f(x) with f(x) = f(~x) 
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and consider the alternative K*, m = 1, 2 , . . . , s, under which 

(31) / . (x) = / ( x , <4Cml), • • .,fN(x) = / ( x , ACmN) 

with f(x, 0) = f(x), Cm/s known, A being an unknown parameter. 
Let |X | ( 1 ) < . . . < \X\W be the ordered sample from \xt | , . . . , |XN| and R + ,..., K+ 

the ranks of [X^,... , \XN\; let v = (v l 9 . . . , vN) be a realization of the vector signX = 
= (signXj, ..., signXAr) . vt assume the values 1 or —1. 

Theorem 2. Suppose thatf(x, 6) occurring in K* satisfies the following conditions: 
(A*) For each x,f(x, 9) is absolutely continuous in 0 e J, where J is an open interval 
containing the point 0, and there exists 

l imr / (x ,0) - / (x ) ] /0=/ (x ,O) 

where f(x, 0) may be expressed in the form 
f(x, 0) = w(sign x) t(\x\) with u, t being some functions, 

/*oo (*oO 

(A*) lim |/(x, 9)\ dx = \f(x, 0)| dx . 
0 - 0 J -oo J -oo 

Then the test with the rejection region 

(32) TN*p(R
+,signX)>Cot 

where 

T*p(r, v) = i Ck(p) u(vk) E0lt(\x\^)lf(\x\^)] 

is LAMP within the class of all oc-level tests depending only on R+ and signX 
for testing II* against K*, . . . ,K*. 

Proof . According to Theorem II. 1.3 in [3] the vector R+ and signX are, under 
Ho, mutually independent and 

P{signX = v} = 2~N, P{R+ = r} = l /N ! . 

N 

Let q*A = flf(xfc, ACmk) be the joint density of Xl9 ...,XN under K* and let 
fc=i 

s 

<lA = LPm <lmA-
m-=l 

^ e t QfnA-> Q*A be the probability measures with respect to q*J? q*, respectively. 
By Neyman-Pearson's Lemma, the most powerful rank test within the class of all 

a-level tests depending only on R+ and signX for testing H* against a simple alter
native q* with A fixed is defined by the following critical function: 

(33) &A(r, v) = 1, y, 0 if Q*A{R = r, signX = v} > , = , < Ca respectively. 
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It is easy to see that if <P'(r, v) is any critical function depending only on r and v then 
p0A(A, p) ^ fi0,(A,p) where p0A(A, p) and P0>(A, p) denote the average powers 
of the tests defined by <PA and <$'. Thus <PA defines the average most powerful rank 
test within the class of all a-level tests depending only on R+ and sign X. 

It is easy to prove that if f(x, 9) satisfies the conditions (A*), (A|) then 

lim [2NN! QA{R = r, signX = v} - 1]/A = 
J->0 

= lim 2*iV! £ Pm £ [...[ [f(xk, ACmk) - f(xk)] A"'. 
A-*0 m=l k=l J J 

{R = r , sign X = v} 

N fc-1 

• n f(^i) n/(*/> ^cmj) d ^ i , • • •> d^N = 
»=fc+i j = i 

= 2wJV!tpm£Cm/tU(^) f - . f WW)/t(W)]11/(*«)<-*!» 
m = l k=l J J i = l 

{R = r , sign X = y} 

£ C4(p) u(vk) E0[t(\x\^)lf(\X^\)] = r*,(r, p) . 
k=í 

Consequently, there exists an s > 0 such that (33) is equivalent to (32) for all 
0 < A ^ e. 

Corollary 3. Suppose that f(x, 9) involved in Km, m = 1,..., s, assumes the form 
f(x, 9) = f(x — 9) with f(x) = / ( —x) and that f(x) satisfies the conditions (Ai), 
(A2) of Corollary 1. Then the test with the rejection region 

(34) T<*)(R+,signZ)>Ca 

where 
N 

I 
fc=l 

(35) n*l(r, sign x) = £ Q(p) sign x t £0[-/ '( |x|^>)//( |z |^>)] 

is the LAMP rank test within the class of all a-level tests depending only on R+ and 
sign X for testing H* against K*,..., K*. 

Proof. We observe that under the conditions of this corollary the conditions 
(A*), (A*) are fulfilled andf(x, 0) = — ff(x) = — sign xf'(|x|) since f(x) is sym
metric, thus u(sign x) = — sign X, t(\x\) = f'(|X|), hence (35) follows from (32). 

Remark 1. Theorem 1 of Bhattacharyya and Johnson in [1] is a direct consequence 
of Corollary 3, by letting CmJ assume the form (3). 

Corollary 4. Suppose that f(x, 9) occurring in K*, m = 1,..., s, assumes the form 

f(x,9) = exp(-0) f(xexp(-0)) with f(x)=f(-x) 
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and that f(x) satisfies the conditions (A'i), (A2) of Corollary 2. Then the test with 
the rejection region 

(36) T<*p*»(R+) > Cx 

where 

(37) T w * » = i C,(p) E0[-1 - \x\^f'(\x\^)lf(\xM\) 

is the LAMP rank test within the class of all a-level tests depending only on R+ 

and sign X for testing H* against K*, . ..,K*. 

Proof, It is easy to see that under the conditions of Corollary 4, the conditions 
(A*), (A*) are also satisfied and 

f(x,0)=f(\x\,0)=-f(\x\)-\x\f'(\x\). 

Thus u(sign x) =. 1 and t(|x|) = /(|x|, 0) hence (37) follows from (32). 

Remark 2. Let F(x) be the distribution function with respect to/(x), F-1(w) = 
= inf {x : F(x) ^ u}, 0 < u < 1, 

(38) cpt(uj) = - / ' ( f - 1 ^ ) ) / / ^ - 1 ^ ) ) , 

(39) cp2(u,f) = - 1 - F-\u)r(F~\u))lf(F-\u)) 

which are the special forms of <p(u,f) given by (27). Putting 

(40) «P+(«,/) = <Pi(i + iM,/) , 

(41) a?N(i,f)=E(pl(V«\f), 

(42) <p$(u,f) = q>2(% + i « , / ) , 

(43) atN(i,f)=E<pt(V^,f) 

then the test statistics given by (35), (37) may be written in the form: 

(44) TN*l(R\ sign X) = X Ck(p) sign Xk aïN(Rk\f) , 
k=l 

(45) TN**\R + , sign X) = £ Ck(p) a2N(R + , / ) . 

4. Unbiasedness of LAMP rank tests 

In this section let us consider the rank test given by 

(46) T(R) = YlCkaN(Rk) 
k = l 
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where 

(47) aN(i) = E<p(U™) 

or 

(48) aN(i) = <p(il(N + I)) 

with q> being an arbitrary score function. 

Consider the null hypothesis defined above and the alternative K defined by 

(49) fx(x) = g(x, dt), ...,fN(x) = g(x, dN) 

where, as usual, fu ...,fN denote the densities of the observations Xu X2, ...,XN. 

Let g (x, 0) = g (x) and let G(x) be the distribution function with respect to the 

density g(x). 

Definition. We say that the density g(x, 9) has the property T if for every 0 there 
exists a transformation Te : X -> TeX such that when X has the density g(x, 0) 
then TeX has the density g(x, 0) and if 0t _ 9j, Xt < Xj then 

(50) TeXi < TQjXj . 

It is obvious that Te must satisfy T0X = X. 

Theorem 3. Suppose that g(x, 6) has the property T, then any rank test rejecting 
H0 as T(R) is sufficiently large is unbiased for testing H0 against K provided 

(51) (Ci-CJ)(di-dj)*0 for all i,j = 1, 2, ..., N 

and (p(u) is non-decreasing. 

Proof . With no loss of generality we can suppose that dx = . . . = dN. 

Let Xu ...,XN have the same density g(x, 0) then TdlXu ..., TdNXN have the den
sities g(x, dt),..., g(x, dN), respectively. Let Ru ..., RN be the ranks of Xu ...,XN 

and R'u ..., R'N the ranks of TdlXu ..., TdNXN. It is sufficient to show that 

(52) T(R') = T(R) . 

Assume that Rt < Rj, i.e. Xt < Xj for i < j , then, by the property T, Td.Xt < 
< TdXj since dt = dj9 thus R[ < R'j. Consequently, R'u ...,R'N is better ordered 
than jR1? ...,RN (see Definition in [8]). Applying Corollary 2 of Theorem 5 in [8] 
with a slight generalization, we obtain (52) since (51) together with the assumption 
that dt = dj implies Ct = Cj for all i < j and the assumption that (p(u) is non-
decreasing implies that aN(j) = %(*') for all i < j . Q.E.D. 
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E x a m p l e 1. Let g(x, 9) = g(x — 9); then g(x, 9) has the property Twith TeX — 
- X + 9. Put in (49) 

(53) dx = . . . = dm = 0 , dm+1 = . . . = dN = 1 

with m arbitrary fixed (m = 1, . . . ,N — 1). 

Then (51) is fulfilled provided Ct = Cj for all i < j and Theorem 3.2 of Bhatta-

charyya and Johnson in [1] may be obtained from Theorem 3. 

E x a m p l e 2. Letf(x, 9) = exp ( — 9)f(x exp ( — 9)) for x > 0 
= 0 for x S 0 ; 

then f(x, 9) has the property T with T0K = (exp (9)) X. Consequently, Theorem 3 
applies to this density. 

E x a m p l e 3. Let g(x, 9) = exp ( - x / ( l + 9))\(i + 9) for x > 0 , 
= 0 otherwise, where 1 + 9 > 0 ; 

then tf(x, 0) has the property Twith T0X = (1 + 9)X and Theorem 3 also applies 
to such a density. 

5. Asymptotic normality of rank test statistics under H0 

In this section we shall show that under some conditions the test statistic TNp(R) 
given by (9) or (27) —(29) is asymptotically normal under H0. However, the test 
statistic TNp(R) is only a special case of the following statistic: 

(54) T^P(R) = £ Ck(p) aN(Rk) 
k=l 

where the scores satisfy 

(55) I [aN(l + [uN]) - (p(u)f du -> 0 as N -> oo 

([uN] denotes the entier of wN) with cp(u) square integrable and Ck(p) are defined 
by (10). 

Actually, if cp(u,f) given by (27) is square integrable, then by Theorem V.L4.b 
in [3] the scores of the test statistic TNp(R) given by (29) satisfy (55). Consequently, 
we shall consider the statistic TNp(R) instead of TNp(R). 

Theorem 4. Assume that cp(u) is square integrable and 

f1 _ f1 

(56) 0 < \_<p(u) — q>Y dw < oo where q> = cp(u) du 
Jo Jo 
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and that 
N 

(57) I \Ck(p) - CO>)]2/max \Ck(p) - C(p)f - oo 
fc=l 

with C(p) = £ Ck(p)lN. 
fc=l 

Then the test statistic T^p(R) given by (54) is under H0 asymptotically normal 
N^cp, °cP) where 

(58) ficP = £ Ck(p) £ aN(i)JN - £ Ck(p) \\(u) du , 
fc=i i = i fc=i J 0 

(59) G2
p == £ [Q(p) - C(P)]2 C(cp(u) - <p)2 du . 

*=- Jo 

This Theorem follows from Theorem V.1.5.a in [3]. 

Corollary 5. Assume that cp(u) is square integrable and (56) holds and that 

(60) £(Cm*-Cm ) (CB f c -C„)-fom„ 

for all m, n = 1, 2, ..., s with s fixed, not depending on N, 

(61) max (Cmfe - Cm) -» 0 for all m = 1,..., s 
l<: f c = :N 

where Cm = X Cmfc/N. 
fc=i 

Then fhe statistic T P̂(K) is under H0 asymptotically normal N(ncp, ocp) for any 
P = (Pi> ---jPs) which are arbitrary real numbers. 

Proof. First we suppose that YTjP™PnDmn > 0 ? t n e n (57) is fulfilled since 

I ÍCk(p) - C(P)]2/max [ О Д - C(p)Y > 
fc=l 

= ZZ(Сmfc - Cm) (Cnk - Сn) PmPи/max (Cmfc - Cm)2 

fc,m 

~ YXPrnPnKnl™* (Crnk ~ Cmf -> 00 . 
m « k,m 

Consequently, the asymptotic normality of T^p(R) in this case follows from Theo
rem 4. 

Suppose now that YJLPmPn°mn = 0> t n e n according to Theorems II.3A.C and 
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0.4.3 in [3] we obtain: 

var (TNp) = (iV - 1)~ * £ (aN(i) - ãNf £ [C,(p) - C(p)]2 ^ 
í = l j=l 

ş (ІV/(ЛГ - i))лr'£«>(o£[C,(p) - c(p)]2 -
; = 1 7 = 1 

TZPmPnbmn <p(U) á u = ° 
m » J 0 

with a^ = Xalv(0/^- Consequently, T^p(R) has the asymptotically degenerate normal 
/ 

distribution. 

R e m a r k 1. Theorem 4 and Corollary 5 remain true for the test statistic TJfp*\R+) 

given by (45) provided H0 is replaced by II* since R+ is under H* uniformly distri
buted. 

6. Asymptotic distribution of the test statistic under contiguous alternatives 

Consider a sequence {pv9 qx] of simple alternatives gv's and simple hypotheses 
pv's defined on measure spaces {3CV9 J / J respectively. 

Definition 1. We say that the sequence of densities {qv} is contiguous to {pv} 
if for any sequence of events {Av} (Av e s/v), PV{A} -> 0 implies QV{A} -> 0 where Pv 

and Qv are the probability measures corresponding to pv9 qv9 respectively. If Hv 

andKv are simple or composite hypotheses and alternatives, we say that the sequence 
{Kv} is contiguous to {Hv} if for each v there exists a pve Hv and qv e Kv such that 
qv is contiguous to pv. 

Definition 2. We say that the density g(x96) has the property U if for every 9 

there exists a transformation X -> U^X) such that if X has the density g(x9 0) 

then Ud(X) has the density g(x9 0) and vice versa; we denote this briefly by 

[X -> g(x9 0)] o [U0(X) -> g(x9 0)] . 

Moreover, suppose that Ue has the following properties: 

1) U0(X) = X; 

2) Ud(x) is a strictly increasing function of x for each 0; 

3) FO7* every 9 and h there exists a function VQ(h) such that 

Ug+h(x) = UVeW[Ue(x)] with Ve(0) = 0 for all 9. 
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Theorem 5. Consider the alternative Kv defined by (49) with N = Nv, dk = dkv 

and consider the test statistic T^p(R) with the scores satisfying (55). 
Suppose that the conditions of Theorem 4 are fulfilled and that the density 

g(x, 6) occurring in Kv satisfies the conditions (A^), (A2) of Theorem 1 and 

(62) 0 < l(g) = í ę2(u, g) áu = í [g(x, <ò)jg(x, 0)]2 g(x, 0) d 
J 0 J ~oo 

X < 00 

with cp(u, g) given by (27) where g, G play the role off, F. 

Further, assume that one of the following conditions is satisfied: 

N 
2 (i) 1(g) £ dk - b2 > 0, max d\ - 0 ; 

k = l k 

(ii) g(x, 6) has the property U and 

(63) 1(g) I V-d(dk - d) - fc*2 > 0, max Vd(dk - d) -> 0 . 
fc=l fe 

Then the statistic T„p(R) given by (54) is, under Kv, asymptotically normal 
N(p,%, acp) under the condition (i) and N(i/dc

l
p, ocp) under the condition (ii), where 

N p i 

(64) fi% = Pcp + Ya [ck(p) ~ C(P)] dk (p(u) cp(u, g) du , 
*=- Jo 

(65) /.<£> = Mcp + X [Ck(p) - C(p)] Vd(dk - 3) I cp(u) cp(u, g) du 
*=1 Jo 

with //cp, c/cp given by (58), (59), 3 = N""1 ]£ d°. 

Proof . First we shall show that the assertion about the asymptotic normality 
of Txp(R) under the condition (ii) holds provided it holds under the condition (i). 

As a matter of fact, the distribution of T^p(R) does not change if we carry out 
the transformations Xk -> U(Xk) for all k = 1,....N, where U(x) is a strictly in
creasing function, namely U(x) = Ua(x). 

We have, by the property U, 

since 

and 

imply 

[Xk -> a(x, dk)] o [Ua(Xfc) - g(x, Vd(dk - ď))] 

Udk(
xk) - ud+(dk„a)(xk) = Uyd(ik_Z)\Ud(Xk)'\ 

\Xk -> fl(x, d,)] o [Udfc(Xt) - g(x, 0)] 

[t lK 3 W f c -3)[t l a (^)] - g(x, 0)] o [U3(Xfc) - g(x, Va(dk - 3))] . 
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Consequently, we can suppose without any loss of generality that Xk has the density 
g(x, dk) with dk — Vd(dk — d) for all k = 1, ..., N. It follows from (ii) that 

N 

J(g) I d'k -> b*2 > 0 , max (d'k) -> 0 . 
fc=l k 

Thus the condition (ii) reduces to the condition (i). 

Let us now prove the assertion of this theorem under (i). We need the following 
propositions: 

N 

Proposition 1. Denote the expectation with respect to the density p(x) = }~[ g(xi9 0) 
І = I 

by E0 and put 

Wd = 2i{[g(Xk,dk)lg(Xk,0)Yl2-l}, 

Td = - I dkg(Xk, 0)lg(Xk, 0). 
fc=l 

Then under the condition (i) we have 

(66) E0Wd-> - b2/4, 

(67) var(W, - Td) ~» 0 . 

Proof. We omit it since it is carried out quite similarly as the proof of Lemma 
VI.2.La,bin[3]. 

Proposition 2. Assume that the condition (i) is satisfied, then logLj — Td + b2/2 
N 

with Ld = Yj 1°E [g(̂ /c> dk)\g(Xk, 0)] converges, under p(x), in probability to zero. 

Furthermore, log Ld is, under p(x), asymptotically normal N( — b2\2, b) and qv(x) = 
Ny NV 

= ^ g(xh div) is contiguous to p(x) = pv(x) = f ] a(xf, 0). 
i = l 

Proof. According to Theorem V.L2 in [3] and (i), Td is asymptotically normal 
N(0, b), since by the assumption that g(x, 6) satisfies the conditions (Ax), (A2), 
Ĵ oo g(x, 0) dx = 0. This together with (66), (61) implies that Wd is, under p(x), 
asymptotically normal N( — b2J4, b). By LeCam's second Lemma (see VI.1.3 in [3]) 
Proposition 2 is proved since the condition (i) entails (4) of Section VI.1.3. in [3]. 

Proposition 3. Assume that the condition (i) and the conditions of Theorem 4 are 
fulfilled. Then (T^p(R), logLd) is, under p(x), asymptotically jointly normal 

N(th> M2> °\> °l, tf.12) = N(ficp, - b2/2, (j2

cp, b2,11% - /ic p) . 
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Proof . We shall denote Xv ~ Yv if (Xv - Yv) (var (Yv))~1/2 -> 0 in probability 
under p(x) as v -> co. Let 

S« = Y,Ck(P)a%(Rk) where aj?(i) = Ecp(U^) 
k=l 

for i = 1,2, ...,N. Note that 

E0S« = C(p) £ a«N(i) = NC(p) f <?(«) du = iicp = Fo ^ p ( K ) . 
*-* Jo 

It is easy to see that 

(68) T^(R) - ^ ~ S" - E0S* = £ [Q(p) - C(p)] aS(Rt) 
fe=l 

(see the proof of Theorem V.L6.a in [3]) and that 

N 

(69) S«-E0S*~1[Ck(p)-C(p)](p(Uk) = Tc* (say) 
k=l 

(see the proof of Theorem V.L5.a in [3]). 

On the other hand, it follows from Proposition 1, 2 that 

(70) log Ld~Td-b
2 \1 

where Td was defined in Proposition 1 or equivalently by 
N 

Td= -Ydk <p(Uk9 g). 
k=i 

Consequently, (T„p(R) - ficp9 log Ld) ~ (T*9 Td - b2/2). Moreover, we can show 

that (T*9 Td - b2/2) is asymptotically two-variate normal N(0, - b2/2, a2
p9 b2, 

$c\ ~ »cP\ Q.E.D. 
Finally, we observe that the assertion of Theorem 5 under the condition (i) follows 

from Proposition 3 and LeCam's third Lemma (see Section VI. 1.4. in [3]). 

R e m a r k 1. Assume that g(x9 9) = g(x — 6)9 i.e. 9 is a location parameter. Then 
g(x9 9) has the property U with Ud(x) = x — 9 since the function is strictly increasing 
and Ue+h(x) = x - (9 + h) = Uh(Ue(x))9 thus Vd(h) = h and (63), (65) reduce 
respectively to 

(71) 1(g) £ (dk - d)2 -+ b*2 > 0 , max (dk - d)2 -> 0 , 

л i 

(72) /.!$ = £ [Q(p> - ОД] (4 - 3) <?(«) <?("> 0) àu 
к=l 

R e m a r k 2. Assume that g(x9 9) = exp( — 9) g(xexp( — 9))9 i.e. 9 is the scale 

parameter. Then g(x9 9) has the property U with Ue(x) = x exp ( — 9) since U0+/,(*) = 
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= x exp (~(0 + h)) = Uh(Ue(x% thus Ve(h) = h and (63), (65) reduce to (71), (72), 
respectively. 

Remark 3 . Let g(x, 0) = [2n(l + O)]'112 exp (-x2/2(l + 0)) with 1 + 
+ 0 > 0. Then g(x, 0) has the property U with Uex = x/(l + 0) since U0+h(x) = 
= x/V(l + 69 + h) = Uh/(l+e)[Ud(x)l thus V,(h) - hj(l + 0) and (63), (65) reduce 
respectively to 

N 

(73) /(#) J] (d, - d)2l(l + J)2 -> b*2 > 0 (for this density 1(g) - 2), 
fc=i 

max ( 4 - d)2j(l + d)2 -> 0, 
A; 

(74) rf»> = (1 + 3)"1 J [Q(P) ~ C(p)] ( 4 - 3) f p(ii) <p(u, </) du . 
*=- Jo 

An analogous remark applies to the exponential density 

g(x, 0) = (1 + 0) exp ( - (1 + 0) x) for x > 0 , 

= 0 for x _ 0 , where 1 + 0 > 0 . 

Remark 4. Theorem VI.2.4 in [3] may be obtained from Theorem 5 and Re
marks 1,2. 

Remark 5. Theorem 4.1 of Bhattacharyya and Johnson in [1] is only a special 
case of Theorem 5. 

As a matter of fact, the test statistic given by (24) and the alternative considered 
by these authors is only a special case of the statistic T^p(R) and of the alternative K 
defined by (49) with g(x, 0) = g(x - 0) and dt = 0 for i _ m; dt = c//N1/2 for 
i 2> m + 1,1 g m <; N - 1. 

Assume that the conditions (Aj), (A2) in [1] and lim m/N = X are fulfilled, then 
N->00 

N 

£ (df - J)2 - 02[l _ m/N] m/N _> fl2A(l - A) > 0 , 
i = i 

max (d, - d)2 - (02/N) max {(1 - m/N)2 , (m/N)2} -» 0 . 
i 

This together with (At) in [1] entails (57) and (71). Thus the conditions of Theorem 5 
are fulfilled, hence the asymptotic normality of the test statistic (24) under the 
alternative considered by Bhattacharyya and Johnson follows from Theorem 5. 

7. Asymptotic distribution of the signed rank test statistic 

In this section we shall show the asymptotic normality of the following statistic: 

(75) TN
+

p(R, sign X) - £ Ck(p) sign Xk a+(R+)-
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with Ck(p) given by (10) and the scores satisfying 

(76) J [aN(l + [uN]) - (p'h(u)Y du -> 0 as N ~> oc 

where cp(u) is square integrable on (0, l). The signed rank test statistic given by (35) 
or (44) is only a special case of the statistic (75) with the scores satisfying (76) (see 
Theorem V.L4.b in [3]). 

Consider the hypothesis Ho defined by (30) and the alternative K* defined by 

(77) fi(x) = g(x - dx), ...,fv(x) = g(x - dN) 

with dk = dkv, Nv = N and g(x) = g(-x). 

Theorem 6. Consider the statistic TN
+

p given by (75) with the scores satisfying (76). 
Assume that 

(78) V C20>)/max C2
k(p) -> oo ; 

fc=l k 

then T^R, signK) is, under H*, asymptotically normal N(0, o+
p) where 

(79) KY = 
N 

2 / [ç>+(u)]2d«XC2(p). 

Proof . Theorem 6 follows from Theorem 1.1 of Huskova [4]. 

Corollary 6. Assume that s does not depend on N and that the regression constants 
Cmks satisfy 

N 

(80) X CmkC„k -> bmn, max Cmk -> 0 for all m, n = 1, 2 , . . . , s . 
fc=i fc 

Then the statistic TN^(R, signK) with scores satisfying (76) is, under H*9 asymptotic
ally normal N(0, o+

p) for any real numbers pl9 p2,..., P5. 

P roof . First suppose that £ pmpnbmn > 0. It is easy to see that (80) entails (78) 
m,it 

and the conclusion of this corollary follows from Theorem 6. 

The case where J^pmpnbmn = 0 may be treated similarly as in the proof of Co
rn n 

rollary 5. 

Theorem 7. Consider the alternative K* defined by (77). Assume that (78) and 

N 

(81) X d] -> b\ > 0 , max d? -> 0 
i = l i 
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hold and that the density g(x) satisfies the conditions (Ai), (A2) of Corollary 1. 
Moreover, if 

(82) 0 < J cp2(u,g)du < oo with <p(u, g) = - g,(G-1(u))jgt(G"'1(u)) 

where G denotes the distribution function with respect to g, then the statistic 

TNp(R
+, signX) with the scores satisfying (76) is, under K*, asymptotically normal 

N(VdcP, Gcp) where 

(83) viP = 1 Ck(p) dk ( V ( u ) cp+(u, g) du 
fc=l Jo 

and o+
p is given by (79), cp+(u, g) = cp(% + \u, g). 

Proof . It follows from Proposition 2 that the condition (81) is sufficient for the 
contiguity of K* to H0. On the other hand, under the conditions of Theorem 7 the 
conditions of Theorem 17 in [5] or Theorem 2.2 in [4] are fulfilled and the assertion 
of Theorem 7 follows from the cited theorems. 

R e m a r k . Theorem 4.3 of Bhattacharyya and Johnson in [1] may be obtained 
from Theorem 7. 

8. Asymptotic efficiency of rank test 

We say that an a-level test T* is based on a statistic T if the critical region of the 
test assumes the form {F> Ca}. 

Suppose that T*, T* are based on Tl9 T2, respectively, and that Tl9 T2 are asympto
tically normal N(0, ox), N(0, o2) under H0 and N(/JL19 ot), N(fi2, o2) under the alter
native K*. Then the asymptotic powers of T*, T* under Kv are given by 

(84) 1 - 0(k i_ a - ^i/o-i), 1 - <Kki-a ~ Hifti) , 

respectively, where k!_a is the 100(1 — a) percentage point of the standardized 

normal dictribution function <j)(x). 

The quantity 

(85) e[T2 : Tj = [(^o^K^o,)]2 = (^o.j^o,)2 

is called the asymptotic relative efficiency of the test T* compared to T*. If T* is 
asymptotically most powerful with respect to the definition below, then e\T2 : Tx] = 
= e\T2] is called the asymptotic efficiency of the test T2. Note that the definition 
of the relative efficiency is meaningful only as /JLU \X2 are positive since if, for example, 
Hi < 0 the test T* is worse than the test defined by the critical function <P(x) = a. 
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Definition. A test with the probability #v(x) Of rejecting the hypothesis is called 
the asymptotically maximin most powerful for testing Hv against Kv at the level 
a if 

(A) 1im sup \ sup <2>v(x) dPv(x) V ^ a , 
V-*00 (PV6HJ j 

(B) lim \p(a, Hv, Kv) - inf Uv(x) dg v (x ) l = 0 
v-*co L QveKvJ J 

where 

P(a,Hv,Kv)= sup inf U'v(
x) d Q»W 

with !Fv(a) being the class of all tests satisfying sup J# v dP g a. 
RvSHv 

For the sake of simplicity, let us delete the subscript v in what follows, writing 
for example N N 

£d 2 -+b 2 for lim £ 4 = b2. 
i = 1 v->oo i = 1 

Let H0(H0 = H0v) be the hypothesis defined by (1) with respect to the sample 
size Nv. 

Theorem 8. Consider the problem of testing H0 against the K(K = Kv) defined 
by (49). Assume that the conditions (i), (ii) Of Theorem 5 are fulfilled. Then the 
following relations hold: 

(86) p(a, H0, q) -*• 1 — <£(ki-a — b) under (i) , 

(87) p(a, H0, q) -+ 1 - (£(k!-a ~ &*) trader (ii) 
N 

where q(x) = JJ #(x, df) anti b and b* are defined by the conditions (i), (ii). 
i = l 

The maximum powers (86), (87) are asymptotically attained by the rank tests 
based on the following statistics: 

(88) S = £ dt aN(Rh g) , 
i = i 

(89) S' = £ V3(rf,. - 3) a^R i , a) , 
i = l 

respectively, where aN(i, g) are defined by (27), (28) with f, F replaced by g, G and 
Ve(h) are defined by Definition 2 of Section 6. 

Proof . First suppose that the condition (i) of Theorem 5 is fulfilled. It is clear that 

(90) P(oc, Ho, q) S P(a, p0, q) 
N 

where poW = Yl g^i* °)« 
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On the other hand, from LeCam's third Lemma (see VI. 1.4 in [3]) and from 
Proposition 2 of Section 6 it follows that log qjp0 is asymptotically normal N( — 6/2, b) 
under p0 and N(b/2, b) under q. Consequently, a test based on q\p0 has the following 
power: 

(91) f!(x,Po,q)^l-<l>(ki~«-b). 

On the other hand, this asymptotic power belongs to the test based on S, accord
ing to Theorem 5. Consequently 

(92) lim inf/?(a, H0, q) = 1 - 0(fc^. - b) 

and (86) follows from (90)-(92). 

Suppose now that the condition (ii) of Theorem 5 is fulfilled. Note that U0(x) 
has an almost everywhere derivative U'Q(x) in x and its inverse function UQX(X) 

exists for each 6 since Ue(x) is strictly increasing in x. First, it is clear that 

(93) p(*,H09q)SP(*,Po,q) 
N 

where p = f ] gC*;)* 3). 
i = l 

On the other hand, we have, under the condition (ii) of Theorem 5, 

[Xk -> g(x, dk)] o [Ud(Xk) -> g(x, V,(dk, d))] 

for fc = 1, ...,N, hence 

P{U-d(Xk)<y} =P{Xk<Ua~
1(y)} entails 

g(y, V,(dk - d)) = g(U3-
3(y), 4 ) [E^GO] . 

Putting y = U3(x) we obtain 

Ud(x) g(Ud(x), Vd(dk - d)) = g(x, d,) • 

Consequently 

log q(X)jP(X) = £ log (>(Xfo 4)/fl(X„ 3)) -
fc=l 

N 

= X log g(U3(Xk), V3(dk - Щ)lg(U£xk), 0) 
k=í 

since Va(0) = 0, Ufa) > 0. 

Putting Yk = UX-X"*), we obtain 

N 

I 
fc=l 

log(«/p)=.Ilo8a(Y„4)M^,0) 
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with dk = Va(dfe - d). Note that Yk has the density g(x, 0) under p and g(x, dk) 
under q and ^ satisfy the conditions 

N 

I Jfa) j Ą2 -» Ь*2 > 0 , max Ą2 -> 0 , by (63). 

It follows from LeCam's third Lemma in [3] and from Proposition 2 of Section 6 
that log(qjp) is asymptotically normal N( — b*2/2, b*) under p and N(b*2/2, b*) 
under q. Consequently, the test based on q\p has the following power: 

(94) /J(a, p, q) -> 1 - #fc. _ . - * * ) . 

On the other hand, this asymptotic power belongs to the test based on S", according 
to Theorem 5 under the condition (ii), hence 

(95) lim inf J5(a, H0, q) = 1 - <j>(kx-a ~ b*) . 

Finally, (87) follows from (93)-(95). 

Remark. By the argument of this proof and LeCam's second Lemma in [3], 
N 

q(x) = Y[ g(x, df) is contiguous to H0 under the condition (ii) of Theorem 5. 
£ = 1 

Let us now show the asymptotic efficiency of the test based on TNp(R) given by (9) 
or (29). 

According to Theorems 5,8 and the definition of the asymptotic efficiency we have 

(96) e[TNp(R)] = e[TNp(R) : 5] = e

2

e

2 

under K defined by (49) and under the condition (i), 

(97) e[TNp(R)-] = e[TNpR:S']=Q

2e2 

under K and under the condition (ii), provided 

(98) £ (ck(P) - co)) «y{ £ L A O ) - c o ) ] 2 £ d2}1'2 - eo, 
fc=l k=l k=l 

(99) £ (ck(P) - CO)) va(dk - d)l{ £ (ck(P) - CO))2 £ (v3(dk - 3)YY'2 - Q 
k = l k=l fc=l 

and with 

(100) Q = í ę(u, f) ę(u, g) áu(l(f) I(g)У 1/2 

It is of interest to study the sensitivity of the asymptotic relative efficiency of the 
tests on TNp(R) corresponding to different choices of the weights. 

Let us restrict ourselves to the cases where the alternative K defined by (49) satis
fies the condition (i) of Theorem 5 or the parameter 6 involved in the density g(x9 9) 
under K is a location or a scale parameter and (74) holds. 
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Denote by TU(R) the special form of TNp(R) with respect to the uniform weights, 
by Tdm(R) the special form of TNp(R) with respect to the weights degenerate at m, i.e. 
Pm = 1- Pi = 0 for i 7-: m, then we have 

(101) 

(102) 

where 

T„(R) = ^{C.k-Ü)aN{RkJ), 

k=l 

TdÁR) = Z (Cm, - Cm0 **(**> / ) 

C f c = Z C í J 5 > Cm- = Z C m í c / ^ > 
ì = l íc=l 

c = X C.JJV = t C„,./s . 

Assume that 

(103) 

(104) 

{m<ix{C.к - C)2}-1 X(c.„ - С)2 - * , 
к k=l 

{тах(С т , - Ст.)2}-1 %{Стк - С т.) 2 -> оо 
N 

£ 
k=i 

Then, according to Theorem 4,5, the statistics TU(R) and Tdm(R) are asymptotically 
normal both under H0 and under K and we obtain the asymptotic relative efficiency 
under K 

(Ю5) е[Ти: Т,т] __ [ X {С.к - С) {йк - А)У % {Стк - Ст.)
2 

к=1 к=1 

.{[1{с.к-ст.){ак-щ21{с.к-суу1 

with the convention that d = 0 if the condition (i) is fulfilled. 
If dk = ACmfc for all k, i.e. K coincides with alternative Km defined by (2) and 

pm = 1, pt = 0 for i + m are the correct degenerate weights, then we obtain 

(106) e{Tu: Tdm) = { £ (C , - C) (Cmfc - Cm.)}2 { £ (Cmt - Cm.)2 . 
k=l k=l 

.£(&» - C ) 2 } - 1 5=1. 
k = l 

Especially, putting CmJ = 0, 1 if j = m, j = m + 1, respectively, i.e. K is the alterna
tive of shift occuring at m, and mJN -> X (0 < X < 1), then (106) becomes 

(107) e[Tu: Tdm\ = 3A(l - A) S i . 

This was shown in [1], 
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Souhrn 

POŘADOVÉ TESTY HYPOTÉZY NÁHODNOSTI 
PROTI SKUPINĚ REGRESNÍCH ALTERNATIV 

NGUYEN-VAN-HUU 

V článku se studuje problém testování hypotézy náhodnosti proti skupině regres
ních alternativ v neznámém parametru. Pro tento problém je navržen pořadový test. 
Jde o zobecnění problému testování posunutí v parametru lokace, které se objevuje 
v neznámém časovém bodě v řadě postupně pozorovaných veličin. Pro tento poslední 
problém pořadový test byl nalezen Bhattacharyyou a Johnsonem (1968). Pořadový 
test navržený v naší práci je lokálně průměrově nejmohutnější ve třídě všech možných 
pořadových testů ve smyslu definice v § 3. Dále je studována asymptotická normalita 
statistiky našeho pořadového testu a jeho asymptotická vydatnost nejen pro případ 
parametru lokace a škály, ale i pro případ obecného parametru. 

Authoťs addrešs: Dr. Nguyen-van-Huu, Can bo giang day Khoa Toan, truong Dai hoc Tong 
Hop, Ha-Noi, Viet-Nam. 
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