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SVAZEK 19 (1974) APLIKACE MATEMATIKY ČÍSLO 2 

SOLUTÍON OF THE FIRST BIHARMONIC PROBLÉM 
BY THE METHOD OF LEAST SQUARES ON THE BOUNDARY 

KAREL REKTORYS and VÁCLAV Z A H R A D N Í K 

(Receíved September 3, 1973) 

Some problems of plane elasticity lead to the solution of biharmonic problem 
(1.1), (1.2). (See, in more details, in Chap. 2, p. 103.) Many methods have been deve-
lopped to the solution of this problem (the method of finite differences, the finite 
element method, classical variational methods, methods based on the theory of func
tions of a complex variable, etc.). In this paper, the method of least squares on the 
boundary is investigated, having its specific preferences. In the first part (Chap. 1 — 5, 
p. 101 — 114), the algorithm of this method and a numerical example are given. This 
part is determined first to "consumers" of mathematics and is written in more details. 
In Chap. 6, the proof of convergence of the method is given. This part is determined 
first to mathematicians. 

Applied to the solution of the biharmonic problem, the method takes an essential 
use of the form of equation 0.1). As to its idea itself, it can be applied — in proper 
modifications — also to the solution of other problems. 

1. INTRODUCTION 

In problems of the theory of elasticity, we meet frequently the so-called first 
biharmonic problem 

(1.1) A2U = 0 in G, 

(1.2) U = g0{s), d^ = gl(s) on F, 
dv 

where G is a plane bounded simply connected region with the boundary F. Here, 
g0(s)9 gi(s) are given functions, s is the length of arc on the boundary, dUJdv the 
outward-normal derivative of U(x, y) on F. Assumptions concerning the boundary F 
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and the functions g0(s), gi(s) will be stated later (p. 117). They will be sufficiently 
general to include boundaries and loadings (single loads including) we meet most 
frequently in applications of the theory of two-dimensional elasticity. 

Many methods have been elaborated for solution, or approximate solution, 
of problem (VI), (V2), having specific preferances and disadvantages: The method 
of finite differences is rather simple and universal. However, it yields approximate 
values of the required function U(x, y) only at discrete points of the net. If second 
derivatives of U(x, y) (which are of particular interest in problems of theory of 
elasticity, because they give components of the stress tensor) are then replaced by 
the corresponding second difference-quotients, the accuracy of these approximations 
is not satisfactory, in general. A similar property has, in a certain degree, the finite 
element method. As to classical variational methods, the difficulty lies in finding 
a function w(x, y) (of a certain class of functions) which fulfills conditions (V2). 
The method based on application of the theory of functions of a complex variable 
is rather complicated. 

In this paper, we shall investigate a method which makes particular use of the form 
of equation (VI). It can be called the method of least squares on the boundary. 
It is closely connected with the method given in [2], p. 285 and with variational 
methods given in [3], Part IV. Its idea is the following: 

Let us consider the system of biharmonic polynomials 

(1.3) zi(x9y)9 z2(x,y),... 

(see, in details, in Chap. 3, p. 106), choose a positive integer n and assume the approxi
mate solution of problem (VI), (V2) in the form 

4 n - 2 

(1.4) Un(x,y) - £ anizt(x,y). 

(Why we consider precisely An —2 terms, becomes clear in Chap. 3.) Each of functions 
(V3) being biharmonic, the function (V4) is also biharmonic, and thus satisfies 
equation (VI), whatever are the constants ani. We now choose these constants in 
such a way that 

<-> Һ-^- Æ-ЇУ- ^ - У * -mm. 

among all expressions of the form 

<-> fл-^JÆ-SMÆ r /ziz \ 2 
gi 1 d s , 

where 
4 л - 2 

(1-7) Vn(x,y)= Y.;bniz{x,y) 
; = i 
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We shall see [cf.(4.10), p . 109] that condition (1.5) leads to a system of 4n — 2 linear 
algebraic equations to determine the coefficients ani (i = 1, . . . , 4n —2) in (1.4). This 
system will be shown to be uniquely solvable. We show further that under rather 
natural assumptions on the boundary F and functions g0(s), gi(s), the expression 
on the left-hand side of (1.5) can be made arbitrarily small if n is sufficiently large 
(thus, in this sense, the given boundary conditions can be approximated with an 
arbitrary accuracy) and that for n -> GO the sequence {U„(x, y)} converges in the 
mean to a certain function U(x, y) which is uniquely determined by the given functions 
g0(s), gi(s) and which is a solution (eventually in a generalized sense) of the problem 
(1.1), (1.2). The proof of these assertions is not easy and, therefore, is left to Chap. 6, 
because our aim is to make first the reader familiar with the method itself and its 
application. In the following chapter, we show what kinds of problems of the theory 
of elasticity lead to the solution of the biharmonic problem (which is typical for 
application of our method). In Chap. 3 we shall briefly discuss the fundamental 
system of biharmonic polynomials, in Chap. 4 our method itself in details, in Chap. 5 
we present a numerical example and in Chap. 6 we give the proof of convergence. 

2. THE BIHARMONIC PROBLEM 

Problems of the type ( l . l ) , (1.2) are of particular interest in the theory of the so-
called plane or two-dimensional elasticity, especially in the theory of wall-beams. 
As well-known (see e.g. [2], p. 59), if a plane simply connected body G is in a state 
of stress, characterized by components <rx, ay, xxy of the stress-tensor fulfilling equa
tions of static equilibrium and the equation of compatibility, then there exists a bi
harmonic function U(x, y), the so-called Airy function, the derivatives of which 
these components are, 

, .. d2U d2U d2U 
I2-!) * , = ~TY , Gy = T - J , ?xy = ~ — ~ • 

oy ox Ox oy 

Conversely, if U(x, y) is an arbitrary biharmonic function in G, then functions (2.1) 
satisfy the equilibrium equations and the equation of compatibility, and thus cha
racterize a certain state of stress in G. 

Let s be the parameter of arc on F, 0 ^ s < I, where I is the length of F and let s 
be increasing if we run through F in the positive sense of its orientation (leaving G 
to the left-hand side). Let the point of F corresponding to s = 0 be denoted by A. 
Let, further, the loading on F be given by the stress vector V(s) with components 
X(s), Y(s). If we put dUJdx = 0, dUJdy = 0 at the point A, then (see [2], p. 73), 
on F, the derivatives dUJdx, dUJdy of the Airy function U(x, y) are given by 

(2.2) ^ ( s ) = - f V ( t ) d t , ^ ( s ) = f K ( t ) d t . 
8x J o • dy Jo 
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дU _ 

дs 

ÕU ÕU 
- — VУ + — v* . 

öx õy 

ÕU _ 

õv ' 

ÔU ÕU 
— v* + -Г VУ . õx õy 

The functions — (s), — (s) being known on F, we get in the usual way the 
dx dy 

functions — (s), — (s), 
ds dv 

(2.3) 

(2.4) 

where vx(s), vy(s) are components of the outward normal v. Then, putting U = 0 
at the point A, we get 

(2.5) U(s)=fS^(t)dt. 
Jo Ss 

In this way, we come to the problem (1.1), (1.2). See the following Example 2.1. 

It follows from (2.2) that the value of the function dUjdy or — dUJdx at the point 
B(s), is given by the y- or x-component, respectively, of the resulting vector of the 
loading on F, considered between the points A, B with parameters 0 and s. In this 
sense, it is possible to take also single loads into considerations; at the points, where 
these single loads are acting, the functions dUJdx and dUjdy (or at least one of them) 
are then discontinuous. In what follows, we shall assume that the point A (with the 
parameter s = 0) is chosen in such a way that no single load is acting there. Then 
the functions dUJdx, dUjdy are continuous at the point A [i.e. it holds 

s-+i- ox cx s-*i- dy dy 

if and only if the loading satisfies the condition of static equilibrium in forces. The 
function U(s) is then continuous if and only if the loading satisfies also the condition 
of equilibrium of moments. 

E x a m p l e 2 .1 . Let us consider a rectangular body G loaded as shown in Fig. L 
Thus we have 0 __ s < 2{a + b), while s = 0 at the point A(a, 0). In details, 

0 __ s < b on AB , 

b <_ s < a + b on BC, 

a + b __ s < a + 2b on CD , 

a + 2b __ s < 2(fl + b) on DA . 
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From Fig. 1 it first follows 

ÔU 
X(s) = 0 , so that — (s) = 0 . 

dy 

Further, according to (2.2) (we have Y(s) = — q on BC, etc.) 

Yi 

cto, 6; 

0*0(0,0) 

Fig. 1. 

(2.6) 
ðU 

ôx 
- ( . ) S 0 on AB , 

= q(s - Ь) on BC , 

= qa 

= ga 

_ a 

2 

= 0 

on CD, 

on DE , 

on EF , 

on FA . 

Evidently, we have 

dU dU 
Ar> dU dU n^ dU 

-- — on AB, — = on BC, — 
ds dy ds dx ds 

d U d U HA 

— = — on DA . 

ds dx 

Integrating with respect to s and using (2.6), we get 

(2.7) U(S) = 0 

= gig ~ b ) 2 

2 

ÕU 

дy 
OП CD , 

on AB , 

on BC, 
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2 
on CD, 

= -
qa2 

2 
+ qa(s — a — 2b) on DE , 

= -
qa2 

2 
+ « Î ! + *Í .Л 

4 2 V 
, - * - » ) on EF , 

EE 0 on FA. 

Further, we have 

дU __ ÕU 

ôv õx 
on ЛB, 

aU aU ði/ 
= — on BC , = 

ðv дy дv 

eu 
on 

дx 
дU _ eu 
дv дy 

on DA. 

Consequently 

(2.8) fw = o 
Ov 

ss 0 

= — qa 

= 0 

on AB , 

on BC, 

on CD, 

on DA. 

3. BIHARMONIC POLYNOMIALS 

Let us consider a system of polynomials (cf. [4]) 

for m = 0, 1, 2, ... , (з.i) нГ{x,y) = ì{-\y(ţ)x-»y» 

(3.2) HГ(x,y)JT(-íУ(2i

m

+l) 

(3.3) Hf\x, y) = І(-l)' i(Л x»-2iy 

(3.4) Hf\x, y) -=* I (-1) ' i L. * j ) x - - - ' - V , + 1 for m = 3, 4, 

x«-- ' -V ' + 1 for m = 1,2,..., 

for m = 2, 3, . . . , 
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Here, m is the degree of the polynomial, 

m .r 

/ -- if m is even, /0 if m is even, 

[тЬ 
2 2 

For example 

if m is odd, ^ J \ l if m is odd . 

H(r(*,>o = i | o (- i ) i ( 2 °\" 2 y ; = (-0° x ixv = i, 

II^.y) = t0

1(-1) i(2 (- + 1)^1"2í_v i+i = (-o0 >< i*V У 

etc. 

The polynomials (3.1) -(3A) are biharmonic [they satisfy the biharmonic equation 

(1.1)], the polynomials H^l)(x, y), H(

2

m)(x, y) are even harmonic. 

Let us order the polynomials (3.1) —(3.4) according to their increasing degree, 

while polynomials of the same degree be ordered according to their increasing lower 

suffix. In this way, we get a sequence of polynomials 

(3.5) z±(x, y) = H[0)(x, y) , z2(x, y) = H['\x, y) , z3(x, y) = H?\x, y),.... 

Thus 

(3-6) zx(x, y) = 1 , 

zz(x, y) = x, z3(x, y) = y , 

z4(x, y) = x2 - y2 , z5(x, y) = 2xy , z6(x, y) = - y2 , 

Zi(x, y) = x3 - 3xy2 , z8(x, y) = 3x2y - y3 , z9(x, y) = -3xy2 , z10(x, y) = -y3 , 

etc It easily follows from the given construction that for every fixed n ^ 2 w e shall 

have precisely An — 2 polynomials of order ^ n . 

The following theorem holds (see e.g. [4]): 

Theorem 3.1. In every region G, polynomials (3.5) are linearly independent. 

Every biharmonic polynomial {thus every polynomial satisfying equation (1-1)] 

of degree p can be expressed, even in a unique way, as a linear combination of poly-

nomials (3.5) of order i-p. 
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4. METHOD OF LEAST SQUARES ON THE BOUNDARY 

The basic idea of this method has been briefly mentioned at the beginning of this 
paper. Let us choose a positive integer n ^ 2 and assume an approximate solution 
of problem (1.1), (1.2) in the form 

(4.1) 
4 и - 2 

I 
ï _ l 

Un(x, y) = X am ZІ(X> У) > л -^ 2 > 

where zt(x, y) are the first 4n — 2 terms of the sequence (3.5) [thus just all polynomials 
(3.1) — (3.4) of degree ^ n ] and ani are determined (uniquely, as will be shown in 
Chap. 6) by the condition that 

(4.2) F(Un) (Un ~ g0)
2 às + 

дUn dg0 

s ds 
ds + 

among all expressions of the form 

(4.3) F(V„) 

where 

(4.4) 

(Vn - g0)
2 ds + 

àVн dg0 

tl/ÔUn 

gľ ) ds — min. 
o\ Sv 

l(dV. 

0\ds ds ) J0\dv 

4n-2 
vn(x, y) = Z bm ZІ(X> У) > 

i.e. that the functional F, considered on the set of functions (4.4), be minimal just 
for the function (4.1). 

If we write (4.3) in details, we get 

(4.5) F(Vn)=F(bnl,...,b„A„„2) = 

+ 
дzx bní —— + . . . + bnA 

0 \ ds 

(ЬПÍZX + . . . + bи,4řî-2^4,-2 - go)2ds + 

дz4n_2 dg0^
2 

дs ds 
ds + 

+ Ҝ + ... + b„ 
ôv 

- gЛ ås . 

Obviously, the value of F(V„) depends only on bnl, ..., bn,4„_2 [thus we write 
F(V„) = F(bnl, ..., b„,4„_2)], because g0(s), gx(s) are given functions and the values 
of functions zt(x, y) and of their derivatives with respect to s and v, on the boundary, 
are also known. It follows from (4.5) that F(V„) is a quadratic function in bni. According 
to (4.2), this function should attain for bnl = anl, ..., b„,4n_2 = anAn_2 its minimal 
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value. A necessary (and in our case obviously also sufficient) condition for this is 

that the following equations be satisfied: 

OF dF 
(4.6) — (anl, ...,anAn_2) = 0, . . . , - (anU ..., a„An^2) = 0 . 

°°n\ CVnAn-2 

The form of the function F obviously permits the differentiation under the sign 

of integration. For example, 

0 

дb, 
— [Kizi(s) + ... + bnAn„2z4n„2(s) - g0(s)f ds = 
'nl Jo 

= 2 \bnl zt(s) + ... + bnAn-2z4n„2(s) - g0(s)~] zt(s)ds = 

= 2 bMl Zi(s) z^s) ds + ... + bnAn-2

 zi(s) z4n-2(s) ds - g0(s) zjs) ds , 

etc. Thus, the condition (4.2) yields the following system of equations: 

(4-7) Z 
1=1 

Çф)Zj(s)és+{lð^(s)Ô^(s)ds + 
Jo Jo os дs J 0 Ov Ov 

fg 0 (s)z / (s)ds + Ґ ^ ( s ) Ş ( s ) d s + 
Jo J 0 ds O^s J 

ř дz-
дi(s) — l (s) ds , f = 1, ..., 4n - 2 

n дv 

Putting 

(4.8) (z , z,) r = f z ^ ) z/s) ds + f ^ (s) ^ (s) ds + f ^ (s) ^ (s) ds , 
Jo Jo 8s ds Jo dv dv 

(4.9) c, = Cg0(s) z{s) ds + f' ^ (,) ^ (,) d , + f , l ( s ) J i (5) d , 
Jo Jo ds ds Jo dv 

(i, j = 1, ..., 4n — 2), we can write the system (4.7) in the form 

(4.10) Z (ZІ> ZJ)Г anj = ct, i = 1, ..., 4n - 2 
y = i 

which represents the system of 4n — 2 equations for 4n — 2 unknown constants 

anl, . . ., <3„54„-2' 

Before giving the proof of existence and uniqueness of the solution of system 

(4.10) and the proof of convergence if our method, we present, in the following 

chapter, a numerical example. 
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R e m a r k 4.1. The reader may be rather surprised by the presence of the middle 

integral in (4.2), suggesting the question why we do not replace the condition (4.2) 

by the condition 

(4.11) [\un - 9oY ds + j7^-" - gXds = min. 

The middle term plays an important role in questions of convergence as well as 

in numerical questions. Examples can be constructed where the method, based 

on condition (4.11), gives quite unsatisfactory results. 

5. A NUMERICAL EXAMPLE 

As an example, showing the application of the method of least squares on the 

boundary, let us consider the biharmonic problem on a square. The reason why the 

square has been chosen is that it is a sufficiently simple region to make the example 

very clear, while, on the other side, the boundary of the square contains angular 

points which often make difficulties in mathematical considerations as well as in 

applications. 

Thus, let the nonhomogeneous boundary value problem (1.1), (1.2), p. 101, 

be given, where G = (0, 1) x (0, 1). Let the loading on the boundary be the same 

as in Example 2.1. (see Fig. 1, p. 105, for a = 1, b = 1) and let us choose q = 2. 

The boundary conditions are then given by (2.7) and (2.8), p. 105 and 106. For 

numerical computation, it is convenient to express these conditions in Cartesian 

coordinates. From (2.7) and (2.8) it then follows 

(5-1) go = 0 on AB, 

= - ( 1 ~xУ on BC, 

= - 1 on CD, 

= 2x - 1 on DE, 

= x - 0.75 on EF, 

= 0 on FA, 

gi ^ o on AB , 

5= 0 on BC, 

= - 2 on CD, 

5 0 on DA. 

An approximate solution of problem (1.1), (1.2) is assumed in the form 

An-2 

(5.2) Un(x, y) = £ ani z{x, y) . 

For the coefficients ani we then get the system (4.10). 

110 



If n is small (e.g. n g 3), the evaluation of coefficients of system (4.10) is very 
simple. For example, we have [cf. (3.6)] 

ľ z3(s) z4(s) ds = Çy(í ~ y2) d v + f 1 
J 0 J 0 J 0 

+ f 0 . (x2 - 0) 

(x2 - 1) áx + y(0 - y2) dj; + 

dx 

and, similarly, 

y) ăy + 

ľÕf(s)Õf(s)ds=Çðf(l,y)дf(l,y)áy+Ç 
J0 дs дs J0 дy ôy J0 

+ f _ í (x, 0) ^ i (x, 0) dx = f (-2>>) dy + f (-2y) dy = - 2 , 
Jo Sx дx J 0 J 0 

f f (s) f (s) ds = f ^ (1, „) Ş f (1, ,) dy+Çf (x, 1) f (x, 1) dx 
Jo cv дv J0 дx âx J0 дy õy 

+\УtMl>^+l[-гtM* 
x I - ^ Ҷ x , 0 ) | d x = - f 2 d x = - 2 . 

+ 

Thus, we have 
(zз> z*)r 

1 4 
3 ' 

Other coefficients as well as the right-hand side of the system are received in a si
milar way. 

Table 1 

a2í a22 ű 2 3 û24 a2 5 a26 

40000 20000 20000 00000 20000 -1-6667 -1-6458 

20000 5-6667 10000 4-6667 5-6667 -0-8333 3-8476 

20000 10000 5-6667 -4-6667 5-6667 -5-5000 -0-8333 
00000 4-6667 -4-6667 14-8000 00000 7-4000 1-8983 

20000 5-6667 5-6667 00000 160000 -5-5000 3-8333 

-1-6667 -0-8333 -5-5000 7-4000 -5-5000 80667 0-6667 
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In Table 1, the scheme of system (4A0) is presented for n = 2. Solving this system, 
we get the corresponding approximate solution (for "negligible" coefficients we give 
only the order of the first cipher and then write the result symbolically) 

6 

U2(x, y) = X a2i z,-(x, y) == - 0-997 02 + 2-185 45x + 4 x 10~3y -
f = i 

- 1-017 03(x2 - y2) - 2 x 10~3 x 2xy - 1-019 66 ( - y 2 ) ~ 

~ _ o-997 + 2-185x - l-017x2 + k x 10~3(y + 2xy - y2) . 

As it was to be expected, this approximation is very close to the function 

u(x, y) = — 1 + 2x — x2 

which corresponds to the case that single loads on DA are replaced by a uniform 

load with the same resulting vector. 

For the case n = 3 we get similarly 

rf3(x, y) = - 0-996 66 + 2-054 89x + 1 x 10"2y -

- 1-056 89(x2 - y2) - 3 x 10"2 x 2xy + 1-086 37 ( - y 2 ) + 

+ 3 x 10"3(x3 - 3xy2) + 2 x 10~2(3x2y - y3) -

- 3 x 10" 3 ( -3xy 2 ) - 4 x 1 0 " 2 ( - y 3 ) £ 

o* - 0-997 + 2-055x - l-057x2 + 

+ k x 10"2(y + 2xy - y2 + x3 - 3xy2 + 3x2y - y3) . 

For comparison, we present also the corresponding result if we use the "method 

(4.11)": 

U3(x, y) = - 0-990 18 + 2-014 50x + 5 x 10"3y -

- 1-015 55(x2 - y2) - 1 x 10"2 x 2xy + 1-059 71 ( - y 2 ) + 

+ 3 x 10~3(x3 - 3xy2) + 4 x 10"3(3x2y - y3) -

- 5 x 10~ 3 ( -3xy 2 ) - 3 x 1 0 " 3 ( - y 3 ) £! 

~ - 0-990 + 2-015x - l-016x2 + 

+ k x 10"2(y + 2xy - y2 + x3 - 3xy2 + 3x2y - y3) . 

More remarkable differences between results produced by methods (4.2) and (4.11) 
are to be expected first in higher approximations. 

If the accuracy of "lower" approximations is not satisfactory and "higher" appro
ximations should be taken into account, some suitable properties of biharmonic 
polynomials can be used to prepare the numerical process for a computer. To this 
aim, let us come back to the original notation used in Chap. 3. The approximate 
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solution can then be written in the form 

(5.3) UH(x9 y) = t H(/>(x, y)a*j + t ^(x, >') < +j + 
j = o j=i 

+ X H^x, y) an
2n+j_x + £ II^(x, y) a^j-s , 

j = 2 j=3 

denoting now the unknown constants a)J, k = 0, 1, ..., 4r? — 3. 
Let us note, further — what is of use in preparing the program — that the follow

ing relations hold for the outward-normal derivatives on the boundary of the square 
ABCD: 

dH[m) dH^} 

ôv дx 
iHү1"^ on AB. 

я н ( т ) 

= -^- = -тНг

т-Х) on ВС, 
ду 

0. m >«) 
ðx 

ðH^ 

ðy 

ðH(m) ðH2
m) 

õv ðx 

ðH(
2

m) 

ðy 

ðH2
m) 

ðx 

ðH(m) 

ðy 

ÕH^ ðfí(
3
m) 

õv дx 

= - mHү1"^ on CD, 

mЯ_m~ 1 ) on DA for m = 0, 1 , . . . , 

mH^-V on AB, 

= ,mЯ (

1

m"" 1 ) on BC, 

= - mHÿ-^ on С D , 

- - - mH{Г'X) on DA for m - 1, 2, ... , 

mH^-V on AБ, 

__ ðj___> __ _ w | - я ^ - i ) + Д O . - D J o n Б С j 

дy 

яя ( m ) 

_ _ _ _ ! _ _ _ - m Я Г ^ on CD, 
ôx 

±™_ _ m[Я_ ч , " 1 ) + Я І m " 1 ) ] on DA for m = 2 , 3 , . . . , 
дy 
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дH(m) _ дH{m) 

дv ôx 
mH(

4
m~V) on AB, 

дН* = ш Я Г " оп В С , 

4 = - тН(™-1) оп С/), 
ő; 

ðЯІ r a ) 

ðx 

-L- = - mHf-^ on DA for m = 3, 4, ... . 
dy 

Corresponding formulae for derivatives with respect to s can be derived similarly. 
These formulae enable to express in a simple way coefficients of the system for un
known coefficients a\, while the approximation Un(x, y) is assumed in the form (5.3). 

If n is large, it is available, with regard to the numerical stability of the process, 
to use polynomials zt(x, y)jm instead of zt(x, y), where m is the degree of the poly
nomial. Of course, it is also possible to orthonormalize these polynomials with respect 
to the scalar product (u, v)r. However, it is a labourious procedure, in general. 

As to the method itself, the matrix of system (4.10) remains unchanged for different 
boundary conditions, i.e. for different loadings of the boundary. If n should be in
creased, the original scalar products remain preserved and only new terms should 
be evaluated. 

We come now to the proof of convergence of our method. 

6. CONVERGENCE OF THE METHOD OF LEAST SQUARES ON THE BOUNDARY 

a) Some Basic Concepts and Notation 

In this chapter we assume that the reader is familiar with fundamental concepts 
concerning functional-analytical methods in elliptic boundary value problems 
explained e.g. in [1], Chap. 1 or in [3], Part IV. Speaking about a region G, we shall 
assume it to be plane, bounded and simply connected, with the so-called Lipschitz 
boundary F. A definition of a region with a Lipschitz boundary can be found e.g. 
in [3], Chap. 28. Note that to this kind of regions belong, roughly speaking, regions 
with a smooth or piecewise smooth boundary, without cuspidal points, for example 
a circle, a square, etc. The closure of the region G is denoted by G, i.e. G = G + F. 
We speak briefly about the closed region G. 

As usual, we denote by L2(G) the Hilbert space, the elements of which are real 
functions, square integrable in G (in the Lebesgue sense), with the scalar product 

(6.1) (u, v) = \\ u(x, y) v(x, y) dx dv . 
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By W2
fc)(G) we denote the Hilbert space, the elements of which are those functions 

of L2(G) which have square integrable generalized derivatives in G, to the k-th order 
included. The scalar product in W2

fc)(G) is defined by 

(6-2) (u, vV2oo(G) = X (D*tt> D*v) > 
\i\^k 

where the sum ]T (Dlw, Dlv) means the sum of scalar products [in L2(G)] of the 

functions u, v and their generalized derivatives up to the order k included. In parti
cular, 

,, „x / x , x /<3u dv\ fdu du\ 
(6.3) (u, vV2(1)(G) = (u, v) + f — , — j + ( — , — j , 

fs A\ f \ f \ (du dv\ (du du 
(6.4) (u, v)^2(2)(G) = (u, c ) + _ _ ) + — — 

\dx dxj \oy dy 

(^i ?li\ i(—~ d2v \ (— — 
\0x2 ' dx2) \8x dy ' dx dy) \dy2 ' dy2 

On base of the scalar product (6.1), or (6.2), we define, in a usual way, the norm 
and the metric in L2(G), or Wf)(G), respectively, 

(6.5) | |u |2 = (u, u) , Q(U, V) = ||u — v|| , 

(6.6) | |W | |W2 ( k>(G) ~ ( W ' M)W2 ( k>(G) » ^ ( W ' t7W2 ( k>(G) = \U ~~ t [ |W2 ( k>(G ) * 

In a similar way, the spaces L2(F) and W2
fc)(F), the elements of which are functions 

on F, are defined. See e.g. [3], Chap. 30. In particular, for functions g0(s), g-(s) 
of Example 2.1 (p. 104) we have 

O0GW(1)(F), g i e L 2 ( F ) . 

By C(oo)(G)[we meet frequently the symbol E(G) in literature] we denote the set 
of functions continuous with their derivatives of all orders in G. It is known (see e.g. 
[1]) that for regions with a Lipschitz boundary, the space VV2

fc)(G) can be defined as 
the closure of the set Cfoo)(G) in which the scalar product (6.2) is introduced [in the 
metric (6.6) given by this scalar product]. 

By C0
00)(G) [also D(G), in literature] we denote the set of functions with compact 

support in G, i.e. the set of those functions u e C(oo)(G) the support of which (denoted 
by supp u) lies in G, 

(6.7) supp u c G . 

Here, by the support of a function u(x, y) we understand the closure of such points 
(x, y) e G in which u(x, y) 4= 0. Thus, functions of C^°>(G) have in G continuous 
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derivatives of all orders while [according to (6.7)] they are equal to zero in a certain 
neighbourhood of the boundary F [which is different for different functions of 
C(

0
00)(G), in general]. The closure in the metric (6.6), of C(

0
00)(G) is denoted by W{k\G). 

It is a linear subspace of the space W(k\G). For every u e W{k\G) we have in the sense 
of traces (on the concept of a trace see, e.g., in [3], Chap. 30) 

cu dk~1u 
u = 0, — - 0 , . . . , — — = 0 on F, 

dv dvk l 

where v is the outward normal1) of F. 

For us the converse of this assertion for k -= 2 (see e.g. [1], p. 90) will be of use: 
Let G be a region with a Lipschitz boundary, let u e W2

2)(G) and let 

(6.8) u = 0 , — = 0 on r 
dv 

in the sense of traces. Then u e W2
2)(G). 

Let w(x, y) be such a function of W2
2)(G) that 

(6.9) w = g0(s), ^ = gi(s) on F 
dv 

in the sense of traces. 

By a weak solution of the problem 

(6.10) A2U - 0 in G, 

(6.11) U = g0(s) on F, 

(6.12) ~ = g.v*) on F 
Ov 

we understand (see e.g. [3], Chap. 32) such a function U e W^\G) which satisfies 

(6.13) U-weV, 

(6.14) A(U, v) = 0 for every veV, 

where 

(6 15) A(U \-[[(—^± 2 d2*7 d*V d2RdlL\dxd 

^ 'v)"" JJG \ax2 ax2 + ax ay ax ay + a j 2 aj;2/ X ^ 
l) Which exists almost everywhere on F, if Fis a Lipschitz boundary, see e.g. in [l]. 
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and 

(6.16) V= W{2\G). 

It is well known ([3], Chap. 33) that the bilinear form A(U, v) is a so-called V-
-elliptic form which implies that there exists precisely one weak solution of the problem 
(610) -(6.12) [provided there exists w e W2

2\G) satisfying (6.9)]. 
Consider now the problem (1.1), (1.2), p. 101 and let G be a bounded simply con

nected region in E2 with a Lipschitz boundary F, g0 e W(
2\f), gt e L2(F). 

b) The Solvability of System (4.10) 

As we have shown in Chap. 4, our method leads to the solution of An — 2 equa
tions 

4n~2 

(6.17) X (zt, zj)r anj = c , , i = l , . . . , An - 2 
j = t 

for An — 2 unknowns anj. Here, (zt, z , ) r and cf are given by (4.8), (4.9). We first 
prove that system (6.17) has a unique solution. To this purpose it is sufficient to 
show that its determinant is different from zero. 

Let us consider the functions zf(x, v), i = 1, ..., An — 2, which appear in (6.17) 
and denote by M the set of all their linear combinations 

4 n - 2 

(6.18) u(x,y) = £ *iZi(x9y) 
i = i 

with real coefficients ar M is a linear set the zero element of which is the function 
identically equal to zero in G. Denote for u, v e M [cf. (4.8)] 

(6.19) (u,v)r= Pu(s) v(s) ds + f - ( s ) - ( s ) d s + f - ( s ) - ( s ) d s = 
Jo J o $s ds Jo Sv dv 

, x fou dv\ fou ov\ 
= («. tiw + r - . - ) + 7 - 7 • 

\ds cs)Ll(n \dv cvJL2(n 

Here 

(6-20) ^ ( s ) = _ ^ ( s ) V > , ( s ) + ^ ( s ) V x ( s ) , 
ds ox oy 

(6.21) J ( s ) = ^ ( s ) v , ( s ) + ^ ( s ) v y ( s ) , 
Ov Ox oy 

where — (s), — (s) are traces of functions — (x, y), — (x, y) on F and vx(s), vy(s) 
dx dy dx " dy 

are components of the unit outward-normal vector (and similarly for v). The integrals 
~\ p . 

in (6.19) have a sense, because traces of the functions u(x, y), — (x, y), — (x, y) 
dx dy 
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belong to L2(P) and F is a Lipschitz boundary so that vx(s), vy(s) are bounded 
measurable functions on F([3], Chap. 28). 

We prove first that (6A9) is a scalar product on the linear set M. To this purpose 
it is sufficient to prove 

(6.22) (u, u)г = 0 => u(x, y) = 0 in G 

because the remaining axioms of a scalar product are obviously fulfilled. Thus, let 

u e M, so that u(x, y) is of the form (6.18) and let (u, u)r = 0. According to (6A9) 

we have 

(u,u)r = \\u\\2

L2in + 

Consequently, from (u, u)r = 0 it follows 

(6.23) 

For the function u(x, y) we then have 

ÌÔU 
2 дu 

— + — 
\дs L2(E) дv L2(П 

u = 0 in L2(F) and — = 0 in L2(F). 
дv 

u = 0, — = 0 on Г 
дv 

in the sensé of traces. 

Thus the function u(x, y), being a linear combination of biharminic polynomials, 
is a weak solution of the biharmonic problem 

(6.24) 

(6.25) 

A2u = 0 in G 

u = 0, 
ôu 

дv 
= 0 on F . 

From uniqueness of the weak solution of problem (6.24), (6.25) it follows that u = 0 
in W2

2)(G) and, because of smoothness of this function in G, 

u(x, y) = 0 in G 

what we had to prove. 

Thus ( . , . ) r is a scalar product in M. But the functions zt(x, y) are linearly inde
pendent in M (Theorem 3.1, p. 107), so that the determinant of the system (6.17) 
which is the Gram determinant constructed of scalar products of these functions, 
is different from zero. Consequently, the system (6.17) is uniquely solvable (for every 
fixed n) what was to be proved. 
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c) Convergence of the Method 

The proof of convergence of the method of least squares on the boundary is rather 
difficult. We present first some known results which we shall use further. Let us note 
once more that G is a bounded, simply connected region in E2 with a Lipschitz 
boundary. 

ôu 

ôu 

Ty 

It follows from Theorem 30. 1 in [3], applied to the functions u(x, v), — (x, y) 

(x, y) and from formulae (6.20), (6.21): 
дx 

Lemma 6.1. The mapping of the space W(

2

2)(G) into the space W^1}(F) x L2(F) 

is bounded. In details: There exists such a constant a > 0, depending only on G 

that for every z e W(

2

)(G) we have 

(6.26) 

Here 

{6.21) 

[|Z | |W2 (1 )ÍT) = a | | Z | W2(2)(G) < a z W2(2)(G) 
L2(D 

!rllW2(1)(T) IL2(T) (I! | W 2 ( 1 ) ( T ) £ 0 ) . 
L2(П 

From this lemma and from the linearity of the spaces considered, it follows im

mediately, if we put y = ft jot: 

Lemma 6.2. To every fi > 0 there exists such a y that for every two functions 

zl9 z2eW[2)(G)for which 

(6.28) 

we have 

(6.29) 

j Z l ~ Z 2 | | W 2 ( 2 ) ( G ) < У 

Z1 - z ^ 2 | | W 2 ( 1 ) ( T ) < 
Эzl дz 2 

ôv ôv 
<ß. 

ЫГ) 

Lemma 6.3. ([1], p. 270.) The traces of functions of the space W2

2)(G) are dense 

in the space W2

l)(T) x L2(T). In details: To every two functions go e W2

l)(T), 

gt E L2(T) and to every rj > 0 there exists such a function z E W2

2)(G) that the in-

equalities 

(6.30) ||z - gol^oKr) < n 9 \— 
Ôv L2(П 

hold. 

R e m a r k 6.1. From Lemma 6.3 it does not follow that to the given functions 

g0(s), gt(s) of the mentioned properties there exists such a function we W2

2)(G) 
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that we have 

(6.31) w(s) = g0(s), —- (s) = gx(s) on F 
ov 

in the sense of traces. Consequently, the existence of a weak solution of the biharmo-
nic problem (6A0) —(6.12), p. 116, is not ensured, because, in formulation (6A3), 
(6A4), the existence of such a function is assumed. If such a function exists [i.e. if, 
for example, the boundary F and the functions g0(s), gi(s) are sufficiently smooth], 
then problem (6.10) —(6.12) has a weak solution in the sense defined formerly. 
In the general case, we can come, on base of lemma 6.3, to the concept of a very 
weak solution: 

Let us construct a decreasing sequence of positive numbers sn, lim £n = 0 for 
n -> oo. According to Lemma 6.3, to given functions g0e W^\f), gx e L2(F) and 
to each of the numbers sn, it is possible to find such a function vn e W2

2)(G) that the 
following inequalities hold: 

(632) j|vn - go|]ж2<i>(T) < є*> 
õv 

< *n 
ЫП 

Denote vn(x, y) the weak solution of the biharmonic problem (6.10) —(6.12), 
corresponding to the function vn(x, y), thus satisfying the conditions [cf. (6.13), 
(6.14)] 

(6.33) vn - v„eV, 

(6.34) A(vn, v) = 0 for every veV. 

Lemma 6.4. ([1], p. 274.) Let {vn(x, y)} be an arbitrary sequence of the just stated 
properties. Then the sequence of corresponding functions vn(x, y) converges in 
L2(G) to a certain function U(x, y), uniquely determined by the given functions 
go G W22)(0> #i e ^ ( I ) [thus independent of the choice of the sequence {en} and 
of functions vn(x, y), satisfying conditions (6.32)]. 

The function U(x, y) is called a very weak solution of the problem (6.10) —(6.12). 

R e m a r k 6.2. If the problem (6.10) —(6.12) has a weak solution [i.e. if a function 
w e W^2)(G) exists satisfying conditions (6.31)], then the just defined very weak 
solution is the weak solution of the problem considered. Obviously, it is sufficient 
to put vn = iv for every n. 

R e m a r k 6.3. The aim of this Chapter is to prove that the sequence of functions 

4 / i - 2 

(6.35) Un(x, y) = Y, am zt(x> y) 
i = i 
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constructed by the method of least squares on the boundary [so that the coefficients 
ani, i = 1, ..., An — 2 are given by the system (4.10)], converges, in L2(G), to the very 
weak solution U(x, y) of the problem (6.10) —(6.12), given by functions g0 e W2

X)(T), 
gx 6L2(F). To this purpose, we prove that not only the traces of functions of the 
space JV2

2)(G) are dense in W2
X)(T) x L2(F), but that the same property have traces 

of the set of all linear combinations of biharmonic polynomials zfx, y), i = 1, 2, 
first we present some known results: 

Lemma 6.5. The weak solution of a biharmonic problem has in every closed 
region 0 which is contained in G, continuous derivatives of all orders and is in O 
a classical solution of the biharmonic equation. 

This lemma is a consequence of Theorem VI or 1.2 in [ l ] , p. 197 and 199 and 
of Sobolev's Imbedding Theorems. 

Further, it follows from Theorem 2.4.1 in [2], p. 63 and from the construction 
of functions (p(z), x(z) on p. 63 and 64 of the quoted book: 

Lemma 6.6. If u(x, y) is a biharmonic function in G (thus a classical solution 
of the biharmonic equation in G), then there exist such functions <p(z), x(z) of complex 
variable z, holomorphic in G that in G we have 

(6.36) u(x, v) = Re [z>(z) + X(z)] . 

Conversely, if (p(z), %(z) are holomorphic functions in G, then the function (6.36) 
is biharmonic in G. 

If, moreover, the function u(x, y) and its derivatives of all orders are continuous 
in G [i.e. if u e C(oo)(G)], the functions cp(z), x(z) and all their derivatives (with 
respect to z) are continuous in G. 

Lemma 6.7. (The Walsh Theorem, [2], p. 490.) Let f(z) be holomorphic in G and 
continuous in G. Then to every x a polynomial Pm(z) (of a sufficiently high degree m) 
can be found that in G we have 

| / ( z ) - P „ , ( z ) | < * . 

Remark 6.4. If <p(z) and (p'(z) are holomorphic functions in G and continuous 
in G, then to every Li > 0 it is possible to find such a polynomial P(z) that in G 

\cp(z) - P(z)\ < /<, \cp'(z) - P'(z)\ < fi 

holds simultaneously. Indeed, it is sufficient to find, according to Lemma 6.7, such 
a polynomial P(z) that |<p'(z) — P'(z)| be sufficiently small in G and then to integrate 
this polynomial over G, taking a proper constant of integration. 

Similarly, if <p(z), (p\z), ..., cp(fc)(z) are holomorphic in G and continuous in G, 
it is possible to find, to every v > 0, such a polynomial P(z) that in G we have 

(6.37) \<p(z) - P(z)| < v , \<p'(z) - P'(z)| < v, ..., \<p«\z) - P « \ z ) | < v . 
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Let, now, the function u(x, y) be biharmonic in G and continuous, including 
derivatives of all orders, in G. According to Lemma 6.6, the functions (p(z), x(z) and 
their derivatives of all orders are then continuous in G. Let k be an arbitrary, but 
fixed positive integer. Then to every v > 0 it is possible to find such a polynomial 
P(z) that (6.37) holds. Similarly, to the same v > 0 we can find such a polynomial 
Q(z) that for the functions x(z) a n d Q(z) similar relations hold as in (6.37). From 
(6.36) it follows that when calculating partial derivatives of the function u(x, y) up to 
the order k including, we use derivatives of the functions (p(z), x(z) a i S 0 u p to the 
order k including. Consequently, if we replace in (6.36) the functions (p(z), x(z) by 
their "sufficiently close" [in the sense (6.37)] approximations P(z), Q(z), then there 
will be "sufficiently close" not only the functions 

(6.38) u(x, y) = Re [z cp(z) + X(z)] ^d p(x, y) = Re [z P(z) + Q(z)] , 

but also their partial derivatives with respect to x, y up to the order k including. 
Here, P(z) and Q(z) are polynomials in z, so that p(x, y) is a polynomial in x and y, 
according to Lemma 6.6 biharmonic (thus satisfying the biharmonic equation). 

If we take into account that the region G is bounded and that the expression for 
the norm of functions from the space W^(G) contains only these functions and their 
derivatives to the order k including, we can present the following lemma which is 
itself of interest: 

Lemma 6.8. Let the function u(x, y) be biharmonic in G and let it be including 
partial derivatives of all orders continuous in G [thus u e C(oo)(G)]. Let k be an 
arbitrary positive integer. Then to every a > 0 there exists such a biharmonic 
polynomial p(x, y) that 

(6.39) ||u - p\\W2iKHG) < a . 

Further we shall use this lemma for the special case k = 2. 
We now prove the fundamental lemma of this Chapter. 

Lemma 6.9. TO every function z e W^2)(G) and to every, % > 0 it is possible 
to find such a function z(x, y), biharmonic in G that 

z e C(C0)(G) 
and 

(r AK\ n~ ii dz dz 
(6.40) ||z - z\\W2«Hn < t , - - — <r. 

dv dv L2( r ) 

Proof . Let us construct such a sequence of plane bounded simply connected 
regions Gj with Lipschitz boundaries Fj that 

(6.41) G a Gj , Gj+l <= Gj for every j = 1, 2, ..., 

(6.42) lim m(Gj - G) = 0 , 
j ~ * 00 
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where m(Gj — G) is the Lebesque measure of the region Gj — G. Thus, the region G 
is "approximated from outside" by a sequence of regions G; with a Lipschitz boun
dary (Fig. 2). Such a sequence exists — to its construction we can use — if we want — 
conformal mapping of the complement of G on the complement of a unit circle K 
and choose the regions Gj in such a way that they correspond to circles Kj with 
centres at the origin and with radii r} = 1 + ljj, j = 1,2, In this case, the boun
daries of Gj will be even very smooth. 

Fig, 2. 

To the given function z e W2
2\G) there exists a unique function u0 e W(2)(G) 

which is a weak solution of the biharmonic problem given by the condition 

(6.43) z e W(
2
2XG) . 

However, this function does not belong to.C(oo)(G), in general. 

Let us extend the function u0(x, y) in a usual way ([1], p. 80) on the whole region 
Gj (thus on the "largest" of regions Gj) in order that the so extended function -
denote it by U0(x, y) — belongs to W{2)(G1). Let us denote by U0/x, y) the restriction 
of the function U0(xty) on Gj, thus the function U0(x, y) considered only on the 
region Gj. [Here, U01(x, y) = U0(x, y), of course.] Evidently, U0je W2

2\Gj). Denote, 
further, by Uj(x, y) the weak solution of the biharmonic problem on Gj, given 
by the condition 

(6.44) Uj - U0j. WÝ\Gj) 

and by Uj(x, y) a function, defined on Gj as follows: 

Uj(x, y) on Gj 

(6.45) Uj(x,y)< 
"U0(x, y) on Gt - Gj 
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Thus the function Uj(x, y) is a weak solution of a biharmonic equation in Gj and is 

equal to U0(x, y) outside of Gj. Because the function Uoj(x, y) is the restriction 

of U0(x, y) on Gp the traces of U0j(x, y) and U0(x, y) on P,- are the same. From 

(6.44) it then follows Uj - U0 e W^(G{). Further U/x, y) = [U/x, y) - U0(x, y)] + 

'+ U0(x, y) and U0 e W^2)(^i), consequently Uj e W^2)(Gi)-

Intuitively, we can expect that the restriction u/x, y) of the function uJ(x, y) 
on G will be very close, in the metric of the space W(

2

2)(G), to the function w0(x, y), 
if j will be sufficiently large. If we prove this assertion, i.e. if we prove that 

(6.46) lim \\uj - u0||W2(^(G) = 0 » 
Jf->00 

then we can first affirm, on base of Lemma 6.2 that the traces of functions u0(x, y), 
Uj(x, y) [and thus, according to (6.43), also the traces of functions z(x, y) and 
Uj(x, y)] will be sufficiently close in W(

2

l\r) x L2(F) [so that inequalities of the 
type (6.40) be fulfilled if j will be chosen sufficiently large]. Moreover, according to 
Lemma 6.5, each of the functions iij(x, y) will be biharmonic in G and Uj e C(oo) (G), 
because G c: Gj. Consequently, for the function z(x, y) to be found it is then possible 
to take the restriction Uj(x, y) of a function Uj(x, y) on G, for j sufficiently large. 
Thus, if we prove (6.46), our lemma is proved. 

Denote 

(6.47) Zj(x, y) = Uj(x, y) - U0(x, y) in G t . 

According to the definition of functions U0(x, y) and Uj(x, y) we have 

Zj(x, y) = Uj(x, y) - U0j(x, y) in Gj , 

Zj(x, y) = 0 in G t — Gj . 

Further, in G we have 

Uj(x, y) = Uj(x, y) , U0(x, y) = u0(x, y) 
and consequently, 

(6.48) Zj(x, y) = Uj(x, y) - u0(x, y) in G . 

Thus, if we prove that 

we shall the more have 

l i m \\Zj\\W2І2)(Gl) = 0, 

lim I Zj || W2Í2HG) = 0. 

and this is just the required result (6.46). 
As we shall see further, we prove a rather weaker assertion: We prove that it is 

possible to find such a subsequence {Zjk(x, y)} of the sequence {Zj(x, y)} that 

(6-49) lim||ZA||[f,2<a)(Cl) = 0 . 
fc-> oo 
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From here, we get 

(6 .50) l im \\ujk - uo||W2(2)(G) = 0 
k-+oo 

which is, indeed, a weaker result than the result (6.46), but quite sufficient for our 
aim, because, for the required function z(x, y), it is possible to choose the restriction 
ujk(x, y), on G, of a function ujk(x, y) with a sufficiently large j k . Consequently, 
in order to prove Lemma 6.9, it is sufficient to prove the assertion (6.49). 

Therefore, let us proceed to the proof of this assertion. 

Denote by Aj(u, v) the form (6A5) considered on the region Gj, i.e. 

tre*\ At \ CC (d2ud2v 0 d2u d2v d2ud2v\A J 

(6.51) A,(u, v) = + 2 —— — - + — — dx Ay . 
JJGj\oxz dxz dx dy dx dy dyz dy J 

As shown e.g. in [3], p. 408, for the weak solution Uj(x, y) of the biharmonic 
problem, given by the condition (6.44). the following estimate holds: 

( 6 - 5 2 ) \\Uj\\w2(2HGj) = Kp0j\\w2(^Gj) , 

where K is a constant given by the constant of Vj — ellipticity of the form Aj(u, v) 
in the region Gj. Because Gj _ Gx for every j = 2, 3, ..., it is possible to choose 
the same K in (6.52) for allj = 1,2,.. 2). Now, the function Uoj(x, y) is a restriction, 
on Gj, of the function U0(x, y). From (6.52) we then get 

iri!IW2<2>(G,-) = ^(l^ro||W2(2)(G1) • 

2( Let (a, b) or (c, d) be projections of the region Gx into the x- or y-axis, respectively. For 
every v e W^1;(Gj), j= 1, 2, ..., the Friedrichs inequality holds, 

Lt ïàxdyiCtW \(dA2+/dV 

GJ jjG,L\dxJ \ôy. 

where we can put [see (18.46) in [3l, p. 205] 

1 
c, = 

dx dy , 

.,-r-__+_L_i-
L(b - of (a - cf\ 

Now, from (23.35), (23.36), (23.38) in [31, p. 285 and 286, it easily follows 

Consequently, the forms Ay(u, v) are "uniformly V-elliptic". 
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From the definition of the functions Uj(x, y) it follows immediately 

| | ^ r j | |W 2 (2 ) (G ) ) = | r j | | W 2 ( 2 , ( G j ) + l l ^ r o | |W 2 (2 ) (G 1 ) 

so that 

II^III^^CGi) = ||W/||W2<2>(Gj) + ||^o||W2(
2)(G1) 

and in consequence of (6.52) 

(6-53) l ^ l k ^ c G , ) = (K + 1) ||Uo||W2(2)(G1) • 

Thus the functions Uj(x, y), j = 1, 2, ..., and according to (6.47), also the functions 
Zj(x, y) are uniformly bounded in JV2

2)(Gi). Consequently, a subsequence {Zjk(x, y)} 
of the sequence {Zj(x, y)} can be found, converging weakly in W(

2
2)(GX) to a function 

Z e Wi2\Gt), 

(6.54) ZJk-Z in W^XG,). 

Without loss of generality we can assume that corresponding subsequences of 
(generalized) derivatives of functions Zjk(x, y) up to the second order including 
converge weakly in L2(G1) to corresponding (generalized) derivatives of the function 
Z(x, y), so that we have 

(6.55) DlZjk -> DlZ , |i | <: 2 in L2(Gi) , 

because Zj(x, y), being uniformly bounded in W2
2)(G,), all these derivatives are 

uniformly bounded in L2(Gi). For |/| = 0 we get, in particular, Zjk -> Z in L2(Gj). 
We prove now that 

(6.56) Z = 0 in W%XGi) -

We prove first that the function Z(x, y) cannot be different from zero on any set 
of positive measure lying in Gx — G. Let the contrary be true, i.e. let 

l |Z |k( C . - O )> 0 -
But Zjk -* Z in L2(GX) and, consequently, also in L2(G{ — G), so that 

(6.57) lim (Z, Z,JL 2 ( C l _C) = (Z, Z) t , ( C l _C) > 0 . 

fc-» 00 

Further, ZA(x, y) = 0 in Gl — GJk, thus 

(6-58) \(Z,ZJk)L2(Gt.G)\ = 
= K 2 ' ^ j JL2(G j k -G) | = || Z [j L2(Gjk-G) | |Z/k | |L2(G jk-G) • 

The sequence {Zjk(x, y)} is uniformly bounded in L2(Gt) and at the same time 

lim ||Z||L2(Gik_G) = 0 
fc->GO 
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in consequence of (6.42). From here and from (6.58) we get 

l im(Z,ZA )L 2 ( 0 l_ 0 ) = 0 
fe->oo 

in contradiction with (6.57). 
Thus Z = 0 in GY — G. Because, moreover, Z e W(

2
2)(Gl), it follows for its traces 

and for traces of its first derivatives 

Z = 0 , — = 0 , — = 0 on r 

dx dy 

which implies (see p. 116) for the restriction Z(x, y), on G, of this function 

(6.59) Z G W2
2)(G) . 

Let v(x, y) be an arbitrary function of W2
2)(G). Let us extend it by zero on the whole 

region Gx and denote the so extended function by V(x, y). For the restriction Vjk(x, y) 
of this function on Gjk (k = 1,2,...) we have obviously Vjk e W22)(^jk)-

Let us denote by Zjk(x, y) the restriction of the function Zjk(x, y) on Gjk. It follows 
from (6.47) [see the text following (6.47)] 

ZJk(x, y) = ujk(x, y) - Uojk(x, y) in Gjk. 

In consequence of (6.55) we then have [about Aj see in (6.51)] 

(6.60) A(Z, v) = At(Z, V) = lim At(ZJk, V) = lim AJk(ZJk, VJk) . 
fc^oo k-+oo 

But for every j k , k = 1, 2, ..., we have [consider that VJk(x, y) = 0 outside of G] 

*!&» ^ ) = ^ , ^ ) - ^ ( t lO,V ^ ) = 

^ A ( « A . ^A) - 4 « o . ») = 0 , 

because t/ik, or u0 is a weak solution of the biharmonic equation in Gjk, or G, re
spectively, so that we have [cf. (6.14), p. 116] 

M»J*> vh) = ° 
and 

A(u0, v) = 0. 
Thus, from (6.60) it follows 

(6.61) A(Z, v) = 0 

for every v e W(
2

2)(G) [because ve(W2
2)(G) has been chosen arbitrarily]. Consequently, 

the function Z(x, y) is a weak solution of the biharmonic problem 

A(u, v) = 0 for every v e W(
2
2)(G), 

u e W2
2)(G). 
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From unicity of the solution of this problem it follows Z = 0 in W2
2)(G). AS we 

have shown in the preceding text (p. 127), Z(x, y) = 0 in G\ — G so that 

Z = 0 in Wi2)(Gi) . 
From 

Zjk-»0 in W(2\GX) 

and from (6.55) it then follows 

(6.62) DiZjk - 0 in L2(G1) , |i | ^ 2 . 

We now prove 

(6.63) Zjk ->0 in Wi2)(Gj) 

(strongly, not only weakly). Because the form At is rV^2)(G1)-elliptic, 

(6.64) Ai(u, u) ^ a||ii||Sr2(2,(Gl) for every M g H^,2)(Gi) 

(a > 0), it is sufficient to show that 

i™A1(z,fc,zJ,) = o, 
fc-> 00 

which implies [according to (6.64)] 

(6.65) lim | | Z A | j ^ ( 2 ) ( C ) = 0 
k~* oo 

what we have to prove. But 

(6.66) lim Ax{ZJk, ZJk) = lim Ax{UJk - U0, ZJk) = 
k~* oo k~+ co 

= lim Aii(UA, Z/k) - lim Ai(U0, Zik) = 
&-» oo & - • 00 

= lim Ay^, Z,J - lim £ IT D'U0D'Z,-fc dx dy = 0 , 
A:-+oo fc-*oo 11*]=2 J J G l 

because, first 
AJ*(UJ*> Zjk) = 0 > 

uJfc being a weak solution of the biharmonic equation in Gjk and Zjk e W(
2

2)(G •), and 

lim j j Df'U0 D'Zy;< dx d j = 0 
^ J J G , 

for every |i | :g 2 in consequence of (6.62). 
In this way (6.63), i.e. (6.49), is proved. According to the text following (6.50), 

the proof of Lemma 6.9 is finished. 
Now, it follows from Lemma 6.3, from the just proved Lemma 6.9, from Lemma 

6.8 in which we put k = 2 and from Lemma 6.2: 
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Lemma 6.10. The traces of biharmonic polynomials are dense in W2
1\T) X 

x L2(F). In details: To every pair of functions g0 e W|1}(F), gx e L2(F) and to every 
s > 0 there exists a polynomial p(x, y) which is a solution of the biharmonic 
equation in G and for which the inequalities 

(6.68) 

hold. 

P - go W2(i)(T) < £ , 
дP 

дv 
< £ 

L2(T) 

Theorem 6.1. Let g0 e W2
l\r), gt e L2(F). Then the sequence of functions U„(x, y), 

constructed by the method of least squares on the boundary, i.e. the sequence of 
functions (4.1) where the coefficients ani are given by the system (4A0), converges 
in L2(G) to the very weak (p. 120) solution of the biharmonic problem 

(6.69) 

(6.70) 

Д2U = 0 in G 

ÕU 
U = g0(s), — = gi(s) on Г . 

õv 

Proof. Let the functions g0 e W(
2\T), g{ e L2(F) be given and let {s„} be a non-

increasing sequence of positive numbers, lim en = 0. According to Lemma 6.10, 
to every sn such a polynomial pkn(x, y) of a sufficiently high degree kn can be found 
that the inequalities (6.68) hold, where p and e are replaced by pkn and en. But pkn(x, y) 
being biharmonic, we can write 

4kn~2 

Pkn(x, y) = X bkni zt(x, y), 

where zx(x,y), z2(x, y),... are biharmonic polynomials (3.5) and the coefficients 
bhni are by the polynomial pkn(x, y) uniquely determined (p. 107). Thus we have 

(6.71) I J] bkniZi - g0\\W2nHn 

But for the functions 

(6.72) 

< eи 

4kn'2 ôz-
gi < eи 

L2(Г) 

4/c„-2 
Ukn(x, y) = X akni Zi(x, y), 

where the coefficients akni are determined by the method of least squares on the 

boundary [see (4.1), p. 108], it the more holds 

(6.73) \Ukn — go||W2(ł)(T) ^ £" 
дUu 

- gj < eи 

L2(П 
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Thus, we have 

(6.74) lim Ukn = g0 in W(
2

l) (F) , lim - ^ = Ql in L2(F) . 
«-•* oo n -> oo O V 

In this way, the convergence [in the sense (6.74)] of the subsequence {Ukn(x, y)} 
of the sequence {Un(x, y)}, constructed by the method of least squares on the 
boundary, is proved. However, we assert that the whole sequence {Un(x, y)} is 
convergent, in the sense (6.74). In fact, our method being a least squares method, 
the approximation in the sense (6.74) by polynomials of higher degree can be only 
better. More precisely: If inequalities (6.73) are valid, then the same inequalities hold 
for Ukn+ t(x, y), Ukn+2(x, y), etc. Thus we really have 

(6.75) MmUn~g0 in W2
n(F), lim ^ = gt in L 2 (F). 

n~* oo n~* oo CV 

From Lemma 6.4 it then follows 

(6.76) lim U„(x, y) = U(x, y) in L2(G), 
«-> oo 

what completes the proof of Theorem 6.1 and, consequently, the proof of convergence 
of our method. 
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S o u h r n 

ŘEŠENÍ PRVNÍHO BIHARMONICKÉHO PROBLÉMU 
METODOU NEJMENŠÍCH ČTVERCŮ NA HRANICI 

KAREL REKTORYS a VÁCLAV ZAHRADNÍK 

Některé úlohy teorie pružnosti, zejména problémy nosných stěn, vedou k řešení 
biharmonického problému (1.1), (1.2), str. 101 (podrobněji o něm viz v kapitole 2). 
K jeho řešení lze aplikovat řadu metod (metodu sítí, metodu konečných prvků, 
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klasické variační metody, metodu založenou na použití funkcí komplexní proměnné, 
atd.), které mají své specifické přednosti, ale také mnohé nedostatky. Metoda nej
menších čtverců na hranici, vyšetřovaná v této práci, předpokládá přibližné řešení 
dané úlohy ve tvaru 

4/1-2 

0 ) Un(x, y) = £ aniZi(x, y), n = 2 , 
i = i 

kde zt(x, y), i = 1, ...,4n — 2, jsou biharmonické polynomy stupně nejvýše n-tého, 
popsané v kapitole 3 (str. 106). Koeficienty ani v (l) jsou určeny podmínkou, aby 
funkcionál (4.3), str. 108, nabýval právě pro funkci (l) minima na množině všech 
funkcí tvaru 

4/1-2 
F«(x> y) = Z bm zi(x> y) • 

i = i 

Tato podmínka vede na řešení soustavy (4.10), str. 109, 4n — 2 lineárních rovnic 
pro hledané koeficienty ani, i = 1, ..., 4n — 2. V kapitole 6 (str. 114— 130) je doká
záno, že tato soustava je pro každé přirozené n jednoznačně řešitelná a že posloupnost 
{Un(x, y)} konverguje v L2(G) k tzv. velmi slabému řešení problému (1.1), (1.2), 
zavedenému na str. 120. Přitom se předpokládá, že G je rovinná omezená jednoduše 
souvislá oblast s lipschitzovskou hranicí F a že g0 e W^\r), gx eL 2 (F) . Pro aplikace 
v teorii pružnosti jsou tyto předpoklady dostatečně obecné. 

První kapitoly práce (str. 101 - 114) jsou určeny především čtenářům, kteří aplikuji 
matematiku k řešení svých teoretických problémů. Jsou proto psány podrobněji 
a v kapitole 5 je uveden numerický příklad. Důkaz konvergence je poněkud obtížnější 
a byl odsunut až do kapitoly 6 (str. 114—130). Tato kapitola je určena především 
matematikům. 

V případě biharmonického problému využívá uvedená metoda podstatně tvaru 
rovnice (1.1). Lze ji však — vhodně modifikovanou — použít i k řešení problémů 
jiných. 
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