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INTRODUCTION

In the present part of our paper, we discuss the boundary value problems of “‘free”
and “‘partially free” plates, i.e. such that the boundary conditions do not eliminate
the possibility of motions of a ““non-flexible” plate.

Some investigations in this direction have been accomplished by Naumann [4],
who considered an elastic plate, the edge of which is completely free of forces and
supports.

From the mathematical point of view, the mechanical assumptions imply that the
bilinear form, associated with the plate bending energy and the energy of elastic
support and clamping, is not coercive on the whole energy space but merely on its
appropriate subspace, namely, the orthogonal complement of all kinematically
admissible rigid deflections.

Restating the boundary value problem in terms of a system of integral identities,
we replace them by an abstract operator equation in the subspace mentioned above.
If the data satisfy an orthogonality condition (total equilibrium), the solution of the
operator equation represents a variational solution of our boundary value problem.")

In Section 1 we introduce a class of boundary value problems, recalling some of the
notations and assumptions of Part I [1] and defining a new subspace of kinematically
admissible deflections of the “non-flexible’” plate, which involves the influence of a
“prestressing” by the tension forces.

Section 2 contains the variational formulation of the problem and a discussion
of solvability. Here we study the configurations of boundary conditions such that the
solutions form a certain class of equivalence, i.e., an element of a quotient space.

l) Note that the approach differs from that of [4], where the abstract operator equation has
been considered in the corresponding factor-space.
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The main result of the paper is given in Section 3. It presents the necessary and suf-

ficient conditions for the existence of the class of solutions, mentioned above. In Sec-

tion 4 we prove the main theorem of existence and in Section 5 we introduce a se-

quence of perturbed boundary value problems of the coercive type the solutions
of which converge to the solution of the given problem.

1. SETTING OF THE BOUNDARY VALUE PROBLEM

We preserve all the assumptions of Part I [1] concerning the domain  (cf. the
beginning of Section 2 there).

The equilibrium of a thin elastic plate, which is subjected both to a perpendicular
load q and to forces acting along the edges, is governed by the von Kdrmdn equations

(1.1) : Aw=[D,w]+gq
(1.2) 4*¢ = —[w, w]
(see Part I for the notation).
Let the boundary I' of Q consist of three mutually disjoint parts
I'=ryvurl,vul;,,

where each of I'; is either empty or has a positive length and does not contain isolated
points. We consider the following boundary conditions

(1.3) w=0, MW +kw,=m; on I,
M(w) + kyyw, =my, T(w) + kyyw =1, on I,,
W, =0, T(W)+ ksw =13 on I,

where
_on
n an ’

M(w) = pdw + (1 — p) (ween2 + 2n.nw,, + nlw,),

0 0
T(W) = — — 4w + (1 = p) — [wnn, — we(n? — n2) — wynn] +

on ds

+ Xw, + Yw,.

Throughout the whole paper we assume that

(14) k, ex(r,), k; 20 ae.on Iy,
ky € IXI,), kyppeL'(I,), k20 ae.on I'p, (j=1,2),
ky eX(I';), k320 ae on Iy,
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X, Ye (I, UTs),
m, e IX(I')), myelIlIl,),
t, eINI,), tyeIMI,),
q e[C@],

where 1 < p < oo (cf. also Part I).

According to (1.3), the plate is supported and elastically clamped along I', (if
ky > 0) or loaded only by a moment distribution m, (if k, = 0). In particular, it is
simply supported along I', if k, = m; = 0.

On I', elastic supports (if k,, > 0) and elastic clamping (if k,, > 0) or transversal
load and moment distribution (if k,, = k,; = 0) are prescribed. On I'y the edge
is elastically supported (if k; > 0) or loaded only by transversal loads (if k3 = 0),
being prevented from rotation.

If there are corners in the interior of I', U I's with coordinates (x(s;), ¥(s;)),
i =1,2,...,r, then (1.3) will be completed by the conditions

H(w(si), n(si)) — Hw(s7), n(s7)) = h;, i=1,2,..,1,

where h; are given constants and the operator H is defined in Section 2 of Part L.

As for the boundary conditions upon ®, we adopt (2.5) as well as (2.5") from Part I
(replacing only I'y by I', U I'3), i.e.,

(1.5) ¢ =¢,, P,=¢, on I,
(1.5) on, — b on, =X, &.n, —d n =Y on I, ul;.})

Assuming that @, ¢, satisfy the conditions (4.1) of Part I, there exists a unique
function F = W?'*(Q) such that

F=¢,, F,=¢;, onl,
(I:, l//)Woz,z =0 Vl// € WOZ'Z(Q)
(cf. Proposition 4.1 [1]). Moreover, it holds

||F“W1.2 < const. T1((P0’ ‘Pl) -2)

F represents the Airy stress function of the associated linear plane stress problem.

1y Note that (1.5) represents only another form of (1.5") on I’y U Iy (cf. Part. I p. 257).
!
?) Ti(9o> @1) =.Zl[“‘l’0|lw3/2'1(sn + llos|wiraspl + ool wizaay +
j=
+ |l @sollwizaa
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In accordance with the boundary conditions (1.3) we set

¥ ={ueC”@):u=0o0nT,, u,=0 on I'y}
and define
V = closure of ¥ in W**(Q).

The functions of ¥V may be interpreted as the kinematically admissible (virtual) de-
flections of the plate.

For u, v € W»?(Q) we introduce the bilinear forms
A(u, v) =J‘ [taxtnx + 2(1 = 1) tyvyy + 10, +
Q2
+ p(Ugytyy + uyv)]dxdy,

a(u, v) =J k,u,v, ds +f (kyyu,v, + kypuv)ds +f kyuv ds,
Iy I

Irs

and for ¢, u, ve W?*(Q) the trilinear form
B(¢; u, v) =j [on(uw, + uw,)) — @ uw, — @uw,]dxdy
Q2

(cf. Part I). Note that B is symmetric with respect to u, v.
As in Part T we may consider the following condition upon the function F:

(+) B(F;u,u) <0 VueV.

If u is the deflection of the plate, the term — B(F; u, u) can be interpreted as a part
of the bending energy, originating from the ‘““prestressing” by tension forces, acting
in the plane of the plate.

Let us define

P={ueV:Au,u)+ a(u,u) =0}.
Clearly, P < P, (where P, denotes the space of linear polynomials); P is the set

of all kinematically admissible deflections of a plate, the bending energy of which
vanishes as well as the energy stored in the elastic supports.

If the condition ( +) is satisfied, we introduce the following subspace of P:
Py ={ueV:A(u,u) — B(F; u,u) + a(u, u) = 0} =
={ueP:B(F;u,u)=0}.

In what follows we assume that precisely one of the following two cases takes
place:

(1.6) A Condition (+) is satisfied and Py * {0} ;
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(1.7) Condition (+) does not hold and P # {0} .

P is the set of all kinematically admissible deflections of a plate, the total bending
energy of which (including the influence of “‘prestressing” by F) vanishes as well as
the energy of elastic supports and clamping.

The assumptions (1.6), (1.7) are motivated by the fact that, in the contrary to Part I,
here we intend to study boundary value problems for the system (1.1), (1.2) such that
if {w, ®} is a solution, then {w + p, ®}, where p is any element of Py or P, respecti-
vely, is also a solution. Thus the solutions w will form an element of the quotient
space V[Py or V[P, respectively.

In order to satisfy (1.6) or (1.7) we have to negate all the conditions 1° to 5° of Sec-
tion 2, Part I (where I'; = @, I', is replaced by I'; and I'; by I',), because each of those
conditions yields P = {©}. Thus we have to assume I', U I'y =+ 0.

The mechanical meaning of (1.6), (1.7) can be explained as follows: the kinematic
boundary conditions (involved in the definition of V) restrict the total freedom of the
“non-flexible” plate, lying on the rigid supports and with rigid clamping, to deflec-
tions contained in Py or P, respectively. In other words, there exist non-zero virtual
deflections of the “non-flexible” plate on the rigid supports and clamping.

Let us present some examples of the problems under consideration.

Example 1. LetI' =TI,, k,; = k,, = 0. Then

a(u,u) =0, V=w>»*Q), P=P,.
Moreover, let
F = F(x) + Fy(y),

where F, F, are polynomials of the degree at most 3, such that F,,, = 0, F,,, = 0
on Q and at least one of the integrals

j Fi..dxdy, f F,,,dxdy
Q 2

is positive. Then (+) holds and
1 <dimPy <dimP, = 3.
In fact, we may write

p=ax+by+c VpeP,

and the condition

—B(F, p, p) = azj F,,,dxdy + bzf Fi,.dxdy =0

2] Q2

yields that at least one of a, b must vanish. Thus we have the case of (1.6).
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Example 2. LetI'y =0, k3 = k,, = 0 and the set
I'; usupp kyy
belong to straight lines parallel to x-axis (being non-empty). Then we have
P={peP :p=ax+ c,'a,ceRl}.

Suppose that F is of the same type as in Example 1 and

szy,dxdy >0.
Q
We obtain
Pr={peP,:p=cceR'}.
Example 3. Let I'; be a segment on the y-axis, I'; = 0,
ki =k, =0

and let supp k,, belong to the y-axis.
Then we have
V= {ueWZ’Z(Q), u=0onTI,},

a(u,u) =0=>u =0 on supp k,,.
Let F do not satisfy (+). Then

P={p:p=ax, aecR'},
i.e., (1.7) is satisfied.

Example 4. Consider the problem of Example 3 with the only change that
F = }0x?, ¢ = const. > 0. Then (+) holds, and

P, =P + {6};
consequently, we have the case of (1.6).

Example 5. Consider again the configuration of Example 3, but with F = 10y?,
¢ = const. > 0.

Then (+) holds, whereas Py = {6}.
Consequently neither (1.6) nor (1.7) takes place. This example could be rather joined
to the class of boundary value problems of Part I (cf. Remark 4.1 below).

The system (1.1), (1.2) with the boundary conditions (1.3), (1.4), (1.5), (1.5)
under suppositions (1.6) or (1.7), respectively, will be referred to as the boundary-value
problem II.
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2. DEFINITIONS. PRELIMINARIES

To give a variational formulation of boundary value problem II and to apply
abstract methods in the proof. of the solvability, it is convenient to introduce two
other scalar products on V.

A. Let (1.6) hold. Consider a system {f,;} (i =1,...,K,) of linear continuous
functionals on ¥V such that

Ky
(21) wueV, A(u,u) — B(F,u,u) + a(u,u) + Y (f1(u)? =0=>u =06,
K, l;:
Yafip) =0 VpePr==Y al=0.
i=1 i=1
Using the method of proof of Theorem 2.3 in [2] and observing the estimate
|B(F, u, v)| £ const |Fllyz.: |ullwz.2 |v]we.

which holds for all u, v e W?'2, we obtain the existence of two positive constants
¢y, ¢, such that

(2.2) ci|ulwez £ A(u, u) — B(F, u, u) + a(u, u) +
+ igl(fli(u))z = Cz““”%yz,z VueV.

Thus, if (1.6) holds and if the functionals {f,,} satisfy (2.1), the scalar product

K1
(u, 0)p = A(u, v) = B(F, v, v) + a(u, v) + ¥, f1.(u) f12)
turns Vinto a Hilbert space.

B. Let the weaker condition (1.7) be satisfied. Consider a system {f5;} (i =1, ...
..., K,) of linear continuous functionals on ¥ such that

(2.3) ueV, A(u,u)+ a(u,u) + f(fﬁ(u))z —0mu=0,
i=1
o N
Y aif,{p) =0 VpeP=Yal=0.
t i=1

i=

The same argument as above yields the existence of two positive constants ¢, €,
such that

(2.4) eululfns S Al ) + alu ) + 3 (W)
’ < &ul3en VueV.
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Hence, in the present case, V' becomes a Hilbert space with respect to the scalar
product

(u, U) = A(“’ v) + a(u, U) + iglfzt(“) fo'(U) .

Remark 2.1. The systems {f,;} and {f,;}, respectively, may be chosen in many
ways. Thus if Py (or P) equals Py, we can set )

fiu) =u(x, ), (i=1,2, 3),

where the points (x;, y;) € € do not belong to one straight line.
If Pp(or P) = {pe P, : p = ax + c}, we can take

flu) =ulxi, ), (i=1,2),
where (x;, ;) € 2, x, =+ x,.
If Pp(or P) = {pe P, : p = ax}, we can set

fl(u)zu(prﬁ)a (xlsyl)e{ja x, £0

and for Px(P) = R', we take f,(u) = u(x,, y,), (x5, ;) € 2.
We introduce the orthogonal decompositions

V =Ry ® P with respectto (-, *),
V=R @P withrespectto (-,-).

As in [2] one concludes that
K1
Rp={ueV :'Zl(f“(u))z =0},

R ={uev :Sl(fﬁ(u))z — 0.

Observing (2.2) and (2.4), respectively, we infer: Ry and R is a Hilbert space with
respect to the scalar product

((u, v)r = A(u, v) — B(F, u,v) + a(u, v)
and

((u, v)) = A(u, v) + a(u, v),

respectively.
The associated norm will be denoted by ||| ||| and ||| |||, respectively.

1y Note that, by Sobolev’s Imbedding Theorem, #(x, ¥) makes sense pointwise for each ue
e wr2(Q).
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Remark 2.2. Let V[P denote the vector space of all classes i such that u, ve i
ifand only if u — v € Pp. V/Pg will be provided with the norm

la]lvee = inf e
where |u]| = (4, u)}/>. If 4 denotes the (uniquely determined) representative of &

which belongs to Ry, we have ||i|yp, = |#]|r = |||u|||r (u e arbitrary). Con-
sequently, V[P is a Hilbert space with respect to the scalar product

(@, B)y,pp = (4, 0)r = ((u, v))r (u €d, v e arbitrary),
i.e., Ry and V/Py are isomorphic Hilbert spaces.

An analogous remark applies to the space V/P.

Definition 2.1. The pair {w, f} € V x W§? is called an excess variational solu-
tion of boundary value problem II if

1° the identity
(2.5 A(w, ) + a(w, ¢) = B(F, w, ) + B(f, w, ) + L(¢)

holds for all ¢ € V, where

L(op) =_[ my @, ds +J (my0, + t0)ds +J t;p ds +
Iy I 3

Is
+ _Zlhi o(x(s:), ¥(s5) + <q, @ ;
2° the identity

(2:6) (K ¥)wera = =B(w, w, )
holds for all y e Wg'*(Q).

Let {w, f} be an excess variational solution of boundary value problem II. Inserting
¢ = p e Pin(2.5)and observing that (cf. Part I, Section 5)

(27)  B(y,u,p) =B(p,u,¥) =0 VyeWs*Q), VueV, VpeP,,
we obtain the necessary solvability condition
(2.8) B(F,w,p) + L(p) =0 VpeP.
A. Let (1.6) be satisfied. Then we have, using Schwarz’s inequality,
B(F,u,p) =0 VueV, VpePp.
Consequently, (2.8) implies |

(2.9) L(p) =0 VpePs.
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Further, observing that A(u, p) + a(u, p) = 0 for any u € V'and any p € P (in fact
for any p € P) and using (2.7) we obtain: If (1.6) is satisfied and if {w, f} is an excess
variational solution of boundary value problem 1l then each pair {w + p, f}a where
P € Py, is also an excess variational solution (i.e., excess variational solutions may be
identified with elements of V[Pp).

Condition (2.9) expresses a kind of equilibrium of external forces and moments.

B. Next let (1.7) be satisfied. We now suppose that besides {w, f} each pair {w + p,f},
where p € P, is also an excess variational solution of boundary value problem II.
Then it holds

(2.10) B(F,u,p) =0 YueV, peP,
and (2.8) reduces to
(2.9) L(p) =0 YpeP.
To clarify the nature of the condition (2.10), let us consider Example 3, with
F=F(), F,,=Cx+C, <0 on Q.
Then (+) does not hold, P = {p : p = ax, a € R'} and (2.10) holds, because

B(F,u, p) = —JF,,uypydxdy =0 VueV, peP.
2

Considering the same example with F = —txy, t = const., then (+) again fails
to hold and

B(F,u, p) = —-arj.u,dxdy VueV, peP.

Q2

Consequently, (2.10) is not satisfied.

3. THE MAIN RESULT

Theorem 1. Suppose the data q, my, my, ty, t3, X, Y satisfy the conditions (1.4)
and @o, @1 the conditions (4.1) of Part I, respectively.

(i) Let (1.6) hold. Then there exists at least one pair {uy, f,} € Ry x W3'*(Q)
such that

(3'1) A("n ‘P) + a(“l- (9) = B(F, uy, (") + B(fx’ uy, ‘P) + L((P)
holds for all ¢ € R,
(3-2)’ (f1s Vworry = —B(uy, uy, ¥)

holds for all € W§**(Q).
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(ii) Let (1.7) hold. For sufficiently small T(¢o, @,), there exists at least one pair
{uy, £} € R x WS*(Q) such that

(33) A(“Z’ (P) + a(uZ’ (p) = B(F’ U, (P) + B(fz, U, (P) + L((p)
holds for all ¢ € R,
(3-4) (fz’ '//)Wozvl(!)) = "'B(uz» U, ‘/’)

holds for all Y e W§*(Q).

A. Let the assumptions of Theorem 1, (i) be fulfilled, and let {u,, f,} € Rp x
x W¢'*(Q) be a pair satisfying (3.1), (3.2).

Let (2.9) hold. Observing that each ¢ € V has the (unique) decomposition ¢ =
= ¢ + p where ¢ € Ry, pe Py, it is readily seen that the pair {u,, f,} is an excess .
variational solution of boundary value problem II. But then each pair {u, + p, f,},
(p € Pp) possesses the same property (cf. Section 2).

Thus, if the assumptions of Theorem 1, (i) are satisfied, (2.9) is necessary and

sufficient for the existence of a class {u; + p, f;} (p € Pg) of excess variational
solutions of boundary value problem 1I.

B. Let the assumptions of Theorem 1, (ii) be fulfilled, and let {u,, f,} € R x
x Wg*(Q) be a pair satisfying (3.3), (3.4). It is then easy to see that the condition

B(F,u,,p) + L(p) =0 VpeP

is sufficient for {u,, f,} to be an excess variational solution of boundary value problem
I1. If the sharper conditions (2.10), (2.9') are satisfied, then each pair {u, + p, f,} .
. (p € P)is also an excess variational solution.

Observing the corresponding remarks in Sections 2, we may conclude: if the as-
sumptions of Theorem 1, (ii) are satisfied, then (2.10), (2.9') are necessary and suf-
ficient for the existence of a class {u, + p, f,} (p € P) of excess variational solu-
tions of boundary value problem 11.

4. PROOF OF THEOREM 1

Proof of (i). Following the method of proof of our main theorem in [1], we intro-
duce an abstract operator formulation of boundary value problem II. Then the so-
lution of the operator equation leads to a solution of the identities (3.1) and 3.2).

Let y € W;'*(Q), u € Ry be arbitrary. Using Sobolev’s Imbedding Theorem, Hol-
der’s inequality and the first inequality in (2.2) one obtains, for any ¢ € Ry,

(4.1) By, u, ¢) < (const [/[wa.zay 4] wie) ||| 2]ll
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(cf. (5.3) of Part I). By the Riesz representation theorem for linear functionals, there
exists a (uniquely determined) element C,(¥, u) € Ry such that

(42) (Cs(¥ u), @) = B(Y, 4, ¢) VoeRe.

By virtue of the Trace Theorem, the Sobolev Imbedding Theorem and the first ine-
quality (2.2) we get the estimate.

(4.3) |L(¢)] < const K(my; my; ta5 135 by, .y s @) [[] ]| s
which holds for all ¢ € R, where
K(my; my; ty5 133 hyy ooy By q) =
= [miloery + [mallioes + |62l + [tlliiary +
+i;|hi| + |alccanr

(cf. also (5.7) of Part I). Hence there exists a (unique) element g, € Ry such that
(44) (91 @))r = L(®) Vo €Rg.
Further, let u, v € Ry be arbitrary. Arguing as above, we obtain the estimate
(4.5) |B(u, v, )| < (const [[u]wz,39) [o]wrsca) V]| woz2ca)

for all Y € Wg*(Q). Then there exists a (uniquely determined) element C,(u, v) €
€ W3°*(Q) such that

(4.6) (Ca, 0), YIworagey = —Blu, v, ) Ve W5 *(Q).
We define the mapping C : Ry — Rj as follows

C(u) = —Cy(Cy(u, u), u)
and consider the equation

*) u+ C(u) =q, on Rg.
Let u, € Ry be a solution of (*). Putting f; = C,(uy, u,) we have {uy, f;} € Ry x
x W¢'*(Q); the equation (*) is equivalent with the following system:
((uy, O)r = (Cy(f1> u1), @))r + (41, @))r Vo €Rp,
(f1 ‘/’)Woi.l(n) = _B(“b Uy, '//) Ve WOZ'Z(Q) .

By (4.2) and (4.4), the last system is identical with (3.1), (3.2). The converse is also
true: If the pair {u;, f;} € Ry x W§*(Q) satisfies (3.1), (3.2) then u, is a solution
of (*). .

We shall deduce the existence of a solution of (*) from the following abstract
result (cf. [3, Chapt. 2, Theorem 2.7]):
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Let X be a reflexive Banach space with the dual X*, the dual pairing between X
and X* being denoted by (+, *),

Let A: X — X* be a mapping such that

(i) A maps bounded sets into bounded sets,
(ii) for any sequence {u;} = X such that u; — u weakly in X and lim sup (Au;,
u; —u) £ 0, it holds

(Au,u — v) < liminf (Auj, u; —v) VweX,

(i) (v, 0)
o]

Then for each f € X* the equation Au = f possesses at least one solution.

This theorem may be applied to the solution of (*), if the following properties
of C are verified: '

o as [v] > .

1° ((C(u), u))r =0 VueRg.

2° If {u ;) © Rpis a sequence such that u; — u weakly in Ry as j — oo, there exists
a subsequence {u;,} = {u;} such that

C(u;,) » C(u) stronglyin Ry as n— .

Proof of 1°. Observing the defining relations (4.2) and (4.6) we easily get, for
any u € Ry,

((C(u), w))r = (= C1(Cy(u, u), u), u))r = —B(Cy(u, u), u, u) =
= —B(u, u, C;(u, u)) = |Cs(u, u)|[fr20) Z 0

Proof of 2°. Let {u;} = Ry be any sequence such that u; » u weakly in R
as j » . By (4.1), (4.5)

lIC(;) = C@)||le = [lICA(Caluj, uy), u; — w)l||r +
+ [||Co(Calu, 1) = Ca(uy, uy), u)|||r < const [u; — uly1.ucq) +

+ const || Cy(uy, u;) — Cylu, u)|wa,gy -
Observing that

B(u,v,y) = B(v,u, §) Vu,ve W>X(Q), Ve WS (Q),
we infer from (4.5) the estimate
[Ca(uj ;) = Cafu, )| wasacay ="const u; — u|lwi.eco)-

Since the imbedding W2:3(Q) = W"*(Q) is compact, the assertion is readily obtained.
The proof of part (i) is complete.
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Remark 4.1. In Example 5 we arrive at a mechanical “paradox”, because the
plate behaves as a ‘““fixed” one. An arbitrarily small tension o, = F,, = ¢ can
guarantee the (moment) equilibrium with arbitrary given moments m,, m, and loads
t5, hy, . In fact, applying the same approach of proof as previously, (with Py =
= {0}, Ry = V) we obtain the existence of an excess variational solution even
without any equilibrium condition of the type (2.9).

Proof of (ii). Since we use again the above method of proof, we restrict ourselves
to the main points.

Let u € R be arbitrary. Applying the first inequality in (2.4) we obtain, for any ¢ € R,

(4.7) |B(F, u, 9)| < (const || F|ly2.g) [ ]wr.ua) [[]e]]] <
< (const Ty(@o, @1) [[u]| ) |||2]]] -

Thus there exists a (uniquely determined) element Lu € R such that
(4.8) ((Lu, ¢)) = B(F, u,9) VoeR.

The estimate (4.7) implies

(49) lILulll < @0 Ti(@o @) [[[u]]] YueR,

where o, = const > 0.

It is easy to see that the estimates (4.1) and 4.3), with only different constants, hold
for all ¢ € R(|||¢|||r replaced by |||¢|||). Consequently, for arbitrary y € Wg'*(Q),
u € R there exists a (unique) C,(}, u) € R such that

((Cy(y, u), »)) = By, u, 9) VoeR,

and there exists a (unique) g, € R such that ((g,, ¢)) = L(¢) holds for all ¢ € R.

Since an estimate of the type (4.5) is true for arbitrary u, v € R we get the existence
(and uniqueness) of an element C,(u, v) € W **(Q) such that

(Ca(, ), Vworaey = —Blu, v, ) Vi e Wg(Q).
Defining the mapping C : R — R by means of
C(u) = —Cy(Cy(u, u), u),
we consider the equation
(**) u—Lu+Cu)=q, on R .

It is easy to verify that if u, is a solution of (**), the pair {u,, f,}, in which f, =
= C,(u,, u,), satisfies (3.3), (3.4). Conversely, if {u,,f,} € R x W§*(Q) satisfies
(3.3), (3.4) the element u, is a solution of (**).
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Next, the inequality (((_:(“)’ 4)) = 0 holds for all ueR. Choosing Ty(¢o, ¢1)
such that

%, Ty(¢os py) <1
(cf. (4.9)) we obtain
(@~ Lu+ ) |~ +oo as [Jul]] > o

Since C possesses the compactness property 2° (cf. p. 292) the existence of a solution
of (**) follows by means of the general existence theorem for semi-monotone opera-

tors (cf. [1], [3]).

5. A LIMIT OF PERTURBED PROBLEMS OF COERCIVE TYPE

In this section we show that a variational solution of boundary value problem II
may be obtained as a limit element of a sequence of variational solutions of boundary
value problems of the coercive type, which were studied in Part I.

Let us replace the boundary conditions on I', and I'; by
M(W) + kyyw, =m,, T(w) + (ks +e)w=1t, on TI,,
w, =0, T(w)+ (ks +ew=t; on Iy

(cf. (1.3)), where ¢ = const > 0 is arbitrary, and note that the following coerciveness
holds:

(5.1) . veV, A(u,v)+a(v,v)+£f v’ds =0=0p=0.

Iruls

The new boundary conditions of the “perturbed” problem express that artificial
elastic supports with a constant modulus ¢ along I', U I'; are added to the original
ones (if any). (Recall that I', U I'; has a positive length due to (1,6), (1,7)).

Theorem 2. Suppose the data q, my, my, t,, t3, X, Y satisfy the conditions (1.4)
and @, ¢4 the conditions (4.1) of Part I, respectively.

(i) Lete > 0be arbitrary, but fixed. Let Condition (+) be satisfied, or let Ty(¢o, ¢1)
be sufficiently small.
Then there exists at least one pair {u,, f,} € V x W§**(Q) such that

(5:2) A(u, o) + a(u,, 0) + GJ u,pds =

r,urs

= B(F’ U, (P) + B(fes U, (0) + L((p)
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holds for all p € V,
(53) (fes ‘//)WOZ-Z = —B(uw Ug, (p)

holds for all Y € W3 ().

(ii) Consider a sequence & — 0. Let (1.6) hold. Moreover, let (2.9) be fulfilled.
Let u, = @, + p,, with &, € Ry, p, € Pg, be the unique (orthogonal) decomposition
of u,. Then there exists a subsequence {u,, f,} < {u,, f,} such that

4, > uY  weaklyin W**Q),
fy = [ strongly in W§?(Q), as n -0,
where the pair {u"), f(V} isan excess variational solution of boundary value prob-
lem II.

(iit) Let (1.7) hold and Ti(¢,, ¢;) be sufficiently small. Suppose that (2.10) and
(2.9') are fulfilled. Let u, = ii, + p,, with @i, € R, p, € P, be the unique (orthogonal)
decomposition of u,.

Then there exists a subsequence {u,, f.} < {u,, f,} such that
i, - u? weaklyin W»*Q),
fo— f® stronglyin W3X(Q) as t—0,

where the pair {u®, f®} is an excess variational solution of boundary value pro-
blem II.

Proof of Theorem 2. Proof of (i).

Using the approach of the proof of the Theorem in Part I, one obtains for each
(fixed) & > O the existence of at least one pair {u,, f,} € V x W"*(Q) satisfying (5.2)
for all ¢ € V; and (5.3) for all yy € W§*(Q).

Proof of (ii). 1) A-priori estimates. Set ¢ = u, in (5.2). Observing (2.2) and (2.9)
one gets

¢y ||| w22 = Au,, u,) — B(F, u,, u,) + a(u,, u,) <
< A(u,, u,) — B(F, u,, u,) + a(u, u,) + eJ. u?ds =
raur;
= B(f,, ., 4,) + L(4,) .
Siﬁce B(fes 4, 11,) < 0 (cf. Section 4, Proof of 1°) it follows (using also (4.3) and(2.2))

(5.4) " ﬁallwz,z < const forall £¢>0.
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Again putting ¢ = u,in (5.2), we obtain by virtue of (5.4)
(5.5) sJ‘ u2ds < const forall ¢> 0.
Iauls

2) Limit procedure. By (5.4), there exists a subsequence {u,} < {u,} and u® e
such that

4, > u weaklyin W>*Q) as n-0.
Since f, = C,(u,, u;) (see (4.6)) and Cy(u,, u,) = C,(d,, 4,), we have (by going
to a subsequence if necessary)

Cy (g, ty) = Co(u®, u®) strongly in W3*(Q)asn — 0

(cf. Section 4, Proof of 2°).
Putting f@ = C,(u®, uM), the pair {u®, fM} is in ¥ x W *(Q) and satisfies

(2.6).

From (5.5) we conclude the estimate

1/2
j u,p ds| £ &'/? const {J. @? ds}
ryours raurls

which holds for any ¢ > 0 and any ¢ € W>*(Q). Finally, we have, for arbitrary
0 eW>Q),

€

A(u,, ¢) — B(F, u,, 9) + a(u,, ¢) =
= A(ﬁS’ (,0) - B(F’ i, (P) + a(ﬁs, (P) »
and
B(fs! ul:’ (D) = B(fs’ ﬁey ¢) .

Letting ¢ = n — 0 in (5.2), it is readily seen that {u?, f("} satisfies (2.5) for all
pelV.

The proof of (ii) is complete.

The proof of (iii) follows the same line of thoughts as that of (i).

Remark 5.1. Let (1.7) hold, and let u, = i, + p,, with &, e R, p,€ P, be the
unique (orthogonal) decomposition of u, (u, according to (i)). To obtain the estimate

|#]|w2.2 < const forall &> 0,
it is easy to see that the condition
2B(F, i,, p,) + B(F, p., p.) + L(p.) = 0

is sufficient (provided that T,(¢,, ¢,) is sufficiently small). But this condition is a
consequence of (2.10), (2.9").
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Remark 5.2 Ananalogue of Theorem 2 can be proved, if

s_[ uvds is replaced by sf uvdxdy, where Q* < Q,
r Q*

2ul3

mes (Q*) > 0.
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Souhrn

NEHOMOGENNI OKRAJOVE ULOHY
PRO KARMANOVY ROVNICE II.

IvaN HLAVACEK and JOACHIM NAUMANN

Dokazuje se existence feSeni jisté tfidy kombinovanych okrajovych uloh, pficemz
okrajové podminky ptipoustéji moznost pohybu desky jako tuhého celku. Cast
okraje muZe byt podepfena a pruzné vetknutd, &ast pruzné podepiena i vetknutd
nebo volnd, zatiZenda momenty a posouvajicimi silami. Na celém okraji desky,
ktery muliZe mit rohy, piisobi téZ zatiZeni v roviné desky.

Variacni formulace problému je pfevedena na operatorovou rovnici, pro kterou
plati abstraktni existen&ni véta. ReSeni existuje a tvofi zbytkovou t¥idu, pravé kdyz
jsou splnény podminky celkové rovnovahy vnéjsich sil a momenti.
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