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SVAZEK 18 (1973) APLIKACE MATEMATIKY CIsLo 5

ALGORITMY

32. SOMMERFELD COX

COMPUTATION OF SOMMERFELD’S ATTENUATION FUNCTION

Dr. SorReN CHRISTIANSEN, Institute of Technical Mechanics,
Thz Technical University of Aachen, D — 5100 Aachen.*)

This procedure computes the complex-valued Sommerfeld attenuation function,
G(p), which appears within the theory of propagation of electromagnetic waves [11]:
G(p) =1 + i/(mp) e Perfc(—i/p)

where

erfc(—i./p) = Z—J e drt,

\/“ -ivp

provided that 0 < arg(p) < =/2. This function has been tabulated [7].
By means of the function w(z) [6], defined by

w(z) = e <l + 2,l J‘ue'2 dt) = e % erfc(—iz)

VT Jo

the function G(p) can be expressed as
G(p) = 1 +iy/(mp) w({/p)-

The function w(z) can be approximated by means of [4], and a way to find G(p)
for a given value of p could simply comprise a determination of w(\/p)A But due to the
structure of the approximation of w(z) the connection between w(,/p) and G(p)
can be taken into account in a more efficient way.

Given a value of p = pr+ ipi then /p = sqri(p) = sqri(pr + ipi) = x + iy = z
is computed according to a method [8], which is used in [3]. Then depending on the
value of z the approximation of G(p) is performed by one of two different methods:

*) On leave from: Laboratory of Applied Mathematical Physics, The Technical University of
Denmark, DK — 2800 Lyngby, Denmark.
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1) Small values of |z|:

The function w(z) is written as

H 2
w(z) = e + 2 :,/'<~Z—>
: Jr 5
where f(1) is approximated using Lanczos’ t-method ([9], p. 489, ex. 5), but instead
of using Chebyshev polynomials in the error term, it turns out to be better to use
Legendre polynomials. In [2] section 3 the formulas are derived, and f(1) is approxim-
ated as the ratio between two polynomials with real cocefficients (of degree 10) in the
complex variable ¢ = z?/5 : (1) ~ T(t)/N(1).

This means that the function G(p) can be written
Gp)=1+i(np)e™?— 10 ———~ |

where p/5 T(p[5) and N(p/5) are polynomials (with complex variable) which can be
evaluated as in [4] using a procedure PK which is a simplified version of [1]; the
method is given in [9], p. 16. In the ALGOL-text this part begins with the comment:
Legendre approximation.

2) Large values of |z|:

The value of w(z) is found as shown in [4] section 2.2 using a Gauss-Hermite
quadrature, from which the function G(p) is computed. In the ALGOL-text this part
begins with the comment: Hermite quadrature.

Depending on the value of p, the following approximate execution times are
obtained in the GIER ALGOL 4 system (where — for comparison — a call of the
procedure exp (x) takes 4-4 msec ([10], p. 76)):

0 < arg(p) < /2 : small |p| : approx. 100 msec
0 < arg(p) < /2 : large |p| : approx. 50 msec

arg (p) not in the interval :approx. 10 msec.

No many-decimal table of the function G(p) seems to exist, and consequently
no direct test of the approximation has been possible. However, the accuracy can be
estimated using the information about the computation of the function w(z) ([4], sec-
tion 4): Re (w(z)) andfor Im (w(z)) can have an absolute error up to 1-5 x 107°,
when z is in the neighbourhood of 1-5 + i 1-5, i.e. p near 5i. When G(p) is determined
from w(z) (as shown above) the absolute error in G(p) should not be greater than
10 x 107® when p is near 5i. For smaller values of |p| the absolute error is smaller.
For larger values of |p| (or [z]) the relative error in w(z) has not been determined,
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and the absolute error in G(p) has been estimated as shown below. When [p[ is very
small or very large the function G(p) can easily be computed with high accuracy
by means of simple formulas [11]. For p = 0-01, 0-1, 50, 0-01i, 0-1i, 50i there
was an error up to 2 x 1078 in the results obtained by the procedure. This is in ac-
cordance with the fact that [4] is very accurate when ]z] is very small or very large.
The procedure has also been tested in other ways (for example by comparing 441
pairs of values with the table [7]; for details, see [5] section 4.2.3), but the results
of these tests can not change the following estimate of the accuracy of the approxima-
tion:
The absolute error in G(p) is about 1 x 107°—1 x 1078,

boolean procedure Sommerfeld cox (pr, pi, gr, gi);
value pr, pi;
real pr, pi, gr, gi;
comment This procedure computes the value of the Sommerfeld attenuation
function: G(p).
The parameters are:
pr: real part of input p,
pi: imaginary part of input p,
gr: real part of output G(p),
gi: imaginary part of output G(p),
Sommerfeld cox: is true when 0 < arg (p) < phif2, otherwise it is false;
if pr<Ov pi<0
then Sommerfeld cox := false
else
begin
real x, y, M;
Sommerfeld cox := true;
M = pr12 + pif2;
x 1= sqri((sqri(M) + pr)[2);
y :=if x = 0 then 0 else pi[2/x;
if y>17-02xxvy>39—x
then
begin comment Hermite quadrature;
real pl, p2, p3, p4, pS, p6, nl, n2, n3, n4, n5, n6, a, b, T;

It

M = y12;
=b:=0;

for T:= —x, x do
begin

1:= 03142403763 + T,
p2 := 094778 83912 + T,
p3 1= 1-59768 26352 + T,

Il
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p4 1= 2:27950 70805 + T;

pS5 1= 3-02063 70251 + T;

p6 1= 3-88972 48979 + T;

nl 1= 0-18147 96822/(p112 + M);

n2 := 0-08291 72776 3/(p212 + M);

n3 := 0-01642 73320 3/(p312 + M);

n4 := 0-00124 31244 32/(p412 + M);
n5 := 0-00002 72908 9347/(p512 + M);

n6 := 0-00000 00846 24328 41/(p612 + M);
a :=a+ nl + n2 + n3 + nd + n5 + nb;
b := —b+ pl x nl + p2 x n2 + p3 x n3
+ p4 x n4d + p5 x n5 + p6 x n6
end T;
gr:=1— 17724538509 x (x x b + M x a);
gi := 1:7724538 509 + (x x a — b) X y

end Hermite quadrature

else
begin comment Legendre approximation;

real pl, p2, p3, nl, n2,t1,12, T;

procedure PK(pa, pb, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, a]O);
value a0, al, a2, a3, a4, a5, a6, a7, a8, a9, al0;
real pa, pb, a0, al, a2, a3, a4, a5, a6, a7, a8, a9, al0;

begin
p3:=a9 + T x al0;

p2:=a8 + Tx p3 + M x al0;
pl:=a7+ Tx p2 + M x p3;
p3:=a6+ Tx pl + M x p2;
p2:=a5+ Tx p3 + M x pl;
pl:=ad4d + Tx p2 + M x p3;
p3:=a3+ Tx pl + M x p2;
p2:i=a2 + Tx p3+ M x pl;
pl :=(al + T'x p2 + M x p3)/5;
pa = a0 + pr x pl + M x p2;
pb 1= pi x pl

end PK;

T := 04 x pr;

M:= —004 x M;

PK(11, 12,

0 ., 12096-51250, —8488-78070,
14448-00988, —4495-93759,  3287-20821,
—519-3045 , 21021, —143 ,

33, 0 );
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PK(nl, n2,

12096-51250, 31832:92763, 39914-35198,

31537-26576, 17481-0636 ,
2207205 , 5148 s

11 s 1 );
p3 := 10/(n112 + n212);
p2 := cos (pi);
pl 1= sin (pi);
T := 1-7724538509 x exp (—pr);
gr:=1+Tx (xx pl —yx p2)— p3 x (nl x tl + n2
gi := Tx (x x p2+yxpl)—p3x(nl x2—n2xtl)

end Legendre approximation
end 0 < arg(p) < phi[2
finis Sommerfeld cox;

Test values.

7151-3442

>

pr pi gr
0-01 0 0-980 132 803
0-1 0 0-812 814 910
50 0 —0-010 316 145
0 0-01 0-875 794 815
0 0-1 0-631 896 434
0 50 0-000 298 977
1 0 —0-076 159 008
10 0 —0-0€0 75
0 1
0 10
10 10 —0-024 34

gi

0-175 481 762
0-507 160 572
0-000 000 000
0-106 578 972
0-234 452 957
0-009 985 086
0-652 049 327
0-000 25
0-232 20
0-048 35
0-029 16

x 12);
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