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SVAZEK 18 (1973) APLIKACE MATEMATIKY č(SLO 1 

ON PERIODIC SOLUTIONS O F SOME EQUATIONS 
OF MATHEMATICAL PHYSICS 

MARIE KOPACKOVA 

(Received December 21, 1971) 

This note is devoted to the problem of finding the 27r-periodic (in t) solutions 
of equations 

(la) I\ ( | ) £ ^ (t, x) + P2 ( | ) u(t, x) = f(t, x), xe <0, a} 

(2) 
P i Ш I Ы ( / ' x ) + P z (ît)u(í'x)=г/(/'x'9u)'*є <o'й> 

with the boundary conditions 

Ob) 5 ( f ' 0 ) = = S ( ' ' f l ) = 0' fc = 0'1'-^-1' 
where / is 27:-periodic in t, Pi(£), P2(^) a r e polynomials of the orders s l5 s2 with 
complex coefficients, P1(ir/) #= 0 for ,7 real. By .^u we denote the vector of certain 
derivatives of u (see Remark 2). Many equations of physics are included in (la) 
and will be discussed in the end of the paper. 

First, let the right hand side of (la) be of the form f(t, x) = fn(x) exp (int), f„ e 
e C(<0, a}) and suppose the solution to be in the same form, i.e. u(t, x) = un(x) . 
. exp (int). Then un(x) must satisfy the equation 

(3a) P,(in) un
2m\x) + P2(in) un(x) = fn(x) , x e <0, a} 

and the boundary conditions 

(3b) 1^(0) = un
2k\a) = 0 , k = 0,l,...,m- 1 . 

Let us denote b = b(n) = -P2(in) [P i (m)]" 1 and let fil9 fl2,..., fim, pm+l, . . . , P2m 

be the roots of the equation 

(4) X2m = b . 
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As —p, p are roots of (4) (if p solves (4)) it is possible to arrange pl9 pl9..., Pm9 

Pm+i> • • •» /?2m s o that Re jSj ^ 0, /?OT+J. = — pj for ; = 1,2,.. . , m. Using the notation 
S/x) = Qxp(Pjx) — exp(-Pjx), Cj(x) = exp(pjx) + exp( — PjX) we can formulate 

Lemma 1. (a) If b 4= (— l)m (kn\a)2m for every integer k, then for every continuous 
function f(x) on <0, a> there exists a unique solution u(x) of the equation 

(5) u(2m\x) - b u(x) = f(x) 

satisfying the boundary conditions (3b) and it is of the form 

m r fx pa — x \ 

(6) u(x) = - I | l KAX> Mi) d^ + I KAa ~ x> 0/(« - 0 d 4 

where 
m 

(7) K,(x, {) = Bj Sj(a - x) S / 0 S ; 1 ^ ) , B/1 = 2/?, f l (Pj ~ /»*) • 
J*fc 

(b) Let k be positive integer so that b = (— l)m (kn\a)2m and let pi = iknja. 

If f(x) is continuous function on <0, a> then the problem (5), (3b) has a solution 

if and only if 

(8) 

and it is of the form 

/ (É)s in( - i / , 1 ( i . )€ )d í - -0 

(9) «(x)---ДІJК/x, «)/(«) d« + 

+ * i 

К / - - * • « ) / ( « - « ) d ^ + 

S x ( x - « ) / ( € ) d í + Bsin(-iß1(n)ţ), 

where B is an arbitrary constant. 

(c) If b — 0, f(x) is continuous on <0, a> then there exists a unique solution 
u(x) of (5), (3b) and it is of the form 

(10) «(*)=• ľôi(*-«)/(«) d« + Q2(x,í)/(í)dí, 

where Ql9 Q2 are polynomials of the order 2m — \. In all cases u(x) has 2m conti­
nuous derivatives. 

Proof. It is known from the theory of ordinary differential equations that the 
solution u(x) of (5) and (3b) is of the form (for b 4= 0) 

(11) м(x) 
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{X Bj exp (/,/* - €))/(«;)} d<; + £ в, exP (/>», 
o i '=i J = I 



where the vector B = (Bl5 B2, ..., B2w) solves the system of equations 

2m 

(12) I/>J£; = <Wi)> / = 0,1,. . . ,2m- 1 
1=i 

(Sls is Kronecker delta) and the vector B = (B l5 B2, ..., B2m) is determined so that 
u(x) satisfies the boundary conditions (3b), i.e. B solves the system of linear equations 

2m 

(13) I/>f5, = 0, 

2m fa 2m 

£ Pf exp (fija) Bj = - { I BjPf exp [Pj(a - {)]}/({) d£ 
i = i J o 1 = i 

k = 0, 1,..., m — 1 . 

As pm+j = ~Pj (j = 1, 2, ..., m), m equations from (12) for / = 0, 2, ..., 2m — 2 
can be reduced to the system 

(12a) X (B,- + Bw+i) Pf = 0 , k = 0, 1, ..., m - 1 , 
1=i 

which implies Bm+j = — Bj (j = V 2, ..., m). Then the system of m equations for 
/ = 1, 3, ..., 2m — 1 from (12) assumes the form 

m 

X PJk(2PjBj) = <5MJ_! , k = 0, 1,..., m - 1 . 
1=i 

This system has the unique solution 
m 

2PjBj = (- iy+ m »F(j8j,. . . ,#_.,#+1 , . . . .#)^-'(/JJ,. . . , /?i) = m o ? 2 - A2)]-1 

1** 
fc = l 

where Wis Van der Monde determinant. Further, the first m equations of (13) are 
(due to pm+j = —Pj) of the same form as (12a) and hence — B, = Bm+j. Substituting 
these results into the last m equations of (13) we obtain the system 

m fa m 

I P)\Bj Sj(a)] = - \ I p)\Bj Sj(a - {)]/(«) « 
1=i J o 1 = i 

which has the solution 

fa m— 1 m 

Bj=-Sj-\a)W-\P\,...,Pl)\ £ S(--V+* + 1-»A"S«(a "«)/(«)• 
J 0 fc = 0 / = 1 

fa m 

• Wk+. ,</?2,..., ft2) d£ = - S; J(a) I B, S,(a - {) c ^ ) d« = 
Jo •=-

= -^'(^f^SXa-^/^d^ 
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if Sj(a) 4= 0 while B^ may be chosen arbitrarily if Sj(a) ' = 0 and (8) holds (Wkj is the 
minor of W). Using this expression in (11) we get 

u(x) = X Bj 
XSj(x - {)/(€) dc - fas,(a - c) S,(x) s;1^)/^) d{| 
o Jo J 

in the case (a) and 

"(*) = I -»A s;(* - «)/(£) d« - sXa - « ) S;M «7'(«)'/(«) d« + 
J = 2 (Jo Jo 

+ B, p S ^ X - ^ f ^ d c + B S ^ x ) 
Jo 

for (b). Dividing the second integral in these expressions into two parts JQ + J** 
and adding the integral JJ't6 the first one we get the formulas (6) and (9). (c) follows 
easily from the theory of ordinary differential equations. 

For b — b(n) we denote by Nx the set of integers n such that there exists 
j e {1, 2, ..., m] which satisfies Sj(a) = 0. 

Lemma 2. Let the polynomials Pl9 P2 satisfy one of the following conditions: 

(a) s, > s2; 

(P) there exists a constant K > 0 so that 

[Re (a /3//1))]2 + [sin (Im (a Pj(n))}]2 ^ K 

for j = 1,2,..., m and for n $N± sufficiently large; 
(Y) there exist constants C > 0, 0 ^ a < +oo SO t/iat either 

|b(n)|1 /2mmin |arg pj(n) - (I + 2) TT| = C|n|~a 

Or 

min (a |m jS/(w). — /TT|) _• C|/7|~a fOr every j = 1, 2, ..., m 

and for n $Nt large enough (the minimum is taken over all integers I). 

Let fn e C(<0, a>), n = V 2, ... satisfy in the case (h) of Lemma 1 the 
assumption (8). 

Then there exists a constant C such that for at least one solution un of (3) the 

inequality 

(14) Kfc)(*)| ^ C|n|-^
 + ̂ -̂ )(̂ D/2m p ^ i d ^ 

Jo 

holds for x G <0, a>, k = 0, 1, ..., 2m — 1 with a = 0 in the cases (a), (p). 

Proof. By Lemma 1 (with b = b(n) = - P 2 ( m ) [PI (H-) ]"* 1 , f = [^("O]"*1/,.) 
the solution u„(x) of (3) exists and is of the form (6), (9), or (10). As |P;(m)| ~ \n\Si 
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for n -> +oo, / = 1, 2, B, = Bj(n) from (7) may be estimated as follows 

(15) \Bj(n)\~l
 = C|b(n))(2w~1)/2w

 = c|n|(S2"*Sl)(1~1/2w) (c positive constant). 

(a) If sl > s2 then \b(n)\ —> 0 for |w| -* + oo which implies |b(n)| a < nj2 for n 
large enough and 

|S/C)| = 2{[sh (Re ( / ^ ) ) ] 2 + [sin (Im ( / ^ ) ) ] 2 } 1 / 2 ^ \Sj(a)\ for { e <0, a) . 

As |S,(a — x)[, \Cj(a — x)| g const, for b(n) bounded we can write 

\dkKi 

ð/M> < c\b\~í + 1/2m \b\k/2m < c\n\~iS2~Si)ií~x )/2m) 

which implies (14) for Sj > s2. 
(P) Let s t g s2, M ; - {n integer; [a Re (j8/n))]2 + [sin (a Im /i,(rc))]2

 = K} 
for j = 1, 2 , . . . , m. Now, the ratios Sj(a - x) S / ^ / S / a ) , C / a - x) SJ{^)jSj(a) 
are bounded for n e Mj, x, 4' e <0, a>, { < x. 

Then the derivatives dkKjjdxk(x, £) of the kernel K/x, Cj can be estimated (using 
(15)) by c|n|~S2 + (S2~Sl)(fc+1)/2w, where C does not depend on j , n. 

Let condition (y) be fulfilled and st :_ s2, n^N1. As 5y(a — x) S/c) and 
C^a — x) Sj(£) are bounded the following inequalities hold: 

2\Sj(a)\ ^ a Re pj(n) + |sin (a Im Pj(n))\ = 

^ |b(,i)|1/2w a|cos (arg j8/n))| + |sin (a Im jS/w))| ^ 

=• |b(n)|1/2wa|sin(arg^.(?z) + TT/2 - hr)| + |sin (a Im jS/n) - ZTT)| k 

^ |b(n)|1/2w a min [sin (arg j~/n) + TT/2 - /TT)| + min jsin (Im a pj(n) - ln)\^ 

= i { | b ( n ) | 1 / 2 w a | a r g ^ . ) + TT/2 - Z/n) TT| + \lm (a p/n)) - I /n) TT|} = 

= C|n|~a 

for / integer, ?i large enough, / /n ) , lj(n) being integers which minimize the expres­
sions in (y). 

By (y) the lower bound of the last term is C|?i|~a and hence the derivatives 
dkKjjdxk(x, c) of the kernel K,(x, f) are estimated by C\Bj(n)\ \b(n)\k/2m |nja, where C 
does not depend on j , n, x, £, k (k = 0, 1, .. . , 2m — 1). Putting B = 0 in (9) the 
estimate of K;(x, £) may be obtained for ?i e A ^ Lemma 2 follows from the estim­
ations given above and the following formula 

u«\x) = - [ J \ ( > ) r I ^ ( x , c ) / ( c ) d c + ( - l f . 
j=i ( j 0 ax* 

l (a - x, «J)/(a - c) d^j , k = 0, 1, . . . , 2m - 1. 
•Í 

ЛK; 

Finally, the 2m-th derivatives can be estimated by means of the equation (3a). 
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R e m a r k 1. The growth u„(x) (if |n| -> +00) is given by the distance of the set 

{Pj(n), j = 1,2,..., m} from the sequence {ilnja; I integrer}, where (ilnja)2"1 are the 

eigenvalues of the operator d 2 m/dx 2 m with the boundary conditions (3b). Let Ht 

be the space of 27i-periodic functions v(t) whose derivatives (in the sense of distribu­

tions) up to the order / (/ = 0, 1, ...) are square integrable on <0, 27r> with the norm 

[
I Л>2л П l / 2 

Zjj^WľdtJ As the system {(27i) 1 / 2 exp (inf)}^ 0 0.^ is complete in Ht the function v(t) belongs 
to Hi if and only if the coefficients 

satisfy 

Then 

Now, denoting 

ŕ>2n 

)н = (2тг)"1 / 2 v(t) exp (int) át 

+ f И 2 í Ы 2 < + o o . 
и = — 00 

+ 00 

N 2 = ľ l«!2' h ľ • 
áu , v ,. w(\ x + h) — u(\ x) 
— (\ x) = lim - -v  

dx n->o h 

in the norm Ht we define the spaces C*(<0, a>, Ht) = {u(t, x); djujdxj is a continuous 
function on <0, a} in the norm of Hh 0 ^ j' S k} with the norm 

II I! \\dJu ( \ 
||M||fc,i = m ^ x max — ; (•, x) 

O^j^k xe(O.a) \\dxJ 

Proposition 1. The function u(t, x) belongs to Cfc(<0, a>, Hj) if' and only if the 
Fourier coefficients un(x) of the function u(t, x) have continuous derivatives up to 
the order k on <0, a} and 

+ 00 

I M2' R'W 
n = — 00 

converges uniformly with respect to x e <0, a> for j = 0, 1, ..., k. 

Sufficiency of this proposition follows from the definition of Hv Theorem of Dini 
and the formula 

«?>(x) = (2nY^ P p t (., x) exp (int) d. 
Jo d* 

imply the necessity of the above condition. 
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By the imbedding theorems, if u e C*«0, a), Hl+l) then 

dJu , x dJu , N / . A 1 , \ 

and all derivatives 

^A(t9x) (j = 0 , l , . . . , k , / = 0 , l , . . . , / ) 
OV3*J v 

are continuous on <0, 2TT> X <0, a>. 

Theorem. Let fhe polynomials Pl9 P2 satisfy the assumptions of Lemma 2 and 

Sj ^ s2. Let fe C(<0, a>, II,.), where r is *he smallest integer such that r ^ a + 
+ (s2 — si)\2m + 1. 

IfNt = 0 then there exists a unique solution u(t, x) of the problem (l), 

u G C2w«0, a>, HS1 + 1) n C«0, a>, HS2 + 1) . 

If Nj 4= 0 then the solution u(t, x), 

u e C2™«0, a>, HS1 + 1) n C«0, a>, HS2 + 1) 

exists zf and only if 

f a f*2n 

f(t, x) sin (— i Px(n) x) exp (int) dt dx = 0 fOr every n eNx , 

where Px(n) = i k(zz) 7r/a (see Lemma 1). 

The solution u is of the form 

u(t,x) = (2n)'112 f un(x)exV(int) 
n— — oo 

where w..(x) is obtained from (6) for n <£ Nl9 b(n) + 0,frOm (9) wilh B = OfOr n e Nt 

and from (10) for b(n) = 0 with 

f(x) = [ P ^ m ) ] " 1 f Kf(t, x) exp (in*) d l , b = -P 2 ( i n ) [ P ^ m ) ] " 1 . 

Moreover, the following estimate holds: 

\dl+ku 
(17) X mаx 

k,l t,x 
(t,x) < C\f\o,r, fit1 8xk 

where 

I + (s2 - Sl) (k + l)/2m ^ r + s2 - a , f e <0, 2TT> , x e <0, a} . 
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Proof. For Nt = 0 the existence of the solution follows from Lemmas 1 and 2 
and Proposition 1. Let ut,u2bQ two solutions of (1). u = u± — u2 is a solution of (1) 
for f = 0 and 

u e C2-«0, a}, HSi + t) n C«0 , n>, HS2 + 1) . 

By Proposition 1 u(t, x) is of the form 

+ 00 

(18) u(t,x)= £ (27r)-1 / 2un(x)exp( int). 
n = — GO 

This series and all the series obtained by the formal differentiation of (18) involved 
in (la) converge uniformly on <0, 27r> X <0, a}. Putting (18) into equation (la) 
we get (due to the completeness of the orthonormal system {(27r)~1/2 exp (int)}*^.^ 
in the spaces II/9 / being positive integer) that un(x) is a solution of the problem (3) 
with fn — 0. By Lemma 1, un(x) = 0 for n integer. Hence u(t, x) = 0. Let Nx + 0 
and let the function f(t, x) satisfy (16). Due to the estimates (14) for un(x) from 
Lemma 2 the series of the form (18) and those obtained by the formal differentiation 
of (18) involved in (la) are convergent uniformly on <0, 27i> X <0, a} and hence 
u(t, x) solves (1). If u(t, x) is a solution of (1) and 

u e C2-«0, a}, HSi + 1) n C«0 , a}, HS2+l) 

then the n-th Fourier coefficient un(x) of u(t, x) solves (3), By Lemma 1 (8) holds 
for every ne Nu which implies (16). The estimate (17) follows from those of Lemma 2 
and from Proposition 1 and imbedding theorems. 

R e m a r k 2. The solution u of the weakly nonlinear problem (2), (la) may be found 
using the theorem given above and either the fixed point theorem for Nt = 0 or the 
theorem by O. Vejvoda and M. Sova ([1], [2]). @u is a vector of all derivatives 
dl+ku\dtl dxk(t, x) of u(t, x) such that / + (s2 - st) (k + l)/2m g s2 - a. 

Examples: 

m = 1: 

(1) The heat conduction equation } , 

uxx - ut + cu =f 

with boundary conditions 

(19) u(t, 0) = u(t, n) = 0 . 

In this case Px«) = 1, P2«) = - 5 + c, b(n) = in - c. Then Nt = 0 for c, a 
satisfying ca2\%2 + k2 (k integer) and Nx = {0} for c = k2n2\a2 (k integer). As 
\ arg b(n) = \ arctg (— n\c) tends to + it\2 for n ~> + oo then a from Lemma 2 
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is equal to 0 and (17) holds for r = 2, fc/2 + / _ f. The necessary and sufficient 
condition for the existence of the solution of this problem is given by the condition 

(20) f(t, x) sin (x yjc) dx dt = 0 
Jo J 0 

(if ca2\n2 = k2 — k-integer). 

(2) The telegraph equation 

(21) uxx — w/f + 2aHf + cu = / , a + 0 

with the boundary conditions (19). 

For c + kV'/a2 it is a = 0, Nx = 0 and (17) holds with r = 2, k + / ^ 3. 
If c = k2n2\a2 then Nx = {0} and the condition (16) is again of the form (20). 

(3) The equation (21) for a = 0, c = 0 is the wave equation, i.e. 

uxx - utt = / 

(the boundary conditions are of the form (19)). As P^c) = 1, P2(£) = — £2 we have 
b(n) = — n2, /^(rc) = i\n\. Hence 

|Si(a)| = 2|sin (na)\ _ -J min \na — ZTT| , Nt = {n, na\n is integer} , a = 0 
i 

for a such that a\n is a rational number and Nx = 0, a may be positive for a such 
that a\n is an irrational number. (17) holds with r = 2 + a, fc + / „ 3. 

(4) The equation of vibrations with inner friction 

uxx - utt + aufxx = / , a + 0 

with the boundary conditions (19). 

In this case P^ f ) = a£ + 1, P2(£) = -<f, b(n) - - n 2 / ( l + ma), Nt = 0, 
a = 0 and (17) holds with r = 2, fc/2 + / ^ ~. 

m = 2: The vibrations of the bar of the length a with fixed ends is described 
by the equation 

Uxxxx ' Utt ~ J 

and by the boundary conditions 

u(t, 0) = u(t, a) = uxx(t, 0) = uxx(t, a) = 0 . 

In this case 

P-(£) = 1 , P2(£) = £2 , b(n) = n2 , fit(n) = V > | > M " ) = * VM > 

N! = {n; a VM/71 *s m t e g e r } > 

41 



a is defined by the growth of rhin |a -v/Inl "~ H ^ o r lnl -> +°°> (17) holds with 
i 

r = [a + f ] + 1 if a + | is not integer and r = a + f i f a + f i s integer, kj2 + / ^ 
S r + f - a. 

The author wishes to express her sincere gratitude to Otto Vejvoda for many 
helpful suggestions. 
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S o u h r n 

O PERIODICKÝCH ŘEŠENÍ JEDNOHO TYPU ROVNIC 
MATEMATICKÉ FYZIKY 

MARIE KOPÁČKOVA 

Na základě příkladů z fyziky, které jsou uvedeny na konci článku je vyšetřována 
úloha najít periodické řešení obecné rovnice 

P ( + P 2 Í T - M = / ( * , * ) , x e < 0 , a > , íe<0,2;r> 
\dtj dx2m \dtj 

s homogenními okrajovými podmínkami Dirichletova typu. 
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